Skip to main content

2021 | OriginalPaper | Buchkapitel

Overview of Robotic Based System for Rehabilitation and Healthcare

verfasst von : Arezki A. Chellal, José Lima, Florbela P. Fernandes, José Gonçalves, Maria F. Pacheco, Fernando C. Monteiro

Erschienen in: Optimization, Learning Algorithms and Applications

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

As in many other fields, robots are increasingly being used in the healthcare sector, particularly for hospital logistics support, surgery and rehabilitation. Rehabilitation is a concern for millions of people around the world, and because of this, there has been a constant progress over the last decade in the rehabilitation robotics field, with the use of new technologies aimed at overcoming the different challenges faced in this field. In this sense, this paper reviews the main applications developed in the last ten years of rehabilitation robotics, as well as the different challenges that still need to be addressed in order to achieve the design of a prototype that is easy to use, small, safe, less costly and brings real added value to this field. Much of the efforts of the researchers in this topics is focused on providing as many DOF and ROM as possible, and also on the designing of new robots control algorithms.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat World Health Organization: The World Bank. World Report on Disability Who (2011) World Health Organization: The World Bank. World Report on Disability Who (2011)
2.
Zurück zum Zitat World Health Organization: WHO Guidelines on Health-Related Rehabilitation. WHO (2014) World Health Organization: WHO Guidelines on Health-Related Rehabilitation. WHO (2014)
3.
Zurück zum Zitat Kwakkel, G., Wagenaar, R.C., Kollen, B.J., et al.: Predicting disability in stroke-a critical review of the literature. Age Ageing 25(6), 479–489 (1996)CrossRef Kwakkel, G., Wagenaar, R.C., Kollen, B.J., et al.: Predicting disability in stroke-a critical review of the literature. Age Ageing 25(6), 479–489 (1996)CrossRef
4.
Zurück zum Zitat Hillman, M.: Rehabilitation robotics from pact to present-a historical perspective. In: 8th International Conference on Rehabilitation Robotics, pp. 23–25. Springer, Cham (2003) Hillman, M.: Rehabilitation robotics from pact to present-a historical perspective. In: 8th International Conference on Rehabilitation Robotics, pp. 23–25. Springer, Cham (2003)
5.
Zurück zum Zitat Buerger, S.P., Krebs, H.I., Hogan, N.: Characterization and control of a screw-driven robot for neurorehabilitation. In: Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 388–394. IEEE, Mexico (2001) Buerger, S.P., Krebs, H.I., Hogan, N.: Characterization and control of a screw-driven robot for neurorehabilitation. In: Proceedings of the 2001 IEEE International Conference on Control Applications, pp. 388–394. IEEE, Mexico (2001)
6.
Zurück zum Zitat Masia, L., Krebs, H.I., Cappa, P., et al.: Whole-arm rehabilitation following stroke: Hand module. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1085–1089. IEEE, Pisa (2006) Masia, L., Krebs, H.I., Cappa, P., et al.: Whole-arm rehabilitation following stroke: Hand module. In: The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, pp. 1085–1089. IEEE, Pisa (2006)
7.
Zurück zum Zitat Krebs, H.I., Volpe, B.T., Williams, D., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)CrossRef Krebs, H.I., Volpe, B.T., Williams, D., et al.: Robot-aided neurorehabilitation: a robot for wrist rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 15(3), 327–335 (2007)CrossRef
8.
Zurück zum Zitat Lo, A.C., Guarino, P.D., Richards, L.G., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)CrossRef Lo, A.C., Guarino, P.D., Richards, L.G., et al.: Robot-assisted therapy for long-term upper-limb impairment after stroke. N. Engl. J. Med. 362(19), 1772–1783 (2010)CrossRef
9.
Zurück zum Zitat Jamwal, P.K., Xie, S.Q., Hussain, S., et al.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mech. 19(1), 64–75 (2012)CrossRef Jamwal, P.K., Xie, S.Q., Hussain, S., et al.: An adaptive wearable parallel robot for the treatment of ankle injuries. IEEE/ASME Trans. Mech. 19(1), 64–75 (2012)CrossRef
10.
Zurück zum Zitat Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons, 1st edn. Wiley, Hoboken (2008)CrossRef Pons, J.L.: Wearable Robots: Biomechatronic Exoskeletons, 1st edn. Wiley, Hoboken (2008)CrossRef
11.
Zurück zum Zitat Hussain, S., Xie, S.Q., Jamwal, P.K.: Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43(3), 1025–1034 (2013)CrossRef Hussain, S., Xie, S.Q., Jamwal, P.K.: Adaptive impedance control of a robotic orthosis for gait rehabilitation. IEEE Trans. Cybern. 43(3), 1025–1034 (2013)CrossRef
12.
Zurück zum Zitat Hussain, S., Xie, S.-Q., Jamwal, P.K.: Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Syst. Man Cybern. Syst. 43(3), 655–665 (2012)CrossRef Hussain, S., Xie, S.-Q., Jamwal, P.K.: Robust nonlinear control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Syst. Man Cybern. Syst. 43(3), 655–665 (2012)CrossRef
13.
Zurück zum Zitat Hussain, S., Jamwal, P.K., Ghayesh, H., Xie, S.Q.: Assist-as-needed control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Ind. Electron. 64(2), 1675–1685 (2017)CrossRef Hussain, S., Jamwal, P.K., Ghayesh, H., Xie, S.Q.: Assist-as-needed control of an intrinsically compliant robotic gait training orthosis. IEEE Trans. Ind. Electron. 64(2), 1675–1685 (2017)CrossRef
14.
Zurück zum Zitat Zhang, M., Xie, S.Q., Li, X., et al.: Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans. Ind. Electron. 65(2), 1398–1407 (2017)CrossRef Zhang, M., Xie, S.Q., Li, X., et al.: Adaptive patient-cooperative control of a compliant ankle rehabilitation robot (CARR) with enhanced training safety. IEEE Trans. Ind. Electron. 65(2), 1398–1407 (2017)CrossRef
15.
Zurück zum Zitat Zhang, M., Cao, J., ZHU, G., et al.: Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot. Auton. Syst. 98, 213–221 (2017) Zhang, M., Cao, J., ZHU, G., et al.: Reconfigurable workspace and torque capacity of a compliant ankle rehabilitation robot (CARR). Robot. Auton. Syst. 98, 213–221 (2017)
16.
Zurück zum Zitat Heung, K.H.L., Tang, Z. Q., Ho, L., et al.: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance. In: 16th International Conference on Rehabilitation Robotics, pp. 65–70. IEEE, London (2019) Heung, K.H.L., Tang, Z. Q., Ho, L., et al.: Design of a 3D printed soft robotic hand for stroke rehabilitation and daily activities assistance. In: 16th International Conference on Rehabilitation Robotics, pp. 65–70. IEEE, London (2019)
17.
Zurück zum Zitat Heung, K.H.L., Tong, R. K.Y., Lau, A.T.H., et al.: Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 6(2), 289–304 (2019) Heung, K.H.L., Tong, R. K.Y., Lau, A.T.H., et al.: Robotic glove with soft-elastic composite actuators for assisting activities of daily living. Soft Robot. 6(2), 289–304 (2019)
18.
Zurück zum Zitat Ho, N.S.K., Tong, K.Y., Hu, X.L., et al.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5. IEEE, Zurich (2011) Ho, N.S.K., Tong, K.Y., Hu, X.L., et al.: An EMG-driven exoskeleton hand robotic training device on chronic stroke subjects: task training system for stroke rehabilitation. In: 2011 IEEE International Conference on Rehabilitation Robotics, pp. 1–5. IEEE, Zurich (2011)
19.
Zurück zum Zitat Ockenfeld, C., Tong, K.Y., Susanto, E.A., Ho, N.S., Hu, X.: Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation. In: 13th International Conference on Rehabilitation Robotics, pp. 1–4. IEEE, Seattle (2013) Ockenfeld, C., Tong, K.Y., Susanto, E.A., Ho, N.S., Hu, X.: Fine finger motor skill training with exoskeleton robotic hand in chronic stroke: stroke rehabilitation. In: 13th International Conference on Rehabilitation Robotics, pp. 1–4. IEEE, Seattle (2013)
20.
Zurück zum Zitat Hu, X.L., Tong, K.Y., Wei, X.J., et al.: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 23(5), 1065–1074 (2013)CrossRef Hu, X.L., Tong, K.Y., Wei, X.J., et al.: The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 23(5), 1065–1074 (2013)CrossRef
21.
Zurück zum Zitat Hu, X.L., Tong, K.Y., Wei, X.J., et al.: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5903–5906. IEEE, Osaka (2013) Hu, X.L., Tong, K.Y., Wei, X.J., et al.: Coordinated upper limb training assisted with an electromyography (EMG)-driven hand robot after stroke. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5903–5906. IEEE, Osaka (2013)
22.
Zurück zum Zitat Bützer, T., Lambercy, O., Arata, J., et al.: Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities. Soft Robot. 8(2), 128–143 (2021)CrossRef Bützer, T., Lambercy, O., Arata, J., et al.: Fully wearable actuated soft exoskeleton for grasping assistance in everyday activities. Soft Robot. 8(2), 128–143 (2021)CrossRef
23.
Zurück zum Zitat Bützer, T., Dittli, J., Lieber, J., et al.: PEXO-a pediatric whole hand exoskeleton for grasping assistance in task-oriented training. In: 16th International Conference on Rehabilitation Robotics, pp. 108–114. IEEE, London (2019) Bützer, T., Dittli, J., Lieber, J., et al.: PEXO-a pediatric whole hand exoskeleton for grasping assistance in task-oriented training. In: 16th International Conference on Rehabilitation Robotics, pp. 108–114. IEEE, London (2019)
24.
26.
Zurück zum Zitat De Lee, G., Wang, W., Lee, K., et al: Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. In: 12th International Conference on Control, Automation and Systems, pp. 1943–1948. IEEE, Jeju Island (2012) De Lee, G., Wang, W., Lee, K., et al: Arm exoskeleton rehabilitation robot with assistive system for patient after stroke. In: 12th International Conference on Control, Automation and Systems, pp. 1943–1948. IEEE, Jeju Island (2012)
27.
Zurück zum Zitat Chen, S., Lien, W., Wang, W., et al.: Assistive control system for upper limb rehabilitation robot. IEEE Trans. Neural Syst. Rehabil. Eng. 24(11), 1199–1209 (2016)CrossRef Chen, S., Lien, W., Wang, W., et al.: Assistive control system for upper limb rehabilitation robot. IEEE Trans. Neural Syst. Rehabil. Eng. 24(11), 1199–1209 (2016)CrossRef
28.
Zurück zum Zitat Lin, C.H., Lien, W.M., Wang, W.W., et al.: NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation. In: International Conference on Intelligent Robots and Systems, pp. 3555–3560. IEEE, Chicago (2014) Lin, C.H., Lien, W.M., Wang, W.W., et al.: NTUH-II robot arm with dynamic torque gain adjustment method for frozen shoulder rehabilitation. In: International Conference on Intelligent Robots and Systems, pp. 3555–3560. IEEE, Chicago (2014)
29.
Zurück zum Zitat Li, H.Y., Chien, L.Y., Hong, H.Y., et al.: Active control with force sensor and shoulder circumduction implemented on exoskeleton robot NTUH-II. In: International Conference on Intelligent Robots and Systems, pp. 2406–2411. IEEE, Daejeon (2016) Li, H.Y., Chien, L.Y., Hong, H.Y., et al.: Active control with force sensor and shoulder circumduction implemented on exoskeleton robot NTUH-II. In: International Conference on Intelligent Robots and Systems, pp. 2406–2411. IEEE, Daejeon (2016)
30.
Zurück zum Zitat Liu, L.K., Chien, L.Y., Pan, S.H., et al.: Interactive torque controller with electromyography intention prediction implemented on exoskeleton robot NTUH-II. In: International Conference on Robotics and Biomimetics, pp. 1485–1490. IEEE, Macau (2017) Liu, L.K., Chien, L.Y., Pan, S.H., et al.: Interactive torque controller with electromyography intention prediction implemented on exoskeleton robot NTUH-II. In: International Conference on Robotics and Biomimetics, pp. 1485–1490. IEEE, Macau (2017)
31.
Zurück zum Zitat Ren, J.L., Chien, Y.H., Chia, E.Y., et al.: Deep learning based motion prediction for exoskeleton robot control in upper limb rehabilitation. In: International Conference on Robotics and Automation, pp. 5076–5082. IEEE, Montreal (2019) Ren, J.L., Chien, Y.H., Chia, E.Y., et al.: Deep learning based motion prediction for exoskeleton robot control in upper limb rehabilitation. In: International Conference on Robotics and Automation, pp. 5076–5082. IEEE, Montreal (2019)
32.
Zurück zum Zitat Zimmermann, Y., Forino, A., Riener, R., et al.: ANYexo: a versatile and dynamic upper-limb rehabilitation robot. IEEE Robot. Autom. Lett. 4(4), 3649–3656 (2019)CrossRef Zimmermann, Y., Forino, A., Riener, R., et al.: ANYexo: a versatile and dynamic upper-limb rehabilitation robot. IEEE Robot. Autom. Lett. 4(4), 3649–3656 (2019)CrossRef
33.
Zurück zum Zitat Sommerhalder, M., Zimmermann, Y., Cizmeci, B., et al.: Physical human-robot interaction with real active surfaces using haptic rendering on point clouds. In: International Conference on Intelligent Robots and System, pp. 9767–9773. IEEE, Las Vegas (2020) Sommerhalder, M., Zimmermann, Y., Cizmeci, B., et al.: Physical human-robot interaction with real active surfaces using haptic rendering on point clouds. In: International Conference on Intelligent Robots and System, pp. 9767–9773. IEEE, Las Vegas (2020)
34.
Zurück zum Zitat Zimmermann, Y., Küçüktabak, E.B., Farshidian, F., Riener, R., Hutter, M.: Towards dynamic transparency: robust interaction force tracking using multi-sensory control on an arm exoskeleton. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7417–7424. IEEE, Las Vegas (2020) Zimmermann, Y., Küçüktabak, E.B., Farshidian, F., Riener, R., Hutter, M.: Towards dynamic transparency: robust interaction force tracking using multi-sensory control on an arm exoskeleton. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 7417–7424. IEEE, Las Vegas (2020)
35.
Zurück zum Zitat Kim, B., Deshpande, A.D.: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 36(4), 414–435 (2017)CrossRef Kim, B., Deshpande, A.D.: An upper-body rehabilitation exoskeleton Harmony with an anatomical shoulder mechanism: Design, modeling, control, and performance evaluation. Int. J. Robot. Res. 36(4), 414–435 (2017)CrossRef
36.
Zurück zum Zitat Kim, B., Deshpande, A.D: Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm. In: 2015 IEEE International Conference on Rehabilitation Robotics, pp. 538–542. IEEE, Singapore (2017) Kim, B., Deshpande, A.D: Controls for the shoulder mechanism of an upper-body exoskeleton for promoting scapulohumeral rhythm. In: 2015 IEEE International Conference on Rehabilitation Robotics, pp. 538–542. IEEE, Singapore (2017)
37.
Zurück zum Zitat Rodgers, H., Bosomworth, H., Krebs, H.I., et al.: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet 394(10192), 51–62 (2019)CrossRef Rodgers, H., Bosomworth, H., Krebs, H.I., et al.: Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet 394(10192), 51–62 (2019)CrossRef
38.
Zurück zum Zitat Fraile, J.C., Perez-Turiel, J., Baeyens, E., et al.: E2Rebot: a robotic platform for upper limb rehabilitation in patients with neuromotor disability. Adv. Mech. Eng. 8(8), 1–13 (2016)CrossRef Fraile, J.C., Perez-Turiel, J., Baeyens, E., et al.: E2Rebot: a robotic platform for upper limb rehabilitation in patients with neuromotor disability. Adv. Mech. Eng. 8(8), 1–13 (2016)CrossRef
39.
Zurück zum Zitat Rodriguez-Guerrero, C., Ana, B.M., Navarrete, P.O., Fraile, J.C., Farina, P.R.: preliminary results from the use of the SOFTROBOT platform in stroke patients. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation. BB, vol. 1, pp. 215–226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-34546-3_34CrossRef Rodriguez-Guerrero, C., Ana, B.M., Navarrete, P.O., Fraile, J.C., Farina, P.R.: preliminary results from the use of the SOFTROBOT platform in stroke patients. In: Pons, J.L., Torricelli, D., Pajaro, M. (eds.) Converging Clinical and Engineering Research on Neurorehabilitation. BB, vol. 1, pp. 215–226. Springer, Heidelberg (2013). https://​doi.​org/​10.​1007/​978-3-642-34546-3_​34CrossRef
40.
Zurück zum Zitat Akdoğan, E., Aktan, M.E., Koru, A.T., et al.: Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: performance analysis and clinical results. Mechatronics 49, 77–91 (2018)CrossRef Akdoğan, E., Aktan, M.E., Koru, A.T., et al.: Hybrid impedance control of a robot manipulator for wrist and forearm rehabilitation: performance analysis and clinical results. Mechatronics 49, 77–91 (2018)CrossRef
41.
Zurück zum Zitat Atlihan, M., Akdoğan, E., Arslan, M.S.: Development of a therapeutic exercise robot for wrist and forearm rehabilitation. In: 19th International Conference on Methods and Models in Automation and Robotics, pp. 52–57. IEEE, Miedzyzdroje (2014) Atlihan, M., Akdoğan, E., Arslan, M.S.: Development of a therapeutic exercise robot for wrist and forearm rehabilitation. In: 19th International Conference on Methods and Models in Automation and Robotics, pp. 52–57. IEEE, Miedzyzdroje (2014)
42.
Zurück zum Zitat LLinares, A., Badesa, F.J., Morales, R., et al.: Robotic assessment of the influence of age on upper-limb sensorimotor function. Clin. Interv. Aging 8, 879–888 (2013) LLinares, A., Badesa, F.J., Morales, R., et al.: Robotic assessment of the influence of age on upper-limb sensorimotor function. Clin. Interv. Aging 8, 879–888 (2013)
43.
Zurück zum Zitat Badesa, F.J., Llinares, A., Morales, R., et al.: Pneumatic planar rehabilitation robot for post-stroke patients. Biomed. Eng. 26(2), 1450025 (2014) Badesa, F.J., Llinares, A., Morales, R., et al.: Pneumatic planar rehabilitation robot for post-stroke patients. Biomed. Eng. 26(2), 1450025 (2014)
44.
Zurück zum Zitat Díaz, I., Catalan, J.M., Badesa, F.J., et al.: Development of a robotic device for post-stroke home tele-rehabilitation. Adv. Mech. Eng. 10(1), 1–8 (2018)CrossRef Díaz, I., Catalan, J.M., Badesa, F.J., et al.: Development of a robotic device for post-stroke home tele-rehabilitation. Adv. Mech. Eng. 10(1), 1–8 (2018)CrossRef
45.
Zurück zum Zitat Catalán, J.M., Garcia, J.V., Lopez, D., et al.: Evaluation of an upper-limb rehabilitation robotic device for home use from patient perspective. In: International Conference on Neuro Rehabilitation, pp. 449–453. Springer, Pisa (2018) Catalán, J.M., Garcia, J.V., Lopez, D., et al.: Evaluation of an upper-limb rehabilitation robotic device for home use from patient perspective. In: International Conference on Neuro Rehabilitation, pp. 449–453. Springer, Pisa (2018)
46.
Zurück zum Zitat Catalán, J.M., Blanco, A., Díez, J.A., et al.: Hysiological reactions in single-player and competitive arm rehabilitation games. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 433–436. IEEE, Berlin (2019) Catalán, J.M., Blanco, A., Díez, J.A., et al.: Hysiological reactions in single-player and competitive arm rehabilitation games. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 433–436. IEEE, Berlin (2019)
47.
Zurück zum Zitat Yang, G., Deng, J., Pang, G., et al.: An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE J. Transl. Eng. Health Med. 6, 1–10 (2018) Yang, G., Deng, J., Pang, G., et al.: An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE J. Transl. Eng. Health Med. 6, 1–10 (2018)
48.
Zurück zum Zitat Zhang, L., Guo, S., Sun, Q.: Development and assist-as-needed control of an end-effector upper limb rehabilitation robot. Appl. Sci. 10(19), 6684 (2020)CrossRef Zhang, L., Guo, S., Sun, Q.: Development and assist-as-needed control of an end-effector upper limb rehabilitation robot. Appl. Sci. 10(19), 6684 (2020)CrossRef
49.
Zurück zum Zitat Zhao, Y., Liang, C., Gu, Z., et al.: A new design scheme for intelligent upper limb rehabilitation training robot. Int. J. Environ. Res. Pub. Health 17(8), 2948 (2020)CrossRef Zhao, Y., Liang, C., Gu, Z., et al.: A new design scheme for intelligent upper limb rehabilitation training robot. Int. J. Environ. Res. Pub. Health 17(8), 2948 (2020)CrossRef
51.
Zurück zum Zitat Ben-Tzvi, P., Ma, Z.: Sensing and force-feedback exoskeleton (SAFE) glove. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 992–1002 (2015)CrossRef Ben-Tzvi, P., Ma, Z.: Sensing and force-feedback exoskeleton (SAFE) glove. IEEE Trans. Neural Syst. Rehabil. Eng. 23(6), 992–1002 (2015)CrossRef
52.
Zurück zum Zitat Ma, Z., Ben-Tzvi, P., Danoff, J.: Hand rehabilitation learning system with an exoskeleton robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1323–1332 (2015)CrossRef Ma, Z., Ben-Tzvi, P., Danoff, J.: Hand rehabilitation learning system with an exoskeleton robotic glove. IEEE Trans. Neural Syst. Rehabil. Eng. 24(12), 1323–1332 (2015)CrossRef
53.
Zurück zum Zitat Chen, X., Gong, L., Wei, L., et al.: A wearable hand rehabilitation system with soft gloves. IEEE Trans. Industr. Inf. 17(2), 943–952 (2020)CrossRef Chen, X., Gong, L., Wei, L., et al.: A wearable hand rehabilitation system with soft gloves. IEEE Trans. Industr. Inf. 17(2), 943–952 (2020)CrossRef
54.
Zurück zum Zitat Chen, X., Gong, L., Zheng, L., et al.: Soft exoskeleton glove for hand assistance based on human-machine interaction and machine learning. In: 2020 IEEE International Conference on Human-Machine Systems, pp. 1–6. IEEE, Rome (2020) Chen, X., Gong, L., Zheng, L., et al.: Soft exoskeleton glove for hand assistance based on human-machine interaction and machine learning. In: 2020 IEEE International Conference on Human-Machine Systems, pp. 1–6. IEEE, Rome (2020)
55.
Zurück zum Zitat Chen, G., Ye, J., Liu, Q., et al.: Adaptive control strategy for gait rehabilitation robot to assist-when-needed. In: 2018 IEEE International Conference on Real-time Computing and Robotics, pp. 538–543. Publisher, Kandima (2018) Chen, G., Ye, J., Liu, Q., et al.: Adaptive control strategy for gait rehabilitation robot to assist-when-needed. In: 2018 IEEE International Conference on Real-time Computing and Robotics, pp. 538–543. Publisher, Kandima (2018)
56.
Zurück zum Zitat Meng, W., Liu, Q., Zhou, Z., Ai, Q.: Active interaction control applied to a lower limb rehabilitation robot by using EMG recognition and impedance model. Industr. Robot Int. J. 41(5), 465–479 (2014)CrossRef Meng, W., Liu, Q., Zhou, Z., Ai, Q.: Active interaction control applied to a lower limb rehabilitation robot by using EMG recognition and impedance model. Industr. Robot Int. J. 41(5), 465–479 (2014)CrossRef
57.
Zurück zum Zitat Otten, A., Voort, C., Stienen, A., et al.: LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Trans. Mech. 20(5), 2285–2298 (2015)CrossRef Otten, A., Voort, C., Stienen, A., et al.: LIMPACT: a hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Trans. Mech. 20(5), 2285–2298 (2015)CrossRef
58.
Zurück zum Zitat Ketelhut, M., Husmann, S., Haas, J., Abel, D.: Iterative Learning Control of Gravity Compensation for Upper-Arm Robot-Assisted Rehabilitation. In: 2020 European Control Conference, pp. 2–9. IEEE, Saint Petersburg (2020) Ketelhut, M., Husmann, S., Haas, J., Abel, D.: Iterative Learning Control of Gravity Compensation for Upper-Arm Robot-Assisted Rehabilitation. In: 2020 European Control Conference, pp. 2–9. IEEE, Saint Petersburg (2020)
59.
Zurück zum Zitat Hughes, A.M., Freeman, C.T., Burridge, J.H., et al.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabilitation Neural Repair 23(6), 559–568 (2009)CrossRef Hughes, A.M., Freeman, C.T., Burridge, J.H., et al.: Feasibility of iterative learning control mediated by functional electrical stimulation for reaching after stroke. Neurorehabilitation Neural Repair 23(6), 559–568 (2009)CrossRef
60.
Zurück zum Zitat Freeman, C.T., Hughes, A.M., Burridge, J.H., et al.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009)CrossRef Freeman, C.T., Hughes, A.M., Burridge, J.H., et al.: Iterative learning control of FES applied to the upper extremity for rehabilitation. Control Eng. Pract. 17(3), 368–381 (2009)CrossRef
Metadaten
Titel
Overview of Robotic Based System for Rehabilitation and Healthcare
verfasst von
Arezki A. Chellal
José Lima
Florbela P. Fernandes
José Gonçalves
Maria F. Pacheco
Fernando C. Monteiro
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-91885-9_38

Premium Partner