Skip to main content

2016 | OriginalPaper | Buchkapitel

Cluster Sparsity Field for Hyperspectral Imagery Denoising

verfasst von : Lei Zhang, Wei Wei, Yanning Zhang, Chunhua Shen, Anton van den Hengel, Qinfeng Shi

Erschienen in: Computer Vision – ECCV 2016

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hyperspectral images (HSIs) can facilitate extensive computer vision applications with the extra spectra information. However, HSIs often suffer from noise corruption during the practical imaging procedure. Though it has been testified that intrinsic correlation across spectrum and spatial similarity (i.e., local similarity in locally smooth areas and non-local similarity among recurrent patterns) in HSIs are useful for denoising, how to fully exploit them together to obtain a good denoising model is seldom studied. In this study, we present an effective cluster sparsity field based HSIs denoising (CSFHD) method by exploiting those two characteristics simultaneously. Firstly, a novel Markov random field prior, named cluster sparsity field (CSF), is proposed for the sparse representation of an HSI. By grouping pixels into several clusters with spectral similarity, the CSF prior defines both a structured sparsity potential and a graph structure potential on each cluster to model the correlation across spectrum and spatial similarity in the HSI, respectively. Then, the CSF prior learning and the image denoising are unified into a variational framework for optimization, where all unknown variables are learned directly from the noisy observation. This guarantees to learn a data-dependent image model, thus producing satisfying denoising results. Plenty experiments on denoising synthetic and real noisy HSIs validated that the proposed CSFHD outperforms several state-of-the-art methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It should be noted that other clustering methods could also be used instead of the K-means.
 
2
Detailed derivation can be found in the supplementary material.
 
Literatur
1.
Zurück zum Zitat Wang, Z., Nasrabadi, N.M., Huang, T.S.: Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization. IEEE Trans. Geosci. Remote Sens. 53(3), 1161–1173 (2015)CrossRef Wang, Z., Nasrabadi, N.M., Huang, T.S.: Semisupervised hyperspectral classification using task-driven dictionary learning with Laplacian regularization. IEEE Trans. Geosci. Remote Sens. 53(3), 1161–1173 (2015)CrossRef
2.
Zurück zum Zitat Van Nguyen, H., Banerjee, A., Chellappa, R.: Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 44–51. IEEE (2010) Van Nguyen, H., Banerjee, A., Chellappa, R.: Tracking via object reflectance using a hyperspectral video camera. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp. 44–51. IEEE (2010)
3.
Zurück zum Zitat Akbari, H., Kosugi, Y., Kojima, K., Tanaka, N.: Detection and analysis of the intestinal Ischemia using visible and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng. 57(8), 2011–2017 (2010)CrossRef Akbari, H., Kosugi, Y., Kojima, K., Tanaka, N.: Detection and analysis of the intestinal Ischemia using visible and invisible hyperspectral imaging. IEEE Trans. Biomed. Eng. 57(8), 2011–2017 (2010)CrossRef
4.
Zurück zum Zitat Kerekes, J.P., Baum, J.E.: Full-spectrum spectral imaging system analytical model. IEEE Trans. Geosci. Remote Sens. 43(3), 571–580 (2005)CrossRef Kerekes, J.P., Baum, J.E.: Full-spectrum spectral imaging system analytical model. IEEE Trans. Geosci. Remote Sens. 43(3), 571–580 (2005)CrossRef
5.
Zurück zum Zitat Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 5(2), 138–142 (2008)CrossRef Renard, N., Bourennane, S., Blanc-Talon, J.: Denoising and dimensionality reduction using multilinear tools for hyperspectral images. IEEE Geosci. Remote Sens. Lett. 5(2), 138–142 (2008)CrossRef
6.
Zurück zum Zitat Liu, X., Bourennane, S., Fossati, C.: Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)CrossRef Liu, X., Bourennane, S., Fossati, C.: Denoising of hyperspectral images using the PARAFAC model and statistical performance analysis. IEEE Trans. Geosci. Remote Sens. 50(10), 3717–3724 (2012)CrossRef
7.
Zurück zum Zitat Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., Zhang, B.: Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2949–2956. IEEE (2014) Peng, Y., Meng, D., Xu, Z., Gao, C., Yang, Y., Zhang, B.: Decomposable nonlocal tensor dictionary learning for multispectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2949–2956. IEEE (2014)
8.
Zurück zum Zitat Othman, H., Qian, S.E.: Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 44(2), 397–408 (2006)CrossRef Othman, H., Qian, S.E.: Noise reduction of hyperspectral imagery using hybrid spatial-spectral derivative-domain wavelet shrinkage. IEEE Trans. Geosci. Remote Sens. 44(2), 397–408 (2006)CrossRef
9.
10.
Zurück zum Zitat Rasti, B., Sveinsson, J.R., Ulfarsson, M.O., Benediktsson, J.A.: Hyperspectral image denoising using a new linear model and sparse regularization. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460. IEEE (2013) Rasti, B., Sveinsson, J.R., Ulfarsson, M.O., Benediktsson, J.A.: Hyperspectral image denoising using a new linear model and sparse regularization. In: IEEE International Geoscience and Remote Sensing Symposium, pp. 457–460. IEEE (2013)
11.
Zurück zum Zitat Zhang, L., Wei, W., Zhang, Y., Tian, C., Li, F.: Reweighted Laplace prior based hyperspectral compressive sensing for unknown sparsity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2274–2281. IEEE (2015) Zhang, L., Wei, W., Zhang, Y., Tian, C., Li, F.: Reweighted Laplace prior based hyperspectral compressive sensing for unknown sparsity. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2274–2281. IEEE (2015)
12.
Zurück zum Zitat Qian, Y., Shen, Y., Ye, M., Wang, Q.: 3-D nonlocal means filter with noise estimation for hyperspectral imagery denoising. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 1345–1348. IEEE (2012) Qian, Y., Shen, Y., Ye, M., Wang, Q.: 3-D nonlocal means filter with noise estimation for hyperspectral imagery denoising. In: Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, pp. 1345–1348. IEEE (2012)
13.
Zurück zum Zitat Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)MathSciNetCrossRef Maggioni, M., Boracchi, G., Foi, A., Egiazarian, K.: Video denoising, deblocking, and enhancement through separable 4-D nonlocal spatiotemporal transforms. IEEE Trans. Image Process. 21(9), 3952–3966 (2012)MathSciNetCrossRef
14.
Zurück zum Zitat Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005) Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 60–65. IEEE (2005)
15.
Zurück zum Zitat Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRef Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)MathSciNetCrossRef
16.
Zurück zum Zitat Qian, Y., Ye, M.: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(2), 499–515 (2013)CrossRef Qian, Y., Ye, M.: Hyperspectral imagery restoration using nonlocal spectral-spatial structured sparse representation with noise estimation. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 6(2), 499–515 (2013)CrossRef
17.
Zurück zum Zitat Fu, Y., Lam, A., Sato, I., Sato, Y.: Adaptive spatial-spectral dictionary learning for hyperspectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision, pp. 343–351 (2015) Fu, Y., Lam, A., Sato, I., Sato, Y.: Adaptive spatial-spectral dictionary learning for hyperspectral image denoising. In: Proceedings of the IEEE Conference on Computer Vision, pp. 343–351 (2015)
18.
Zurück zum Zitat Baraniuk, R.G., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6), 959–971 (2010)CrossRef Baraniuk, R.G., Cevher, V., Wakin, M.B.: Low-dimensional models for dimensionality reduction and signal recovery: a geometric perspective. Proc. IEEE 98(6), 959–971 (2010)CrossRef
19.
Zurück zum Zitat Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014)CrossRef Camps-Valls, G., Tuia, D., Bruzzone, L., Atli Benediktsson, J.: Advances in hyperspectral image classification: earth monitoring with statistical learning methods. IEEE Signal Process. Mag. 31(1), 45–54 (2014)CrossRef
20.
Zurück zum Zitat Li, B., Zhang, Y., Lin, Z., Lu, H., Center, C.M.I.: Subspace clustering by mixture of Gaussian regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2094–2102 (2015) Li, B., Zhang, Y., Lin, Z., Lu, H., Center, C.M.I.: Subspace clustering by mixture of Gaussian regression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2094–2102 (2015)
21.
Zurück zum Zitat Lin, D., Fisher, J.: Manifold guided composite of Markov random fields for image modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2176–2183. IEEE (2012) Lin, D., Fisher, J.: Manifold guided composite of Markov random fields for image modeling. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2176–2183. IEEE (2012)
22.
Zurück zum Zitat Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781. IEEE (2014) Schmidt, U., Roth, S.: Shrinkage fields for effective image restoration. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2774–2781. IEEE (2014)
23.
Zurück zum Zitat Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)CrossRef Zhang, H., He, W., Zhang, L., Shen, H., Yuan, Q.: Hyperspectral image restoration using low-rank matrix recovery. IEEE Trans. Geosci. Remote Sens. 52(8), 4729–4743 (2014)CrossRef
24.
Zurück zum Zitat Dong, W., Zhang, D., Shi, G.: Centralized sparse representation for image restoration. In: Proceedings of the IEEE Conference on Computer Vision, pp. 1259–1266. IEEE (2011) Dong, W., Zhang, D., Shi, G.: Centralized sparse representation for image restoration. In: Proceedings of the IEEE Conference on Computer Vision, pp. 1259–1266. IEEE (2011)
25.
Zurück zum Zitat Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33786-4_26 CrossRef Lu, C.-Y., Min, H., Zhao, Z.-Q., Zhu, L., Huang, D.-S., Yan, S.: Robust and efficient subspace segmentation via least squares regression. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7578, pp. 347–360. Springer, Heidelberg (2012). doi:10.​1007/​978-3-642-33786-4_​26 CrossRef
26.
Zurück zum Zitat Wipf, D.P., Rao, B.D., Nagarajan, S.: Latent variable Bayesian models for promoting sparsity. IEEE Trans. Inf. Theory 57(9), 6236–6255 (2011)MathSciNetCrossRef Wipf, D.P., Rao, B.D., Nagarajan, S.: Latent variable Bayesian models for promoting sparsity. IEEE Trans. Inf. Theory 57(9), 6236–6255 (2011)MathSciNetCrossRef
27.
Zurück zum Zitat Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef Aharon, M., Elad, M., Bruckstein, A.: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)CrossRef
28.
Zurück zum Zitat Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)MathSciNetCrossRef Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Trans. Image Process. 19(9), 2241–2253 (2010)MathSciNetCrossRef
29.
Zurück zum Zitat Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)MathSciNetCrossRef Maggioni, M., Katkovnik, V., Egiazarian, K., Foi, A.: Nonlocal transform-domain filter for volumetric data denoising and reconstruction. IEEE Trans. Image Process. 22(1), 119–133 (2013)MathSciNetCrossRef
30.
Zurück zum Zitat Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 50(10), 3660–3677 (2012)CrossRef Yuan, Q., Zhang, L., Shen, H.: Hyperspectral image denoising employing a spectral-spatial adaptive total variation model. IEEE Trans. Geosci. Remote Sens. 50(10), 3660–3677 (2012)CrossRef
Metadaten
Titel
Cluster Sparsity Field for Hyperspectral Imagery Denoising
verfasst von
Lei Zhang
Wei Wei
Yanning Zhang
Chunhua Shen
Anton van den Hengel
Qinfeng Shi
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-46454-1_38

Premium Partner