Skip to main content

2009 | OriginalPaper | Buchkapitel

10. Circuits, Applications and Outlook

verfasst von : Ali Keshavarzi, Arijit Raychowdhury

Erschienen in: Carbon Nanotube Electronics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Excerpt

In this chapter, we summarize the opportunities and challenges in the integration of carbon nanotubes into circuits and systems for electronic applications, and we present an outlook for the field. First, the promise of nanotube transistors for future digital circuits is discussed in Section 10.2 while presenting a framework for benchmarking their performance limits as compared to the Si technology. Nanotube transistor design considerations for circuit integration are also discussed. In Section 10.3, we cover a range of extended nanotube applications beyond digital circuits and present a discussion of the short-term exploratory applications and products based on nanotube devices. Finally, the materials, processing, and device challenges associated with nanotube electronics are discussed in Section 10.4 followed by the concluding remarks in Section 10.5. …

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimandi, “Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits,” IEEE Proceedings, Feb. 2003, pp. 305–327. K. Roy, S. Mukhopadhyay, H. Mahmoodi-Meimandi, “Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits,” IEEE Proceedings, Feb. 2003, pp. 305–327.
2.
Zurück zum Zitat S. Borkar, “Technology trends and design challenges for microprocessor design,” Proceedings of the 24th European Solid-State Circuits Conference, 1998. (ESSCIRC ’98) 22–24 Sept. 1998, pp. 7–8. S. Borkar, “Technology trends and design challenges for microprocessor design,” Proceedings of the 24th European Solid-State Circuits Conference, 1998. (ESSCIRC ’98) 22–24 Sept. 1998, pp. 7–8.
3.
Zurück zum Zitat A. Keshavarzi, J. W. Tschanz, S. Narendra, V. De, W. R. Daasch, K Roy, M. Sachdev, C. F. Hawkins, “Leakage and process variation effects in current testing on future CMOS circuits,” IEEE Design and Test of Computers, 19(5), Sept.–Oct. 2002, pp. 36–43. A. Keshavarzi, J. W. Tschanz, S. Narendra, V. De, W. R. Daasch, K Roy, M. Sachdev, C. F. Hawkins, “Leakage and process variation effects in current testing on future CMOS circuits,” IEEE Design and Test of Computers, 19(5), Sept.–Oct. 2002, pp. 36–43.
4.
Zurück zum Zitat D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, Chenming Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, 47(12), Dec. 2000, pp. 2320–2325.CrossRef D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, Chenming Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Transactions on Electron Devices, 47(12), Dec. 2000, pp. 2320–2325.CrossRef
5.
Zurück zum Zitat B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout,” Digest of Technical Papers VLSI Technology Symposium, June 2003, pp. 133–134. B. Doyle, B. Boyanov, S. Datta, M. Doczy, S. Hareland, B. Jin, J. Kavalieros, T. Linton, R. Rios, R. Chau, “Tri-Gate fully-depleted CMOS transistors: fabrication, design and layout,” Digest of Technical Papers VLSI Technology Symposium, June 2003, pp. 133–134.
6.
Zurück zum Zitat S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. McIntyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Transactions on Electron Devices, 51(11), Nov. 2004, pp. 1790–1797.CrossRef S. Thompson, M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, T. Hoffman, C.-H. Jan, C. Kenyon, J. Klaus, K. Kuhn, Zhiyong Ma, B. McIntyre, K. Mistry, A. Murthy, B. Obradovic, R. Nagisetty, P. Nguyen, S. Sivakumar, R. Shaheed, L. Shifren, B. Tufts, S. Tyagi, M. Bohr, Y. El-Mansy, “A 90-nm logic technology featuring strained-silicon,” IEEE Transactions on Electron Devices, 51(11), Nov. 2004, pp. 1790–1797.CrossRef
7.
Zurück zum Zitat S. Datta, T. Ashley, R. Chau, K. Hilton, R. Jefferies, T. Martin, T. Phillips, “85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 783–786. S. Datta, T. Ashley, R. Chau, K. Hilton, R. Jefferies, T. Martin, T. Phillips, “85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 783–786.
8.
Zurück zum Zitat P. L. McEuen, M. S. Fuhrer, H. Park, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, 1, March 2002, pp. 78–85. P. L. McEuen, M. S. Fuhrer, H. Park, “Single-walled carbon nanotube electronics,” IEEE Transactions on Nanotechnology, 1, March 2002, pp. 78–85.
9.
Zurück zum Zitat Ph. Avouris, “Supertubes [carbon nanotubes]” IEEE Spectrum, 41(8), Aug. 2004, pp. 40–45.CrossRef Ph. Avouris, “Supertubes [carbon nanotubes]” IEEE Spectrum, 41(8), Aug. 2004, pp. 40–45.CrossRef
10.
Zurück zum Zitat Ph. Avouris, J. Appenzeller, V. Derycke, R. Martel, S. Wind, “Carbon nanotube electronics,” Digest of International Electron Device Meet, Dec. 2002, pp. 281–284. Ph. Avouris, J. Appenzeller, V. Derycke, R. Martel, S. Wind, “Carbon nanotube electronics,” Digest of International Electron Device Meet, Dec. 2002, pp. 281–284.
11.
Zurück zum Zitat A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, V. De, “Carbon nanotube field effect transistors for high performance digital circuits – transient analysis, parasitics, and scalability,” IEEE Transactions on Electron Devices, 35, Nov. 2006, pp. 2718–2726.CrossRef A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, V. De, “Carbon nanotube field effect transistors for high performance digital circuits – transient analysis, parasitics, and scalability,” IEEE Transactions on Electron Devices, 35, Nov. 2006, pp. 2718–2726.CrossRef
12.
Zurück zum Zitat A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, and V. De, “Scalability of carbon nanotube FET-based circuits,” Proceeding of IEEE Asian Solid-State Circuit Conference, Nov. 2006, pp. 415–418. A. Keshavarzi, A. Raychowdhury, J. Kurtin, K. Roy, and V. De, “Scalability of carbon nanotube FET-based circuits,” Proceeding of IEEE Asian Solid-State Circuit Conference, Nov. 2006, pp. 415–418.
13.
Zurück zum Zitat R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Transactions on Nanotechnology, 4(2), March 2005, pp. 153–158.CrossRef R. Chau, S. Datta, M. Doczy, B. Doyle, B. Jin, J. Kavalieros, A. Majumdar, M. Metz, and M. Radosavljevic, “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Transactions on Nanotechnology, 4(2), March 2005, pp. 153–158.CrossRef
14.
Zurück zum Zitat V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, “Carbon nanotube inter- and intramolecular logic gates,” Nano Letters, 1(9), pp. 453–456. V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, “Carbon nanotube inter- and intramolecular logic gates,” Nano Letters, 1(9), pp. 453–456.
15.
Zurück zum Zitat A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, “Logic circuits with carbon nanotube transistors,” Science, 294, 2001, pp. 1317–1320.CrossRef A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, “Logic circuits with carbon nanotube transistors,” Science, 294, 2001, pp. 1317–1320.CrossRef
16.
Zurück zum Zitat M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson, W. F. Smith, “Controlled creation of a carbon nanotube diode by a scanned gate,” Applied Physics Letters, 79(20), Nov. 2001, pp. 3326–3328.CrossRef M. Freitag, M. Radosavljevic, Y. Zhou, A. T. Johnson, W. F. Smith, “Controlled creation of a carbon nanotube diode by a scanned gate,” Applied Physics Letters, 79(20), Nov. 2001, pp. 3326–3328.CrossRef
17.
Zurück zum Zitat A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, 427, 2003, pp. 654–657.CrossRef A. Javey, J. Guo, Q. Wang, M. Lundstrom, H. Dai, “Ballistic carbon nanotube field-effect transistors,” Nature, 427, 2003, pp. 654–657.CrossRef
18.
Zurück zum Zitat J. Appenzeller, J. Knoch, M. Radosavljevic, Ph. Avouris, “Multimode transport in Schottky-Barrier carbon-nanotube field-effect transistors,” Physical Review Letters, 92, June 2004, p. 226802.CrossRef J. Appenzeller, J. Knoch, M. Radosavljevic, Ph. Avouris, “Multimode transport in Schottky-Barrier carbon-nanotube field-effect transistors,” Physical Review Letters, 92, June 2004, p. 226802.CrossRef
19.
Zurück zum Zitat M. Radosavljevic, S. Heinze, J. Tersoff, Ph. Avouris, “Drain voltage scaling in carbon nanotube transistors,” Applied Physics Letters, 83, 2003, p. 2435.CrossRef M. Radosavljevic, S. Heinze, J. Tersoff, Ph. Avouris, “Drain voltage scaling in carbon nanotube transistors,” Applied Physics Letters, 83, 2003, p. 2435.CrossRef
20.
Zurück zum Zitat A. Raychowdhury, A. Keshavarzi, J. Kurtin, V. De, K. Roy, “Carbon nanotube field effect transistors for high performance digital circuits – DC analysis and modeling toward optimum transistor structure," IEEE Transactions on Electron Device, 35, Nov. 2006, pp. 2711–2717.CrossRef A. Raychowdhury, A. Keshavarzi, J. Kurtin, V. De, K. Roy, “Carbon nanotube field effect transistors for high performance digital circuits – DC analysis and modeling toward optimum transistor structure," IEEE Transactions on Electron Device, 35, Nov. 2006, pp. 2711–2717.CrossRef
21.
Zurück zum Zitat Y.-M. Lin, J. Appenzeller, J. Knoch, P. Avouris, “High-performance carbon nanotube field-effect transistor with tunable polarities,” IEEE Transactions on Nanotechnology, 4(5), Sept. 2005, pp. 481–489.CrossRef Y.-M. Lin, J. Appenzeller, J. Knoch, P. Avouris, “High-performance carbon nanotube field-effect transistor with tunable polarities,” IEEE Transactions on Nanotechnology, 4(5), Sept. 2005, pp. 481–489.CrossRef
22.
Zurück zum Zitat J. Guo, A. Javey, H. Dai, S. Datta, M. Lundstrom, “Predicted performance advantages of carbon nanotube transistors with doped nanotubes as source/drain,” cond-mat, 0309039. J. Guo, A. Javey, H. Dai, S. Datta, M. Lundstrom, “Predicted performance advantages of carbon nanotube transistors with doped nanotubes as source/drain,” cond-mat, 0309039.
23.
Zurück zum Zitat J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Physical Review Letters, 93(19), Nov. 2004, p. 196805.CrossRef J. Appenzeller, Y.-M. Lin, J. Knoch, Ph. Avouris, “Band-to-band tunneling in carbon nanotube field-effect transistors,” Physical Review Letters, 93(19), Nov. 2004, p. 196805.CrossRef
24.
Zurück zum Zitat S. O. Koswatta, D. E. Nikonov, M. S. Lundstrom, “Computational study of carbon nanotube p-i-n tunnel FETs,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 525–528. S. O. Koswatta, D. E. Nikonov, M. S. Lundstrom, “Computational study of carbon nanotube p-i-n tunnel FETs,” Technical Digest of International Electron Device Meeting, Dec. 2005, pp. 525–528.
25.
Zurück zum Zitat A. Raychowdhury, X. Fong, Q. Chen, K. Roy, “Analysis of super cut-off transistors for ultralow power digital logic circuits," Proc. of ISLPED, 1, 2006, pp. 1–8. A. Raychowdhury, X. Fong, Q. Chen, K. Roy, “Analysis of super cut-off transistors for ultralow power digital logic circuits," Proc. of ISLPED, 1, 2006, pp. 1–8.
27.
Zurück zum Zitat A. Raychowdhury, J. Kurtin, K. Roy, V. De, A. Keshavarzi, “Digital circuits with carbon nanotube transistors," 2007 Proceeding of International Conference on Solid State Devices and Materials, Sept. 2007, pp. 1162–1163. A. Raychowdhury, J. Kurtin, K. Roy, V. De, A. Keshavarzi, “Digital circuits with carbon nanotube transistors," 2007 Proceeding of International Conference on Solid State Devices and Materials, Sept. 2007, pp. 1162–1163.
28.
Zurück zum Zitat M. E. Hwang, A. Raychowdhury, and K. Roy, “Effectiveness of energy recovery techniques in reducing on-chip power density in molecular nano-technologies,” Proceedings of the 2004 International Symposium on Circuits and Systems, 3, May 2004, pp. 709–712. M. E. Hwang, A. Raychowdhury, and K. Roy, “Effectiveness of energy recovery techniques in reducing on-chip power density in molecular nano-technologies,” Proceedings of the 2004 International Symposium on Circuits and Systems, 3, May 2004, pp. 709–712.
29.
Zurück zum Zitat J. Chen, C. Clinke, A. Afzali, P. Avouris, “Air-stable chemical doping of carbon nanotube transistors,” Proceedings of the Device Research Conference, 2004, pp. 137–138. J. Chen, C. Clinke, A. Afzali, P. Avouris, “Air-stable chemical doping of carbon nanotube transistors,” Proceedings of the Device Research Conference, 2004, pp. 137–138.
30.
Zurück zum Zitat A. Javey, J. Guo, D. Farmer, Q. Wang, E. Yenilmez, R. Gordon, M. Lundstrom, H. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nanoletters, 4, 2004, pp. 1319–1322. A. Javey, J. Guo, D. Farmer, Q. Wang, E. Yenilmez, R. Gordon, M. Lundstrom, H. Dai, “Self-aligned ballistic molecular transistors and electrically parallel nanotube arrays,” Nanoletters, 4, 2004, pp. 1319–1322.
31.
Zurück zum Zitat C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, “Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors,” Journal of Physical Chemistry C, 111(48), 2007, 17879–17886.CrossRef C. Kocabas, S. J. Kang, T. Ozel, M. Shim, and J. A. Rogers, “Improved synthesis of aligned arrays of single-walled carbon nanotubes and their implementation in thin film type transistors,” Journal of Physical Chemistry C, 111(48), 2007, 17879–17886.CrossRef
32.
Zurück zum Zitat K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou. “Syn-thesis of aligned single-walled carbon nanotubes using catalysts de-fined by nanosphere lithography”, Journal of American Chemical Society, 129, 2007, 10104–10105.CrossRef K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou. “Syn-thesis of aligned single-walled carbon nanotubes using catalysts de-fined by nanosphere lithography”, Journal of American Chemical Society, 129, 2007, 10104–10105.CrossRef
33.
Zurück zum Zitat G. Zhang, X. Wang, X. Li, Y. Lu, A. Javey, and H. Dai, “Carbon nanotubes: from growth, placement, and assembly control to 60 mV/decade and Sub-60 mV/decade tunnel transistors”, IEEE IEDM Technical Digest, 2006. G. Zhang, X. Wang, X. Li, Y. Lu, A. Javey, and H. Dai, “Carbon nanotubes: from growth, placement, and assembly control to 60 mV/decade and Sub-60 mV/decade tunnel transistors”, IEEE IEDM Technical Digest, 2006.
34.
Zurück zum Zitat N. Pimparkar, J. Guo, M. Alam, “Performance assessment of sub-percolating nanobundle network transistors by an analytical model," Digest of IEDM, 1, 2005, pp. 120–125. N. Pimparkar, J. Guo, M. Alam, “Performance assessment of sub-percolating nanobundle network transistors by an analytical model," Digest of IEDM, 1, 2005, pp. 120–125.
35.
Zurück zum Zitat X. Li, X. Tu, S. Zaric, K. Welsher, W. S. Seo, W. Zhao, and H. Dai, “Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection,” Journal of American Chemical Society, 129(51), 2007, 15770–15771.CrossRef X. Li, X. Tu, S. Zaric, K. Welsher, W. S. Seo, W. Zhao, and H. Dai, “Selective synthesis combined with chemical separation of single-walled carbon nanotubes for chirality selection,” Journal of American Chemical Society, 129(51), 2007, 15770–15771.CrossRef
36.
Zurück zum Zitat L. Zhang, S. Zaric, X. Tu, W. Zhao, and H. Dai, "Assessment of chemically separated carbon nanotubes for nanoelectronics,” Journal of American Chemical Society, 130(8), 2008, 2686–2691.CrossRef L. Zhang, S. Zaric, X. Tu, W. Zhao, and H. Dai, "Assessment of chemically separated carbon nanotubes for nanoelectronics,” Journal of American Chemical Society, 130(8), 2008, 2686–2691.CrossRef
37.
Zurück zum Zitat A. Raychowdhury, J. Kurtin, S. Borkar, V. De, K. Roy, and A. Keshavarzi, “Theory of multi-tube carbon nanotube transistor for high speed variation-tolerant circuits,” 2008 Device Research Conference, June 23–25, 2008, Santa Barbara, California. A. Raychowdhury, J. Kurtin, S. Borkar, V. De, K. Roy, and A. Keshavarzi, “Theory of multi-tube carbon nanotube transistor for high speed variation-tolerant circuits,” 2008 Device Research Conference, June 23–25, 2008, Santa Barbara, California.
38.
Zurück zum Zitat N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H, You, S. H. Jo, C. G. Lee, and J. M. Kim, “Application of carbon nanotubes to field emission displays,” Diamond and Related Materials, 10(2), Feb. 2001, pp. 265–270.CrossRef N. S. Lee, D. S. Chung, I. T. Han, J. H. Kang, Y. S. Choi, H. Y. Kim, S. H. Park, Y. W. Jin, W. K. Yi, M. J. Yun, J. E. Jung, C. J. Lee, J. H, You, S. H. Jo, C. G. Lee, and J. M. Kim, “Application of carbon nanotubes to field emission displays,” Diamond and Related Materials, 10(2), Feb. 2001, pp. 265–270.CrossRef
39.
Zurück zum Zitat M. Nihei, M. Horibe, A. Kawabata, and A. Yuji, “Carbon nanotube vias for future LSI interconnects,” Proceedings of the IEEE 2004 International Interconnect Technology Conference, June 2004, pp. 251–253. M. Nihei, M. Horibe, A. Kawabata, and A. Yuji, “Carbon nanotube vias for future LSI interconnects,” Proceedings of the IEEE 2004 International Interconnect Technology Conference, June 2004, pp. 251–253.
40.
Zurück zum Zitat M. E. Hwang, A. Raychowdhury, and K. Roy, “Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 52(8), Aug. 2005, pp. 1580–1589.CrossRef M. E. Hwang, A. Raychowdhury, and K. Roy, “Energy-recovery techniques to reduce on-chip power density in molecular nanotechnologies,” IEEE Transaction on Circuits and Systems I: Fundamental Theory and Applications, 52(8), Aug. 2005, pp. 1580–1589.CrossRef
41.
Zurück zum Zitat A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, H. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts,” Nano Letters, 5(2), 2005, pp. 345–348.CrossRef A. Javey, R. Tu, D. B. Farmer, J. Guo, R. G. Gordon, H. Dai, “High performance n-type carbon nanotube field-effect transistors with chemically doped contacts,” Nano Letters, 5(2), 2005, pp. 345–348.CrossRef
42.
Zurück zum Zitat J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science, 300(5620), May 2003, pp. 783–786.CrossRef J. A. Misewich, R. Martel, Ph. Avouris, J. C. Tsang, S. Heinze, and J. Tersoff, “Electrically induced optical emission from a carbon nanotube FET,” Science, 300(5620), May 2003, pp. 783–786.CrossRef
43.
Zurück zum Zitat M. Shim and G. P. Siddons, “Photoinduced conductivity changes in carbon nanotube transistors,” Applied Physics Letters, 83(17), Oct. 2003, pp. 3564–3566.CrossRef M. Shim and G. P. Siddons, “Photoinduced conductivity changes in carbon nanotube transistors,” Applied Physics Letters, 83(17), Oct. 2003, pp. 3564–3566.CrossRef
44.
Zurück zum Zitat Y. M. Li et al. “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, 4(2), Feb. 2004, pp. 317–321.CrossRef Y. M. Li et al. “Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method,” Nano Letters, 4(2), Feb. 2004, pp. 317–321.CrossRef
45.
Zurück zum Zitat C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B, 108, 2004, p. 19912.CrossRef C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. de Heer, “Ultrathin Epitaxial Graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics,” Journal of Physical Chemistry B, 108, 2004, p. 19912.CrossRef
46.
Zurück zum Zitat K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou, “Symthesis of algined single-walled carbon nanotubes using catalysts defined by nanosphere lithography,” Journal of American Chemical Society, 129, 2007, pp. 10104–10105.CrossRef K. Ryu, A. Badmaev, L. Gomez, F. Ishikawa, B. Lei, and C. Zhou, “Symthesis of algined single-walled carbon nanotubes using catalysts defined by nanosphere lithography,” Journal of American Chemical Society, 129, 2007, pp. 10104–10105.CrossRef
Metadaten
Titel
Circuits, Applications and Outlook
verfasst von
Ali Keshavarzi
Arijit Raychowdhury
Copyright-Jahr
2009
Verlag
Springer US
DOI
https://doi.org/10.1007/978-0-387-69285-2_10

Neuer Inhalt