Skip to main content

2021 | OriginalPaper | Buchkapitel

Cluster Analysis for Breast Cancer Patterns Identification

verfasst von : Beatriz Flamia Azevedo, Filipe Alves, Ana Maria A. C. Rocha, Ana I. Pereira

Erschienen in: Optimization, Learning Algorithms and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Safety in patient decision-making is one of the major health care challenges. Computational support in establishing diagnoses and preventing errors will contribute to an enhancement in doctor-patient communication. This work performs a three-dimensional cluster analysis, using k-means algorithm, to identify patterns in a breast cancer database. The methodology proposed can be useful to identify patterns in the database that are normally difficult to be noted by classical methods, such as statistical methods. The three-dimensional cluster approach was explored combining three variables at once. The k-means algorithm is used to recognize the hidden patterns on the database. Sub-clusters are used to separate the benign and malignant tumors inside the global cluster. The results present effective analyses of three different clusters based on different combinations between variables. Thus, health professionals can obtain a better understanding of the properties of different types of tumor, identifying the mined abstract tumor features, through the cluster data analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
2.
Zurück zum Zitat Bressan, G.M., Azevedo, B.F.A., Souza, R.M.: Métodos de classificação automática para predição do perfil clínico de pacientes portadores do diabetes mellitus. Revista Brasileira de Biometria 38(2), 257–273 (2020)CrossRef Bressan, G.M., Azevedo, B.F.A., Souza, R.M.: Métodos de classificação automática para predição do perfil clínico de pacientes portadores do diabetes mellitus. Revista Brasileira de Biometria 38(2), 257–273 (2020)CrossRef
5.
Zurück zum Zitat Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11(11), 2033–2047 (2016)CrossRef Dubey, A.K., Gupta, U., Jain, S.: Analysis of k-means clustering approach on the breast cancer Wisconsin dataset. Int. J. Comput. Assist. Radiol. Surg. 11(11), 2033–2047 (2016)CrossRef
6.
Zurück zum Zitat Evans, R.H.: An analysis of criterion variable reliability in conjoint analysis. Percept. Mot. Skills 82(3), 988–990 (1996)CrossRef Evans, R.H.: An analysis of criterion variable reliability in conjoint analysis. Percept. Mot. Skills 82(3), 988–990 (1996)CrossRef
7.
Zurück zum Zitat Fisher, R.A.: Statistical Methods for Research Workers. Hafner, New York (1958)MATH Fisher, R.A.: Statistical Methods for Research Workers. Hafner, New York (1958)MATH
8.
Zurück zum Zitat Gomes, I., Nunes, C.: Analysis of the breast cancer mortality rate in Portugal over a decade: spatiotemporal clustering analysis. Acta Med. Port. 33(5), 305–310 (2020)CrossRef Gomes, I., Nunes, C.: Analysis of the breast cancer mortality rate in Portugal over a decade: spatiotemporal clustering analysis. Acta Med. Port. 33(5), 305–310 (2020)CrossRef
10.
Zurück zum Zitat Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRef Jain, A.K.: Data clustering: 50 years beyond k-means. Pattern Recogn. Lett. 31(8), 651–666 (2010)CrossRef
11.
Zurück zum Zitat Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)MATH Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)MATH
12.
Zurück zum Zitat Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, pp. 911–916. IEEE (2010) Liu, Y., Li, Z., Xiong, H., Gao, X., Wu, J.: Understanding of internal clustering validation measures. In: 2010 IEEE International Conference on Data Mining, pp. 911–916. IEEE (2010)
14.
Zurück zum Zitat Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRef Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)CrossRef
15.
Zurück zum Zitat Rustam, Z., Hartini, S.: Classification of breast cancer using fast fuzzy clustering based on kernel. In: 9th Annual Basic Science International Conference 2019. Conference Series: Materials Science and Engineering, vol. 546, pp. 1–9 (2019) Rustam, Z., Hartini, S.: Classification of breast cancer using fast fuzzy clustering based on kernel. In: 9th Annual Basic Science International Conference 2019. Conference Series: Materials Science and Engineering, vol. 546, pp. 1–9 (2019)
16.
17.
Zurück zum Zitat Vidman, L., Källberg, D., Rydén, P.: Cluster analysis on high dimensional RNA-seq data with applications to cancer research - an evaluation study. PLoS ONE 14(12), 1–21 (2019)CrossRef Vidman, L., Källberg, D., Rydén, P.: Cluster analysis on high dimensional RNA-seq data with applications to cancer research - an evaluation study. PLoS ONE 14(12), 1–21 (2019)CrossRef
18.
Zurück zum Zitat Xie, J., Liu, R., Luttrell, J., Zhang, C.: Deep learning based analysis of histopathological images of breast cancer. Front. Genet. 10, 80 (2019)CrossRef Xie, J., Liu, R., Luttrell, J., Zhang, C.: Deep learning based analysis of histopathological images of breast cancer. Front. Genet. 10, 80 (2019)CrossRef
Metadaten
Titel
Cluster Analysis for Breast Cancer Patterns Identification
verfasst von
Beatriz Flamia Azevedo
Filipe Alves
Ana Maria A. C. Rocha
Ana I. Pereira
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-91885-9_37

Premium Partner