Skip to main content
Erschienen in: Wireless Personal Communications 2/2021

29.10.2020

Cluster Estimation in Terrestrial and Underwater Sensor Networks

verfasst von: Najma Ismat, Rehan Qureshi, Rabia Noor Enam, Shaheena Noor, Muhammad Tahir

Erschienen in: Wireless Personal Communications | Ausgabe 2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Wireless Sensor Network (WSN), clustering is considered as an efficient network topology which maximizes the received data at the sink by minimizing a direct transmission of data from the sensor nodes. Limiting direct communication between sensor nodes and the sink is achieved by confining sensor node’s transmission within a certain region known as clusters. Once data are being collected from all the sensors in the cluster it is sent to the sink by a node designated to communicate with the sink within a cluster. This technique not only reduces the network congestion, but it increases data reception, and conserves network energy. To achieve an increase in data received at the sink, it is necessary that the correct number of clusters are created within a sensing field. In this paper a new heuristic approach is presented to find the optimal number of clusters in a mobility supported terrestrial and underwater sensor networks. To maintain a strong association between sensor nodes and the node designated known as cluster-head (CH), it is necessary that sensor node’s mobility should also be considered during the cluster setup operation. This approach not only reduces the direct transmission between the sensor nodes and sink, but it also increases sensor node’s connectivity with its CH for the transmission of sensed data which results in the creation of a stable network structure. The proposed analytical estimate considers sensor node’s transmission range and sensing field dimensions for finding the correct number of the clusters in a sensing field. With this approach a better network coverage and connectivity during the exchange of data can be achieved, which in turn increases the network performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012). Mobile wireless sensor networks overview. IJCCN International Journal of Computer Communications and Networks, 2(1), 17–22. Rezazadeh, J., Moradi, M., & Ismail, A. S. (2012). Mobile wireless sensor networks overview. IJCCN International Journal of Computer Communications and Networks, 2(1), 17–22.
2.
Zurück zum Zitat Kansal, A., Somasundara, A. A., ZhouJea, D. D., Srivastava, M. B., & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks. In MobiSys ’04 Proceedings of the 2nd international conference on Mobile systems, applications, and services (pp. 111–124). Kansal, A., Somasundara, A. A., ZhouJea, D. D., Srivastava, M. B., & Estrin, D. (2004). Intelligent fluid infrastructure for embedded networks. In MobiSys ’04 Proceedings of the 2nd international conference on Mobile systems, applications, and services (pp. 111–124).
3.
Zurück zum Zitat Sikander, G., Zafar, M. H., Raza, A., Inayatullah, M. B., Mahmud, S. A., & Khan, G. M. (2013). A survey of cluster-based routing schemes for wireless sensor networks. Smart Computing Review, 3(4), 261–275.CrossRef Sikander, G., Zafar, M. H., Raza, A., Inayatullah, M. B., Mahmud, S. A., & Khan, G. M. (2013). A survey of cluster-based routing schemes for wireless sensor networks. Smart Computing Review, 3(4), 261–275.CrossRef
4.
Zurück zum Zitat Ephremides, A. (2002). Energy concerns in wireless networks. Wireless Communications, 9, 48–59.CrossRef Ephremides, A. (2002). Energy concerns in wireless networks. Wireless Communications, 9, 48–59.CrossRef
5.
Zurück zum Zitat Janani, E. S. V., & Kumar, G. P. (2015). Energy efficient cluster based scheduling scheme for wireless sensor networks. The Scientific World Journal, 2015, 9. Janani, E. S. V., & Kumar, G. P. (2015). Energy efficient cluster based scheduling scheme for wireless sensor networks. The Scientific World Journal, 2015, 9.
6.
Zurück zum Zitat Heidemann, J., Stojanoic, M., & Zorzi, M. (2012). Underwater sensor networks: applications, advances and challenges. Philosophical Transactions of Royal Society A Mathematical and Physical Engineering, 370, 158–175.CrossRef Heidemann, J., Stojanoic, M., & Zorzi, M. (2012). Underwater sensor networks: applications, advances and challenges. Philosophical Transactions of Royal Society A Mathematical and Physical Engineering, 370, 158–175.CrossRef
8.
Zurück zum Zitat Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology. Heinzelman, W. B. (2000). Application-specific protocol architectures for wireless networks. Ph.D. thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology.
9.
Zurück zum Zitat Amini, N., Vahdatpour, A., Xu, W., Gerla, M., & Sarrafzadeh, M. (2012). Cluster size optimization in sensor networks with decentralized cluster-based protocols. Computer Communications, 35(2), 207–220.CrossRef Amini, N., Vahdatpour, A., Xu, W., Gerla, M., & Sarrafzadeh, M. (2012). Cluster size optimization in sensor networks with decentralized cluster-based protocols. Computer Communications, 35(2), 207–220.CrossRef
10.
Zurück zum Zitat Sabor, N., Sabah, M. A., Abo-Zahhad, M., & Sasaki, S. (2018). ARBIC: An adjustable range based immune hierarchy clustering protocol supporting mobility of wireless sensor networks. Pervasive and Mobile Computing, 43, 27–48.CrossRef Sabor, N., Sabah, M. A., Abo-Zahhad, M., & Sasaki, S. (2018). ARBIC: An adjustable range based immune hierarchy clustering protocol supporting mobility of wireless sensor networks. Pervasive and Mobile Computing, 43, 27–48.CrossRef
11.
Zurück zum Zitat Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers and Security, 77, 277–288.CrossRef Sundararaj, V., Muthukumar, S., & Kumar, R. S. (2018). An optimal cluster formation based energy efficient dynamic scheduling hybrid MAC protocol for heavy traffic load in wireless sensor networks. Computers and Security, 77, 277–288.CrossRef
12.
Zurück zum Zitat Gupta, G. P., & Jha, S. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Engineering Applications of Artificial Intelligence, 68, 101–109.CrossRef Gupta, G. P., & Jha, S. (2018). Integrated clustering and routing protocol for wireless sensor networks using Cuckoo and Harmony Search based metaheuristic techniques. Engineering Applications of Artificial Intelligence, 68, 101–109.CrossRef
13.
Zurück zum Zitat Wang, L., Wang, C., & Liu, C. (2009). Optimal number of clusters in dense wireless sensor networks: A cross-layer approach. IEEE Transactions on Vehicular Technology, 58(2), 966–976.MathSciNetCrossRef Wang, L., Wang, C., & Liu, C. (2009). Optimal number of clusters in dense wireless sensor networks: A cross-layer approach. IEEE Transactions on Vehicular Technology, 58(2), 966–976.MathSciNetCrossRef
14.
Zurück zum Zitat Raghuvanshi, A. S., Tiwari, S., Tripathi, R., & Kishor, N. (2010). Optimal number of clusters in wireless sensor networks: An FCM approach. In International conference on computer and communication technology (pp. 817–823). ICCCT. Raghuvanshi, A. S., Tiwari, S., Tripathi, R., & Kishor, N. (2010). Optimal number of clusters in wireless sensor networks: An FCM approach. In International conference on computer and communication technology (pp. 817–823). ICCCT.
15.
Zurück zum Zitat Selvakennedya, S., Sinnappanb, S., & Shangc, Y. (2007). A biologically-inspired clustering protocol for wireless sensor networks. Computer Communications, 30(14–15), 2786–2801.CrossRef Selvakennedya, S., Sinnappanb, S., & Shangc, Y. (2007). A biologically-inspired clustering protocol for wireless sensor networks. Computer Communications, 30(14–15), 2786–2801.CrossRef
16.
Zurück zum Zitat Islam, Alim Al, & A. B. M., Hyder, C.H., Kabir, H., & Naznin, M., (2010). Finding the optimal percentage of cluster heads from a new and complete mathematical model on LEACH. Wireless Sensor Network, 2, 129–140. Islam, Alim Al, & A. B. M., Hyder, C.H., Kabir, H., & Naznin, M., (2010). Finding the optimal percentage of cluster heads from a new and complete mathematical model on LEACH. Wireless Sensor Network, 2, 129–140.
17.
Zurück zum Zitat Yadav, S., & Kumar, V. (2017). Optimal clustering in underwater wireless sensor networks: Acoustic, EM and FSO communication compliant technique. IEEE Access, 5, 12761–12776.CrossRef Yadav, S., & Kumar, V. (2017). Optimal clustering in underwater wireless sensor networks: Acoustic, EM and FSO communication compliant technique. IEEE Access, 5, 12761–12776.CrossRef
18.
Zurück zum Zitat Wang, K., Gao, H., Xu, X., Jiang, J., & Dong, Yue. (2016). An energy-efficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks. IEEE Sensors Journal, 16(11), 4051–4062.CrossRef Wang, K., Gao, H., Xu, X., Jiang, J., & Dong, Yue. (2016). An energy-efficient reliable data transmission scheme for complex environmental monitoring in underwater acoustic sensor networks. IEEE Sensors Journal, 16(11), 4051–4062.CrossRef
19.
Zurück zum Zitat Amini, A., Vahdatpour, A., Dabiri, F., Noshadi, H., & Sarrafzadeh, M. (2011). Joint consideration of energy-efficiency andcoverage-preservation in microsensor networks. Wireless Communications and Mobile Computing, 11(6), 707–722.CrossRef Amini, A., Vahdatpour, A., Dabiri, F., Noshadi, H., & Sarrafzadeh, M. (2011). Joint consideration of energy-efficiency andcoverage-preservation in microsensor networks. Wireless Communications and Mobile Computing, 11(6), 707–722.CrossRef
20.
Zurück zum Zitat Durrani, M. Y., Tariq, R., Aadil, F., Maqsood, M., Nam, Y., & Muhammad, K. (2019). Adaptive node clustering technique for smart ocean under water sensor network (SOSNET). Sensors, 19(5), 1145.CrossRef Durrani, M. Y., Tariq, R., Aadil, F., Maqsood, M., Nam, Y., & Muhammad, K. (2019). Adaptive node clustering technique for smart ocean under water sensor network (SOSNET). Sensors, 19(5), 1145.CrossRef
21.
Zurück zum Zitat Wang, S., Nguyn, T. L. N., & Shin, Y. (2019). Energy-efficient clustering algorithm for magnetic induction-based underwater wireless sensor networks. IEEE Access, 7, 82027–82037.CrossRef Wang, S., Nguyn, T. L. N., & Shin, Y. (2019). Energy-efficient clustering algorithm for magnetic induction-based underwater wireless sensor networks. IEEE Access, 7, 82027–82037.CrossRef
22.
Zurück zum Zitat Ismat, N., Qureshi, R., & ul Imam, M. (2014). Efficient clustering for mobile wireless sensor networks. In IEEE 17th international multi topic conference (INMIC 2014) (pp. 110 – 114). IEEE. Ismat, N., Qureshi, R., & ul Imam, M. (2014). Efficient clustering for mobile wireless sensor networks. In IEEE 17th international multi topic conference (INMIC 2014) (pp. 110 – 114). IEEE.
23.
Zurück zum Zitat Kang, S. H., & Nguyen, T. (2012). Distance based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters, 16(9), 1396–1399.CrossRef Kang, S. H., & Nguyen, T. (2012). Distance based thresholds for cluster head selection in wireless sensor networks. IEEE Communications Letters, 16(9), 1396–1399.CrossRef
24.
Zurück zum Zitat Enam, R. N., Ismat, N., & Farooq, F. (2017). Connectivity and coverage based grid-cluster size calculation in wireless sensor networks. Wireless Personal Communications, 95(2), 429–443.CrossRef Enam, R. N., Ismat, N., & Farooq, F. (2017). Connectivity and coverage based grid-cluster size calculation in wireless sensor networks. Wireless Personal Communications, 95(2), 429–443.CrossRef
25.
Zurück zum Zitat Hindu, S. K., Hyder, W., Luque-Nieto, M., Poncela, J., & Otero, P. (2019). Self-organizing and scalable routing protocol (SOSRP) for underwater acoustic sensor networks. Sensors, 19, 3130.CrossRef Hindu, S. K., Hyder, W., Luque-Nieto, M., Poncela, J., & Otero, P. (2019). Self-organizing and scalable routing protocol (SOSRP) for underwater acoustic sensor networks. Sensors, 19, 3130.CrossRef
26.
Zurück zum Zitat Che, X., Wells, I., Dickers, G., Kear, P., & Gong, X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine, 48(12), 143–151.CrossRef Che, X., Wells, I., Dickers, G., Kear, P., & Gong, X. (2010). Re-evaluation of RF electromagnetic communication in underwater sensor networks. IEEE Communications Magazine, 48(12), 143–151.CrossRef
27.
Zurück zum Zitat Munasinghe, K., Aseeri, M., Almorqi, S., Hossain, M. F., Ahmad, Wali, & M, B., & Jamalipour, A., (2017). EM-based high speed wireless sensor networks for underwater surveillance and target tracking. Journal of Sensors,. https://doi.org/10.1155/2017/6731204. Munasinghe, K., Aseeri, M., Almorqi, S., Hossain, M. F., Ahmad, Wali, & M, B., & Jamalipour, A., (2017). EM-based high speed wireless sensor networks for underwater surveillance and target tracking. Journal of Sensors,. https://​doi.​org/​10.​1155/​2017/​6731204.
28.
Zurück zum Zitat Malajne, M., Benkič, C., & Planinsič, P. (2013). A new study regarding the comparison of calculated and measured RSSI values under different experimental conditions. Przeglad Elektrotechniczny, 89(11), 214–219. Malajne, M., Benkič, C., & Planinsič, P. (2013). A new study regarding the comparison of calculated and measured RSSI values under different experimental conditions. Przeglad Elektrotechniczny, 89(11), 214–219.
29.
Zurück zum Zitat Türkoral, T., Tamer, O., Yetiş, S., Inanç, E., & Çetin, L. (2017). Short range indoor distance estimation by using RSSI metric. IU-JEEE, 17(2), 3295–3302. Türkoral, T., Tamer, O., Yetiş, S., Inanç, E., & Çetin, L. (2017). Short range indoor distance estimation by using RSSI metric. IU-JEEE, 17(2), 3295–3302.
30.
Zurück zum Zitat Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Mobile Ad Hoc Networking Research, Trends and Applications, 2(5), 483–502. Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Mobile Ad Hoc Networking Research, Trends and Applications, 2(5), 483–502.
31.
Zurück zum Zitat Kim, D.-S., Chung, Y.-J., & Davies, V. (2006). Self-organization routing protocol supporting mobile nodes for wireless sensor network Computer and Computational Sciences, 2006. In IMSCCS’06. First international multi-symposiums (Vol. 2, pp. 622–626). Kim, D.-S., Chung, Y.-J., & Davies, V. (2006). Self-organization routing protocol supporting mobile nodes for wireless sensor network Computer and Computational Sciences, 2006. In IMSCCS’06. First international multi-symposiums (Vol. 2, pp. 622–626).
Metadaten
Titel
Cluster Estimation in Terrestrial and Underwater Sensor Networks
verfasst von
Najma Ismat
Rehan Qureshi
Rabia Noor Enam
Shaheena Noor
Muhammad Tahir
Publikationsdatum
29.10.2020
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 2/2021
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-020-07851-9

Weitere Artikel der Ausgabe 2/2021

Wireless Personal Communications 2/2021 Zur Ausgabe

Neuer Inhalt