Skip to main content

2019 | OriginalPaper | Buchkapitel

6. Climate-Resilient Future Crop: Development of C4 Rice

verfasst von : Hsiang Chun Lin, Robert A. Coe, W. Paul Quick, Anindya Bandyopadhyay

Erschienen in: Sustainable Solutions for Food Security

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Rice is the most important crop in the world. It is a staple food for more than half of the human population and a primary food source for the world’s poorest people. Asia currently accounts for 90% of global rice production but it will need to increase this by 50% within the next 30 years. By this time the region will be home to nearly 90% of the global population increase and will likely be experiencing extreme climatic conditions. Agriculture will be challenged by diminishing water resources, reduced nutrient inputs and an increase in abiotic stresses. Rice yield increases have already stagnated and so a new paradigm is needed to meet these future challenges. Most crop plants, like rice and wheat, have a simple and less efficient photosynthetic mechanism (C3 photosynthesis) that as a consequence results in considerable loss of water through stomatal pores on their leaves that open widely to let in more carbon dioxide. They also make a large amount of photosynthetic protein to maximise their photosynthetic rate that requires a large investment of nitrogen and hence fertiliser application. However, a few plants have evolved a more efficient C4 photosynthetic pathway that greatly alleviates these problems. The installation of a C4 photosynthetic pathway into major crops like rice could potentially increase yields by 50%, double the water-use efficiency and reduce fertiliser use by 40%. This is because plants with a C4 photosynthetic pathway concentrate CO2 within the leaf prior to photosynthetic fixation leading to increased photosynthetic efficiency and large reductions in the requirement for scarce resources like water and nitrogen (fertiliser). These modifications would be particularly advantageous in future climate scenarios where water scarcity and global temperature are predicted to increase.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372.CrossRef Ainsworth, E. A., & Long, S. P. (2005). What have we learned from 15 years of free-air CO2 enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy properties and plant production to rising CO2. New Phytologist, 165(2), 351–372.CrossRef
Zurück zum Zitat Bräutigam, A., Hofmann-Benning, S., & Weber, A. P. M. (2008). Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology, 148(1), 568–579.CrossRef Bräutigam, A., Hofmann-Benning, S., & Weber, A. P. M. (2008). Comparative proteomics of chloroplast envelopes from C(3) and C(4) plants reveals specific adaptations of the plastid envelope to C(4) photosynthesis and candidate proteins required for maintaining C(4) metabolite fluxes. Plant Physiology, 148(1), 568–579.CrossRef
Zurück zum Zitat Brutnell, T. P., et al. (2010). Setaria viridis: A model for C4 photosynthesis. The Plant Cell, 22(8), 2537–2544.CrossRef Brutnell, T. P., et al. (2010). Setaria viridis: A model for C4 photosynthesis. The Plant Cell, 22(8), 2537–2544.CrossRef
Zurück zum Zitat von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C4 rice: Current progress and future challenges. Science (New York, N.Y.), 336(6089), 1671–1672.CrossRef von Caemmerer, S., Quick, W. P., & Furbank, R. T. (2012). The development of C4 rice: Current progress and future challenges. Science (New York, N.Y.), 336(6089), 1671–1672.CrossRef
Zurück zum Zitat Edwards, E. J., Smith, S. A., & Crossing Environmental Thresholds. (2010). The origins of C 4 grasslands: Integrating evolutionary and ecosystem science. Science, 328(April), 587–590.CrossRef Edwards, E. J., Smith, S. A., & Crossing Environmental Thresholds. (2010). The origins of C 4 grasslands: Integrating evolutionary and ecosystem science. Science, 328(April), 587–590.CrossRef
Zurück zum Zitat Evans, J. R., & von Caemmerer, S. (2000). Would C4 rice produce more biomass than C3 rice? In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Redesigning rice photosynthesis to increase yield (pp. 53–72). Amsterdam: Elsevier.CrossRef Evans, J. R., & von Caemmerer, S. (2000). Would C4 rice produce more biomass than C3 rice? In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Redesigning rice photosynthesis to increase yield (pp. 53–72). Amsterdam: Elsevier.CrossRef
Zurück zum Zitat Furbank, R. T. (2011). Evolution of the C 4 photosynthetic mechanism: Are there really three C 4 acid decarboxylation types? Journal of Experimental Botany, 62(9), 3103–3108.CrossRef Furbank, R. T. (2011). Evolution of the C 4 photosynthetic mechanism: Are there really three C 4 acid decarboxylation types? Journal of Experimental Botany, 62(9), 3103–3108.CrossRef
Zurück zum Zitat Ghannoum, O., Evans, J. R., & von Caemmerer, S. (2011). Nitrogen and water use efficiency in C4 plants. In A. S. Raghavendra & R. F. Sage (Eds.), C4 photosynthesis and related CO2 concentrating mechanisms (pp. 129–146). Dordrecht: Springer. Ghannoum, O., Evans, J. R., & von Caemmerer, S. (2011). Nitrogen and water use efficiency in C4 plants. In A. S. Raghavendra & R. F. Sage (Eds.), C4 photosynthesis and related CO2 concentrating mechanisms (pp. 129–146). Dordrecht: Springer.
Zurück zum Zitat Hatch, M. D. (1999). C4 photosynthesis: A historical overview. In R. Sage & R. Monson (Eds.), C4 plant biology (pp. 175–196). New York, NY: Academic Press. Hatch, M. D. (1999). C4 photosynthesis: A historical overview. In R. Sage & R. Monson (Eds.), C4 plant biology (pp. 175–196). New York, NY: Academic Press.
Zurück zum Zitat Hatch, M. D., Kagawa, T., & Craig, S. (1975). Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Australian Journal of Plant Physiology, 2, 111–128. Hatch, M. D., Kagawa, T., & Craig, S. (1975). Subdivision of C4-pathway species based on differing C4 acid decarboxylating systems and ultrastructural features. Australian Journal of Plant Physiology, 2, 111–128.
Zurück zum Zitat Hibberd, J. M., & Covshoff, S. (2010). The regulation of gene expression required for C 4 photosynthesis. Annual Review of Plant Biology, 61, 181–207.CrossRef Hibberd, J. M., & Covshoff, S. (2010). The regulation of gene expression required for C 4 photosynthesis. Annual Review of Plant Biology, 61, 181–207.CrossRef
Zurück zum Zitat Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice—Rationale and feasibility. Current Opinion in Plant Biology, 11(2), 228–231.CrossRef Hibberd, J. M., Sheehy, J. E., & Langdale, J. A. (2008). Using C4 photosynthesis to increase the yield of rice—Rationale and feasibility. Current Opinion in Plant Biology, 11(2), 228–231.CrossRef
Zurück zum Zitat Hsing, Y. I., et al. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology, 63(3), 351–364.CrossRef Hsing, Y. I., et al. (2007). A rice gene activation/knockout mutant resource for high throughput functional genomics. Plant Molecular Biology, 63(3), 351–364.CrossRef
Zurück zum Zitat Jenkins, C. L. D., Furbank, R. T., & Hatch, M. D. (1989). Mechanism of C4 photosynthesis - A model describing the inorganic carbon pool in bundle sheath-cells. Plant Physiology, 91(4), 1372–1381.CrossRef Jenkins, C. L. D., Furbank, R. T., & Hatch, M. D. (1989). Mechanism of C4 photosynthesis - A model describing the inorganic carbon pool in bundle sheath-cells. Plant Physiology, 91(4), 1372–1381.CrossRef
Zurück zum Zitat Jeong, D. H., et al. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology, 130(4), 1636–1644.CrossRef Jeong, D. H., et al. (2002). T-DNA insertional mutagenesis for activation tagging in rice. Plant Physiology, 130(4), 1636–1644.CrossRef
Zurück zum Zitat Kajala, K., et al. (2011). Strategies for engineering a two-celled C4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3001–3010.CrossRef Kajala, K., et al. (2011). Strategies for engineering a two-celled C4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3001–3010.CrossRef
Zurück zum Zitat Kanai, R., & Edwards, G. E. (2001). The biochemistry of C4 photosynthesis. In C4 plant biology (pp. 49–87). New York, NY: Academic Press. Kanai, R., & Edwards, G. E. (2001). The biochemistry of C4 photosynthesis. In C4 plant biology (pp. 49–87). New York, NY: Academic Press.
Zurück zum Zitat Kocacinar, F., McKown, A. D., Sage, T. L., & Sage, R. F. (2008). Photosynthetic pathway influences xylem structure and function in flaveria (Asteraceae). Plant, Cell and Environment, 31(10), 1363–1376.CrossRef Kocacinar, F., McKown, A. D., Sage, T. L., & Sage, R. F. (2008). Photosynthetic pathway influences xylem structure and function in flaveria (Asteraceae). Plant, Cell and Environment, 31(10), 1363–1376.CrossRef
Zurück zum Zitat Ku, S.-b., & Edwards, G. E. (1977). Oxygen inhibition of photosynthesis. Plant Physiology, 59, 986–990.CrossRef Ku, S.-b., & Edwards, G. E. (1977). Oxygen inhibition of photosynthesis. Plant Physiology, 59, 986–990.CrossRef
Zurück zum Zitat Leegood, R. C. (2002). C4 photosynthesis: Principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany, 53(369), 581–590.CrossRef Leegood, R. C. (2002). C4 photosynthesis: Principles of CO2 concentration and prospects for its introduction into C3 plants. Journal of Experimental Botany, 53(369), 581–590.CrossRef
Zurück zum Zitat Leegood, R. C. (2013). Strategies for engineering C 4 photosynthesis. Journal of Plant Physiology, 170(4), 378–388.CrossRef Leegood, R. C. (2013). Strategies for engineering C 4 photosynthesis. Journal of Plant Physiology, 170(4), 378–388.CrossRef
Zurück zum Zitat Lin, H., et al. (2016). Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant and Cell Physiology, 57(5), 919–932.CrossRef Lin, H., et al. (2016). Targeted knockdown of GDCH in rice leads to a photorespiratory-deficient phenotype useful as a building block for C4 rice. Plant and Cell Physiology, 57(5), 919–932.CrossRef
Zurück zum Zitat Majeran, W., Cai, Y., Sun, Q., & van Wijk, K. J. (2005). The plant cell functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell, 17, 3111.CrossRef Majeran, W., Cai, Y., Sun, Q., & van Wijk, K. J. (2005). The plant cell functional differentiation of bundle sheath and mesophyll maize chloroplasts determined by comparative proteomics. Plant Cell, 17, 3111.CrossRef
Zurück zum Zitat Majeran, W., et al. (2008). Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Molecular & Cellular Proteomics : MCP, 7(9), 1609–1638.CrossRef Majeran, W., et al. (2008). Consequences of C4 differentiation for chloroplast membrane proteomes in maize mesophyll and bundle sheath cells. Molecular & Cellular Proteomics : MCP, 7(9), 1609–1638.CrossRef
Zurück zum Zitat Majeran, W., et al. (2010). Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. The Plant Cell, 22(11), 3509–3542.CrossRef Majeran, W., et al. (2010). Structural and metabolic transitions of C4 leaf development and differentiation defined by microscopy and quantitative proteomics in maize. The Plant Cell, 22(11), 3509–3542.CrossRef
Zurück zum Zitat Manandhar-Shrestha, K., et al. (2013). Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. Frontiers in Plant Science, 4(March), 65. Manandhar-Shrestha, K., et al. (2013). Comparative proteomics of chloroplasts envelopes from bundle sheath and mesophyll chloroplasts reveals novel membrane proteins with a possible role in c4-related metabolite fluxes and development. Frontiers in Plant Science, 4(March), 65.
Zurück zum Zitat Mitchell, P. L., & Sheehy, J. E. (2006). Surveying the possible pathways to C 4 rice. In Charting new pathways to C4 rice (pp. 399–412). Los Banos: International Rice Research Institute. Mitchell, P. L., & Sheehy, J. E. (2006). Surveying the possible pathways to C 4 rice. In Charting new pathways to C4 rice (pp. 399–412). Los Banos: International Rice Research Institute.
Zurück zum Zitat Miyao, M., Masumoto, C., Miyazawa, S. I., & Fukayama, H. (2011). Lessons from engineering a single-cell C 4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3021–3029.CrossRef Miyao, M., Masumoto, C., Miyazawa, S. I., & Fukayama, H. (2011). Lessons from engineering a single-cell C 4 photosynthetic pathway into rice. Journal of Experimental Botany, 62(9), 3021–3029.CrossRef
Zurück zum Zitat Monteith, J. L. (1978). Reassessment of maximum growth rates for C3 and C4 crops. Experimental Agriculture, 14, 1–5.CrossRef Monteith, J. L. (1978). Reassessment of maximum growth rates for C3 and C4 crops. Experimental Agriculture, 14, 1–5.CrossRef
Zurück zum Zitat Morgan, J. a., et al. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476(7359), 202–205.CrossRef Morgan, J. a., et al. (2011). C4 grasses prosper as carbon dioxide eliminates desiccation in warmed semi-arid grassland. Nature, 476(7359), 202–205.CrossRef
Zurück zum Zitat Osborn, H. L., et al. (2016). Effects of reduced carbonic anhydrase activity on co2 assimilation rates in setaria viridis: A transgenic analysis. Journal of Experimental Botany, 68(2), erw357. Osborn, H. L., et al. (2016). Effects of reduced carbonic anhydrase activity on co2 assimilation rates in setaria viridis: A transgenic analysis. Journal of Experimental Botany, 68(2), erw357.
Zurück zum Zitat Peng, S., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971–9975.CrossRef Peng, S., et al. (2004). Rice yields decline with higher night temperature from global warming. Proceedings of the National Academy of Sciences of the United States of America, 101(27), 9971–9975.CrossRef
Zurück zum Zitat Rizal, G., et al. (2015). Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome p450 gene in the brassinosteroid pathway. Plant Journal, 84(2), 257–266.CrossRef Rizal, G., et al. (2015). Two forward genetic screens for vein density mutants in sorghum converge on a cytochrome p450 gene in the brassinosteroid pathway. Plant Journal, 84(2), 257–266.CrossRef
Zurück zum Zitat Sage, R. F. (1999). Why C4 photosynthesis? In R. F. Sage & R. K. Monson (Eds.), C4 plant biology (pp. 3–16). San Diego, CA: Academic Press.CrossRef Sage, R. F. (1999). Why C4 photosynthesis? In R. F. Sage & R. K. Monson (Eds.), C4 plant biology (pp. 3–16). San Diego, CA: Academic Press.CrossRef
Zurück zum Zitat Sage, R. F. (2004). The evolution of C 4 photosynthesis. New Phytologist, 161(2), 341–370.CrossRef Sage, R. F. (2004). The evolution of C 4 photosynthesis. New Phytologist, 161(2), 341–370.CrossRef
Zurück zum Zitat Sage, R. F., & Zhu, X. G. (2011). Exploiting the engine of C 4 photosynthesis. Journal of Experimental Botany, 62(9), 2989–3000.CrossRef Sage, R. F., & Zhu, X. G. (2011). Exploiting the engine of C 4 photosynthesis. Journal of Experimental Botany, 62(9), 2989–3000.CrossRef
Zurück zum Zitat Sage, R. F., Christin, P. A., & Edwards, E. J. (2011). The C 4 plant lineages of planet earth. Journal of Experimental Botany, 62(9), 3155–3169.CrossRef Sage, R. F., Christin, P. A., & Edwards, E. J. (2011). The C 4 plant lineages of planet earth. Journal of Experimental Botany, 62(9), 3155–3169.CrossRef
Zurück zum Zitat Sheehy, J. E., et al. (2007). How the rice crop works and why it needs a new engine. In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Charting new pathways to C4 rice (pp. 3–26). Los Banos: International Rice Research Institute. Sheehy, J. E., et al. (2007). How the rice crop works and why it needs a new engine. In J. E. Sheehy, P. L. Mitchell, & B. Hardy (Eds.), Charting new pathways to C4 rice (pp. 3–26). Los Banos: International Rice Research Institute.
Zurück zum Zitat Still, C. J., Berry, J. A., James Collatz, G., & DeFries, R. S. (2003). Global distribution of C 3 and C 4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17(1), 6-1–6-14.CrossRef Still, C. J., Berry, J. A., James Collatz, G., & DeFries, R. S. (2003). Global distribution of C 3 and C 4 vegetation: Carbon cycle implications. Global Biogeochemical Cycles, 17(1), 6-1–6-14.CrossRef
Zurück zum Zitat Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., Sudoh, S., Tsuchida, H., Sasaki, H., Fukayama, H., & Miyao, M. (2008). Overproduction of C4 photosynthetic enzymes in transgenic rice plants: An approach to introduce the C4-like photosynthetic pathway into rice. Journal of Experimental Botany, 59(7), 1799–1809.CrossRef Taniguchi, Y., Ohkawa, H., Masumoto, C., Fukuda, T., Tamai, T., Lee, K., Sudoh, S., Tsuchida, H., Sasaki, H., Fukayama, H., & Miyao, M. (2008). Overproduction of C4 photosynthetic enzymes in transgenic rice plants: An approach to introduce the C4-like photosynthetic pathway into rice. Journal of Experimental Botany, 59(7), 1799–1809.CrossRef
Zurück zum Zitat Taylor, S. H., et al. (2010). Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytologist, 185, 780.CrossRef Taylor, S. H., et al. (2010). Ecophysiological traits in C3 and C4 grasses: A phylogenetically controlled screening experiment. New Phytologist, 185, 780.CrossRef
Zurück zum Zitat Wan, S., et al. (2009). Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Molecular Biology, 69(1–2), 69–80.CrossRef Wan, S., et al. (2009). Activation tagging, an efficient tool for functional analysis of the rice genome. Plant Molecular Biology, 69(1–2), 69–80.CrossRef
Zurück zum Zitat Wang, P., Kelly, S., Fouracre, J. P., & Langdale, J. A. (2013). Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 kranz anatomy. Plant Journal, 75(4), 656–670.CrossRef Wang, P., Kelly, S., Fouracre, J. P., & Langdale, J. A. (2013). Genome-wide transcript analysis of early maize leaf development reveals gene cohorts associated with the differentiation of C4 kranz anatomy. Plant Journal, 75(4), 656–670.CrossRef
Zurück zum Zitat Weber, A. P. M., & von Caemmerer, S. (2010). Plastid transport and metabolism of C3 and C4 plants — Comparative analysis and possible biotechnological exploitation. Current Opinion in Plant Biology, 13(3), 256–264.CrossRef Weber, A. P. M., & von Caemmerer, S. (2010). Plastid transport and metabolism of C3 and C4 plants — Comparative analysis and possible biotechnological exploitation. Current Opinion in Plant Biology, 13(3), 256–264.CrossRef
Metadaten
Titel
Climate-Resilient Future Crop: Development of C4 Rice
verfasst von
Hsiang Chun Lin
Robert A. Coe
W. Paul Quick
Anindya Bandyopadhyay
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-77878-5_6