Skip to main content
Erschienen in: Cognitive Computation 2/2024

07.12.2023

Classification of Developmental and Brain Disorders via Graph Convolutional Aggregation

verfasst von: Ibrahim Salim, A. Ben Hamza

Erschienen in: Cognitive Computation | Ausgabe 2/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

While graph convolution-based methods have become the de-facto standard for graph representation learning, their applications to disease prediction tasks remain quite limited, particularly in the classification of neurodevelopmental and neurodegenerative brain disorders. In this paper, we introduce an aggregator normalization graph convolutional network by leveraging aggregation in graph sampling, as well as skip connections and identity mapping. The proposed model learns discriminative graph node representations by incorporating both imaging and non-imaging features into the graph nodes and edges, respectively, with the aim of augmenting predictive capabilities and providing a holistic perspective on the underlying mechanisms of brain disorders. Skip connections enable the direct flow of information from the input features to later layers of the network, while identity mapping helps maintain the structural information of the graph during feature learning. We benchmark our model against several recent baseline methods on two large datasets, Autism Brain Imaging Data Exchange (ABIDE) and Alzheimer’s Disease Neuroimaging Initiative (ADNI), for the prediction of autism spectrum disorder and Alzheimer’s disease, respectively. Experimental results demonstrate the competitive performance of our approach in comparison with recent baselines in terms of several evaluation metrics, achieving relative improvements of 50% and 13.56% in classification accuracy over graph convolutional networks (GCNs) on ABIDE and ADNI, respectively. Our study involved the development of a graph convolutional aggregation model, which aimed to predict the status of subjects in a population graph. We learned discriminative node representations by utilizing imaging and non-imaging features associated with the graph nodes and edges. Our model outperformed existing graph convolutional-based methods for disease prediction on two large benchmark datasets, as shown through extensive experiments. We achieved significant relative improvements in classification accuracy over GCN and other strong baselines.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Insel TR, Cuthbert BN. Brain disorders? Precisely. Science. 2015;499–500. Insel TR, Cuthbert BN. Brain disorders? Precisely. Science. 2015;499–500.
2.
Zurück zum Zitat Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations. 2017. p. 1–14. Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. In: International Conference on Learning Representations. 2017. p. 1–14.
3.
Zurück zum Zitat Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. Simplifying graph convolutional networks. In: Proc. International Conference on Machine Learning. 2019. p. 6861–71. Wu F, Souza A, Zhang T, Fifty C, Yu T, Weinberger K. Simplifying graph convolutional networks. In: Proc. International Conference on Machine Learning. 2019. p. 6861–71.
4.
Zurück zum Zitat Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V. GraphSAINT: graph sampling based inductive learning method. In: International Conference on Learning Representations. 2020. p. 1–19. Zeng H, Zhou H, Srivastava A, Kannan R, Prasanna V. GraphSAINT: graph sampling based inductive learning method. In: International Conference on Learning Representations. 2020. p. 1–19.
5.
Zurück zum Zitat Chen M, Wei Z, Huang Z, Ding B, Li Y. Simple and deep graph convolutional networks. In: Proc. International Conference on Machine Learning. 2020. p. 1725–35. Chen M, Wei Z, Huang Z, Ding B, Li Y. Simple and deep graph convolutional networks. In: Proc. International Conference on Machine Learning. 2020. p. 1725–35.
6.
Zurück zum Zitat Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans Multimed Comput Commun Appl. 2020;16:1–35. Tanveer M, Richhariya B, Khan RU, Rashid AH, Khanna P, Prasad M, et al. Machine learning techniques for the diagnosis of Alzheimer’s disease: a review. ACM Trans Multimed Comput Commun Appl. 2020;16:1–35.
7.
Zurück zum Zitat Sharma R, Goel T, Tanveer M, Lin CT, Murugan R. Deep learning based diagnosis and prognosis of Alzheimer’s disease: a comprehensive review. IEEE Trans Cogn Develop Syst. 2023;1–16. Sharma R, Goel T, Tanveer M, Lin CT, Murugan R. Deep learning based diagnosis and prognosis of Alzheimer’s disease: a comprehensive review. IEEE Trans Cogn Develop Syst. 2023;1–16.
8.
Zurück zum Zitat Rashid AH, Gupta J, Tanveer M. Biceph-Net: a robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning. IEEE J Biomed Health Inform. 2022. Rashid AH, Gupta J, Tanveer M. Biceph-Net: a robust and lightweight framework for the diagnosis of Alzheimer’s disease using 2D-MRI scans and deep similarity learning. IEEE J Biomed Health Inform. 2022.
9.
Zurück zum Zitat Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE J Biomed Health Inform. 2022;26:1453–63.CrossRef Tanveer M, Rashid AH, Ganaie MA, Reza M, Razzak I, Hua KL. Classification of Alzheimer’s disease using ensemble of deep neural networks trained through transfer learning. IEEE J Biomed Health Inform. 2022;26:1453–63.CrossRef
10.
Zurück zum Zitat Malik AK, Tanveer M. Graph embedded ensemble deep randomized network for diagnosis of Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinform. 2022. Malik AK, Tanveer M. Graph embedded ensemble deep randomized network for diagnosis of Alzheimer’s disease. IEEE/ACM Trans Comput Biol Bioinform. 2022.
11.
Zurück zum Zitat Ganaie MA, Tanveer M. Ensemble deep random vector functional link network using privileged information for Alzheimer’s disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform. 2022. Ganaie MA, Tanveer M. Ensemble deep random vector functional link network using privileged information for Alzheimer’s disease diagnosis. IEEE/ACM Trans Comput Biol Bioinform. 2022.
12.
Zurück zum Zitat Khosla M, Jamison K, Ngo GH, Kuceyeski A, Sabuncu MR. Machine learning in resting-state fMRI analysis. Magn Reson Imaging. 2019;101–21. Khosla M, Jamison K, Ngo GH, Kuceyeski A, Sabuncu MR. Machine learning in resting-state fMRI analysis. Magn Reson Imaging. 2019;101–21.
13.
Zurück zum Zitat Gopinath K, Desrosiers C, Lombaert H. Graph convolutions on spectral embeddings for cortical surface parcellation. Med Image Anal. 2019;297–305. Gopinath K, Desrosiers C, Lombaert H. Graph convolutions on spectral embeddings for cortical surface parcellation. Med Image Anal. 2019;297–305.
14.
Zurück zum Zitat Su C, Tong J, Zhu Y, Cui P, Wang F. Network embedding in biomedical data science. Brief Bioinform. 2020;182–97. Su C, Tong J, Zhu Y, Cui P, Wang F. Network embedding in biomedical data science. Brief Bioinform. 2020;182–97.
15.
Zurück zum Zitat Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, et al. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics. 2020;1241–51. Yue X, Wang Z, Huang J, Parthasarathy S, Moosavinasab S, Huang Y, et al. Graph embedding on biomedical networks: methods, applications and evaluations. Bioinformatics. 2020;1241–51.
16.
Zurück zum Zitat Yang J, Zhu Q, Zhang R, Huang J, Zhang D. Unified brain network with functional and structural data. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 114–23. Yang J, Zhu Q, Zhang R, Huang J, Zhang D. Unified brain network with functional and structural data. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 114–23.
17.
Zurück zum Zitat Zhang J, Feng F, Han T, Gong X, Duan F. Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cogn Comput. 2023;15:1106–17.CrossRef Zhang J, Feng F, Han T, Gong X, Duan F. Detection of autism spectrum disorder using fMRI functional connectivity with feature selection and deep learning. Cogn Comput. 2023;15:1106–17.CrossRef
18.
Zurück zum Zitat Goldsberry L, Huang W, Wymbs NF, Grafton ST, Bassett DS, Ribeiro A. Brain signal analytics from graph signal processing perspective. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing. 2017. p. 851–5. Goldsberry L, Huang W, Wymbs NF, Grafton ST, Bassett DS, Ribeiro A. Brain signal analytics from graph signal processing perspective. In: Proc. IEEE International Conference on Acoustics, Speech and Signal Processing. 2017. p. 851–5.
19.
Zurück zum Zitat Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, et al. Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage. 2018;431–42. Ktena SI, Parisot S, Ferrante E, Rajchl M, Lee M, Glocker B, et al. Metric learning with spectral graph convolutions on brain connectivity networks. NeuroImage. 2018;431–42.
20.
Zurück zum Zitat Ma G, Ahmed NK, Willke TL, Sengupta D, Cole MW, Turk-Browne NB, et al. Deep graph similarity learning for brain data analysis. In: Proc. ACM International Conference on Information and Knowledge Management. 2019. p. 2743–51. Ma G, Ahmed NK, Willke TL, Sengupta D, Cole MW, Turk-Browne NB, et al. Deep graph similarity learning for brain data analysis. In: Proc. ACM International Conference on Information and Knowledge Management. 2019. p. 2743–51.
21.
Zurück zum Zitat Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, et al. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 2018;117–30. Parisot S, Ktena SI, Ferrante E, Lee M, Guerrero R, Glocker B, et al. Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer’s disease. Med. Image Anal. 2018;117–30.
22.
Zurück zum Zitat Zheng S, Zhu Z, Liu Z, Guo Z, Liu Y, Zhao Y. Multi-modal graph learning for disease prediction. IEEE Trans Med Imaging. 2022;41:2207–16.CrossRef Zheng S, Zhu Z, Liu Z, Guo Z, Liu Y, Zhao Y. Multi-modal graph learning for disease prediction. IEEE Trans Med Imaging. 2022;41:2207–16.CrossRef
23.
Zurück zum Zitat Cao M, Yang M, Qin C, Zhu X, Chen Y, Wang J, et al. Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data. Biomed Signal Process Control. 2021;103015. Cao M, Yang M, Qin C, Zhu X, Chen Y, Wang J, et al. Using deepGCN to identify the autism spectrum disorder from multi-site resting-state data. Biomed Signal Process Control. 2021;103015.
24.
Zurück zum Zitat Xu B, Shen H, Cao Q, Qiu Y, Cheng X. Graph wavelet neural network. In: International Conference on Learning Representations. 2019. p. 1–13. Xu B, Shen H, Cao Q, Qiu Y, Cheng X. Graph wavelet neural network. In: International Conference on Learning Representations. 2019. p. 1–13.
25.
Zurück zum Zitat Li Q, Han Z, Wu XM. Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI Conference on Artificial Intelligence. 2018. p. 3538–45. Li Q, Han Z, Wu XM. Deeper insights into graph convolutional networks for semi-supervised learning. In: AAAI Conference on Artificial Intelligence. 2018. p. 3538–45.
26.
Zurück zum Zitat Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi K, Jegelka S. Representation learning on graphs with jumping knowledge networks. In: Proc. International Conference on Machine Learning. 2018. p. 1–10. Xu K, Li C, Tian Y, Sonobe T, Kawarabayashi K, Jegelka S. Representation learning on graphs with jumping knowledge networks. In: Proc. International Conference on Machine Learning. 2018. p. 1–10.
27.
Zurück zum Zitat Zhao L, Akoglu L. PairNorm: tackling Oversmoothing in GNNs. In: International Conference on Learning Representations. 2020. p. 1–17. Zhao L, Akoglu L. PairNorm: tackling Oversmoothing in GNNs. In: International Conference on Learning Representations. 2020. p. 1–17.
28.
Zurück zum Zitat Kazi A, Shekarforoush S, Krishna SA, Burwinkel H, Vivar G, Kortuem K, et al. InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Proc. International Conference on Information Processing in Medical Imaging. 2019. p. 73–85. Kazi A, Shekarforoush S, Krishna SA, Burwinkel H, Vivar G, Kortuem K, et al. InceptionGCN: receptive field aware graph convolutional network for disease prediction. In: Proc. International Conference on Information Processing in Medical Imaging. 2019. p. 73–85.
29.
Zurück zum Zitat Cosmo L, Kazi A, Ahmadi SA, Navab N, Bronstein M. Latent-graph learning for disease prediction. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 643–53. Cosmo L, Kazi A, Ahmadi SA, Navab N, Bronstein M. Latent-graph learning for disease prediction. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 643–53.
30.
Zurück zum Zitat Pan L, Liu J, Shi M, Wong CW, Chan KHK. Identifying autism spectrum disorder based on individual-aware down-sampling and multi-modal learning. arXiv:2109.09129 [Preprint]. 2021. Pan L, Liu J, Shi M, Wong CW, Chan KHK. Identifying autism spectrum disorder based on individual-aware down-sampling and multi-modal learning. arXiv:​2109.​09129 [Preprint]. 2021.
31.
Zurück zum Zitat Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N, et al. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging. 2021;1279–89. Yao D, Sui J, Wang M, Yang E, Jiaerken Y, Luo N, et al. A mutual multi-scale triplet graph convolutional network for classification of brain disorders using functional or structural connectivity. IEEE Trans Med Imaging. 2021;1279–89.
32.
Zurück zum Zitat Alzubi J, Kumar A, Alzubi O, Manikandan R. Efficient approaches for prediction of brain tumor using machine learning techniques. Indian J Public Health Res Dev. 2019;10. Alzubi J, Kumar A, Alzubi O, Manikandan R. Efficient approaches for prediction of brain tumor using machine learning techniques. Indian J Public Health Res Dev. 2019;10.
33.
Zurück zum Zitat Rong Y, Huang W, Xu T, Huang J. DropEdge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations. 2020. p. 1–17. Rong Y, Huang W, Xu T, Huang J. DropEdge: towards deep graph convolutional networks on node classification. In: International Conference on Learning Representations. 2020. p. 1–17.
34.
Zurück zum Zitat Jiang H, Cao P, Xu M, Yang J, Zaiane O. HI-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput Biol Med. 2020;127:1–16.CrossRef Jiang H, Cao P, Xu M, Yang J, Zaiane O. HI-GCN: a hierarchical graph convolution network for graph embedding learning of brain network and brain disorders prediction. Comput Biol Med. 2020;127:1–16.CrossRef
35.
Zurück zum Zitat Pickup D, Sun X, Rosin PL, Martin RR, Cheng Z, Lian Z, et al. Shape retrieval of non-rigid 3D human models. Int J Comput Vis. 2016;120:169–93.MathSciNetCrossRef Pickup D, Sun X, Rosin PL, Martin RR, Cheng Z, Lian Z, et al. Shape retrieval of non-rigid 3D human models. Int J Comput Vis. 2016;120:169–93.MathSciNetCrossRef
36.
Zurück zum Zitat Biasotti S, Cerri A, Aono M, Hamza AB, Garro V, Giachetti A, et al. Shape retrieval of non-rigid 3D human models. Vis Comput. 2016;32:217–41.CrossRef Biasotti S, Cerri A, Aono M, Hamza AB, Garro V, Giachetti A, et al. Shape retrieval of non-rigid 3D human models. Vis Comput. 2016;32:217–41.CrossRef
37.
Zurück zum Zitat Huang Y, Chung ACS. Diffusion improves graph learning. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2019. p. 13354–66. Huang Y, Chung ACS. Diffusion improves graph learning. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2019. p. 13354–66.
38.
Zurück zum Zitat Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, et al. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform. 2021;1–19. Chu Y, Wang X, Dai Q, Wang Y, Wang Q, Peng S, et al. MDA-GCNFTG: identifying miRNA-disease associations based on graph convolutional networks via graph sampling through the feature and topology graph. Brief Bioinform. 2021;1–19.
39.
Zurück zum Zitat Paetzold JC, McGinnis J, Shit S, Ezhov I, Büschl P, Prabhakar C, et al. Whole brain vessel graphs: a dataset and benchmark for graph learning and neuroscience (VesselGraph). arXiv:2108.13233 [Preprint]. 2021. Paetzold JC, McGinnis J, Shit S, Ezhov I, Büschl P, Prabhakar C, et al. Whole brain vessel graphs: a dataset and benchmark for graph learning and neuroscience (VesselGraph). arXiv:​2108.​13233 [Preprint]. 2021.
40.
Zurück zum Zitat Li Y, Yuan Y. Convergence analysis of two-layer neural networks with ReLu activation. In: Advances in Neural Information Processing Systems. 2017. p. 597–607. Li Y, Yuan Y. Convergence analysis of two-layer neural networks with ReLu activation. In: Advances in Neural Information Processing Systems. 2017. p. 597–607.
41.
Zurück zum Zitat Kingma DP, Ba J. Adam: a method for stochastic optimization. In: International Conference on Learning Representations. 2015. p. 1–15. Kingma DP, Ba J. Adam: a method for stochastic optimization. In: International Conference on Learning Representations. 2015. p. 1–15.
42.
Zurück zum Zitat Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19:659–67.CrossRef Di Martino A, Yan CG, Li Q, Denio E, Castellanos FX, Alaerts K, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Mol Psychiatry. 2014;19:659–67.CrossRef
43.
Zurück zum Zitat Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Neurology. 2010;74:201–9.CrossRef Petersen RC, Aisen PS, Beckett LA, Donohue MC, Gamst AC, Harvey DJ, et al. The autism brain imaging data exchange: towards a large-scale evaluation of the intrinsic brain architecture in autism. Neurology. 2010;74:201–9.CrossRef
44.
Zurück zum Zitat Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). In: Proc. Frontiers in Neuroinformatics Conference. 2013. p. 5. Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, et al. Towards automated analysis of connectomes: the configurable pipeline for the analysis of connectomes (C-PAC). In: Proc. Frontiers in Neuroinformatics Conference. 2013. p. 5.
45.
Zurück zum Zitat Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:237–89. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage. 2002;15:237–89.
46.
Zurück zum Zitat Huang Y, Chung ACS. Edge-variational graph convolutional networks for uncertainty aware disease prediction. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 562–72. Huang Y, Chung ACS. Edge-variational graph convolutional networks for uncertainty aware disease prediction. In: Proc. International Conference on Medical Image Computing and Computer-Assisted Intervention. 2020. p. 562–72.
47.
Zurück zum Zitat Gu P, Xu X, Luo Y, Wang P, Lu J. BCN-GCN: a novel brain connectivity network classification method via graph convolution neural network for Alzheimer’s disease. In: Proc. International Conference on Neural Information Processing. 2021. p. 657–68. Gu P, Xu X, Luo Y, Wang P, Lu J. BCN-GCN: a novel brain connectivity network classification method via graph convolution neural network for Alzheimer’s disease. In: Proc. International Conference on Neural Information Processing. 2021. p. 657–68.
48.
Zurück zum Zitat Yu W, Lei B, Ng MK, Cheung AC, Shen Y, Wang S. Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans Neural Netw Learn Syst. 2021;1–15. Yu W, Lei B, Ng MK, Cheung AC, Shen Y, Wang S. Tensorizing GAN with high-order pooling for Alzheimer’s disease assessment. IEEE Trans Neural Netw Learn Syst. 2021;1–15.
Metadaten
Titel
Classification of Developmental and Brain Disorders via Graph Convolutional Aggregation
verfasst von
Ibrahim Salim
A. Ben Hamza
Publikationsdatum
07.12.2023
Verlag
Springer US
Erschienen in
Cognitive Computation / Ausgabe 2/2024
Print ISSN: 1866-9956
Elektronische ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-023-10224-6

Weitere Artikel der Ausgabe 2/2024

Cognitive Computation 2/2024 Zur Ausgabe

Premium Partner