Skip to main content
Erschienen in: Wireless Networks 6/2018

13.01.2017

Clustering for determining distributed antenna locations in wireless networks

verfasst von: Zekeriya Uykan, Riku Jäntti

Erschienen in: Wireless Networks | Ausgabe 6/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we extend the concept of the well-known input–output clustering (IOC) technique in Uykan et al. (IEEE Trans Neural Netw 11(4):851–858, 2000) to antenna location optimization problem in wireless networks and propose an input–output space clustering criterion (IOCC) to optimize the locations of the remote antenna units (RAUs) of generalized distributed antenna systems (DASs) under sum power constraint. In IOCC, the input space refers to RAU location space and output space refers to location specific ergodic capacity space for noise-limited environments. Given a location-specific arbitrary desired ergodic capacity function over a geographical area, we define the error as the difference between actual and desired ergodic capacity. Following the major steps of the well-known IOC technique in Uykan et al. (IEEE Trans Neural Netw 11(4):851–858, 2000) and Uykan (IEEE Trans Neural Netw 14(3):708–715, 2003) we show that for the DAS wireless networks: (1) the IOCC provides an upper bound to the cell averaged ergodic capacity error; and (2) the derived upper bound is equal to a weighted quantization error function in location-capacity space (input–output space) and (3) the upper bound can be made arbitrarily small by a clustering process increasing the number of RAUs for a feasible DAS. IOCC converts the RAU location problem into a codebook design problem in vector quantization in inputoutput space, and thus includes the Squared Distance Criterion (SDC) for DAS in Wang et al. (IEEE Commun Lett 13:315–317, 2009) (and other related papers) as a special case, which takes only the input space into account. Computer simulations confirm the theoretical findings and show that the IOCC outperforms the SDC for DAS in terms of the defined cell averaged “effective” ergodic capacity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Zhuang, H., Dai, L., Xiao, L., & Yao, Y. (2003). Spectral efficiency of distributed antenna system with random antenna layout. Electronics Letters, 39(6), 495–496.CrossRef Zhuang, H., Dai, L., Xiao, L., & Yao, Y. (2003). Spectral efficiency of distributed antenna system with random antenna layout. Electronics Letters, 39(6), 495–496.CrossRef
2.
Zurück zum Zitat Lee, S.-R., Moon, S.-H., Kim, J.-S., & Lee, I. (2012). capacity analysis of distributed antenna systems in a composite fading channel. IEEE Transactions on Wireless Communications, 11(3), 1076–1086.CrossRef Lee, S.-R., Moon, S.-H., Kim, J.-S., & Lee, I. (2012). capacity analysis of distributed antenna systems in a composite fading channel. IEEE Transactions on Wireless Communications, 11(3), 1076–1086.CrossRef
3.
Zurück zum Zitat Firouzabadi, S., & Goldsmith, A. (2011). Optimal placement of distributed antennas in cellular systems. In IEEE 12th international workshop on signal processing advances in wireless communication (SPAWC-2011) (pp. 461–465). Firouzabadi, S., & Goldsmith, A. (2011). Optimal placement of distributed antennas in cellular systems. In IEEE 12th international workshop on signal processing advances in wireless communication (SPAWC-2011) (pp. 461–465).
4.
Zurück zum Zitat Sherali, H., Pendyala, C., & Rappaport, T. (1996). Optimal location of transmitters for micro-cellular radio communication system design. IEEE Journal on Selected Areas in Communications, 14(4), 662–673.CrossRef Sherali, H., Pendyala, C., & Rappaport, T. (1996). Optimal location of transmitters for micro-cellular radio communication system design. IEEE Journal on Selected Areas in Communications, 14(4), 662–673.CrossRef
5.
Zurück zum Zitat Wright, M. (1998). Optimization methods for base station placement in wireless applications. In Proceedings of the vehicular technology conference, Ottawa, Canada, May 1998. Wright, M. (1998). Optimization methods for base station placement in wireless applications. In Proceedings of the vehicular technology conference, Ottawa, Canada, May 1998.
6.
Zurück zum Zitat Battiti, R., Brunato, M., & Delai, A. (2003). Optimal wireless access point placement for location-dependent services. Technical Report, University of Trento, Italy, October 2003. Battiti, R., Brunato, M., & Delai, A. (2003). Optimal wireless access point placement for location-dependent services. Technical Report, University of Trento, Italy, October 2003.
7.
Zurück zum Zitat Hurley, S. (2002). Planning effective cellular mobile radio networks. IEEE Transactions on Vehicular Technology, 51(2), 243–253.CrossRef Hurley, S. (2002). Planning effective cellular mobile radio networks. IEEE Transactions on Vehicular Technology, 51(2), 243–253.CrossRef
8.
Zurück zum Zitat Ngadiman, Y., Chew, Y. H., & Yeo, B. S. (2005). A new approach for finding optimal base stations configuration for CDMA systems jointly with uplink and downlink constraints. In Proceedings of the PIMRC 2005 (Vol. 4, pp. 2751–2755), September 2005. Ngadiman, Y., Chew, Y. H., & Yeo, B. S. (2005). A new approach for finding optimal base stations configuration for CDMA systems jointly with uplink and downlink constraints. In Proceedings of the PIMRC 2005 (Vol. 4, pp. 2751–2755), September 2005.
9.
Zurück zum Zitat Lieska, K., Laitinen, E., & Lahteenmaki, J. (1998). Radio coverage optimization with genetic algorithms. In Proceedings of the PIMRC1998 (Vol. 1, pp. 318–322), September 1998. Lieska, K., Laitinen, E., & Lahteenmaki, J. (1998). Radio coverage optimization with genetic algorithms. In Proceedings of the PIMRC1998 (Vol. 1, pp. 318–322), September 1998.
10.
Zurück zum Zitat Brigitte, J., & Sebbah, S. (2007). Multi-level tabu search for 3G network dimensioning. In Proceedings of the WCNC 2007 (IEEE Wireless Communications and Networking Conference) (pp. 4411–4416). Brigitte, J., & Sebbah, S. (2007). Multi-level tabu search for 3G network dimensioning. In Proceedings of the WCNC 2007 (IEEE Wireless Communications and Networking Conference) (pp. 4411–4416).
11.
Zurück zum Zitat Amaldi, E., Capone, A., & Malucelli, F. (2003). Planning UMTS base station location: optimization models with power control and algorithms. IEEE Transactions on Wireless Communications, 2(5), 939–952.CrossRef Amaldi, E., Capone, A., & Malucelli, F. (2003). Planning UMTS base station location: optimization models with power control and algorithms. IEEE Transactions on Wireless Communications, 2(5), 939–952.CrossRef
12.
Zurück zum Zitat Wang, X., Zhu, P., & Chen, M. (2009). Antenna location design for generalized distributed antenna systems. IEEE Communications Letters, 13, 315–317.CrossRef Wang, X., Zhu, P., & Chen, M. (2009). Antenna location design for generalized distributed antenna systems. IEEE Communications Letters, 13, 315–317.CrossRef
13.
Zurück zum Zitat Qian, Y., Chen, M., Wang, X., & Zhu, P. (2009). Antenna location design for distributed antenna systems with selective transmission. In International conference on WCSP (pp. 3893–3897), November 2009. Qian, Y., Chen, M., Wang, X., & Zhu, P. (2009). Antenna location design for distributed antenna systems with selective transmission. In International conference on WCSP (pp. 3893–3897), November 2009.
14.
Zurück zum Zitat Zhao, J. et al. (2012). Antenna location design for distributed-antenna based secondary systems. In 8th International conference on wireless communication, networking and mobile computing (WiCOM-2012) (pp. 1–4). Zhao, J. et al. (2012). Antenna location design for distributed-antenna based secondary systems. In 8th International conference on wireless communication, networking and mobile computing (WiCOM-2012) (pp. 1–4).
15.
Zurück zum Zitat Shen, Y., Tang, Y., Kong, T., & Shao, S. (2007). Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells. IEEE Communications Letters, 11(5), 387–389.CrossRef Shen, Y., Tang, Y., Kong, T., & Shao, S. (2007). Optimal antenna location for STBC-OFDM downlink with distributed transmit antennas in linear cells. IEEE Communications Letters, 11(5), 387–389.CrossRef
16.
Zurück zum Zitat Gan, J., Li, Y., Zhou, S. & Wang, J. (2007). On sum rate of multi-user distributed antenna system with circular antenna layout. In Proceedings of the IEEE 66th vehicular technology conference, (VTC-2007 Fall) (pp. 596–600). Gan, J., Li, Y., Zhou, S. & Wang, J. (2007). On sum rate of multi-user distributed antenna system with circular antenna layout. In Proceedings of the IEEE 66th vehicular technology conference, (VTC-2007 Fall) (pp. 596–600).
17.
Zurück zum Zitat Roh, W., & Paulraj, A. (2002). Outage performance of the distributed antenna systems in a composite fading channel. In Proceedings of the 2002 IEEE VTC (Vol. 3, pp. 1520–1524). Roh, W., & Paulraj, A. (2002). Outage performance of the distributed antenna systems in a composite fading channel. In Proceedings of the 2002 IEEE VTC (Vol. 3, pp. 1520–1524).
18.
Zurück zum Zitat Makhoul, J., Roucos, S., & Gish, H. (1985). Vector quantization in speech coding. Proceedings of the IEEE, 73, 1551–1587.CrossRef Makhoul, J., Roucos, S., & Gish, H. (1985). Vector quantization in speech coding. Proceedings of the IEEE, 73, 1551–1587.CrossRef
19.
Zurück zum Zitat Park, E. & Lee, I. (2011). Antenna placement for downlink distributed antenna systems with selection transmission. In Proceedings of the 2011 IEEE 73rd VTC-Spring 2011 (pp. 1–5), May 2011. Park, E. & Lee, I. (2011). Antenna placement for downlink distributed antenna systems with selection transmission. In Proceedings of the 2011 IEEE 73rd VTC-Spring 2011 (pp. 1–5), May 2011.
20.
Zurück zum Zitat Lee, C., Park, E., & Lee, I. (2012). Antenna placement designs for distributed antenna systems with multiple-antenna ports. In Proceedings of the IEEE vehicular technology conference (VTC Fall-2012) (pp. 1–5). Lee, C., Park, E., & Lee, I. (2012). Antenna placement designs for distributed antenna systems with multiple-antenna ports. In Proceedings of the IEEE vehicular technology conference (VTC Fall-2012) (pp. 1–5).
21.
Zurück zum Zitat Park, E., Lee, S.-R., & Lee, I. (2012). Antenna placement optimization for distributed antenna systems. IEEE Transactions on Wireless Communications, 11(7), 2468–2477.CrossRef Park, E., Lee, S.-R., & Lee, I. (2012). Antenna placement optimization for distributed antenna systems. IEEE Transactions on Wireless Communications, 11(7), 2468–2477.CrossRef
22.
Zurück zum Zitat Zhang, H., Liu, H., et al. (2015). A practical semi-dynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Transactions on Vehicular Technology, 64(9), 4372–4377.CrossRef Zhang, H., Liu, H., et al. (2015). A practical semi-dynamic clustering scheme using affinity propagation in cooperative picocells. IEEE Transactions on Vehicular Technology, 64(9), 4372–4377.CrossRef
23.
Zurück zum Zitat Uykan, Z., Güzelis, C., Celebi, E., & Koivo, H. N. (2000). Analysis of input-output clustering for determining centers of RBFNs. IEEE Transactions on Neural Networks, 11(4), 851–858.CrossRef Uykan, Z., Güzelis, C., Celebi, E., & Koivo, H. N. (2000). Analysis of input-output clustering for determining centers of RBFNs. IEEE Transactions on Neural Networks, 11(4), 851–858.CrossRef
24.
Zurück zum Zitat Uykan, Z. (2003). Clustering-based algorithms for single-hidden layer sigmoid perceptron. IEEE Transactions on Neural Networks, 14(3), 708–715.CrossRef Uykan, Z. (2003). Clustering-based algorithms for single-hidden layer sigmoid perceptron. IEEE Transactions on Neural Networks, 14(3), 708–715.CrossRef
25.
Zurück zum Zitat Lo, T. K. Y. (1999). Maximum ratio transmission. IEEE Transaction on Communications, 47, 1458–1461.CrossRef Lo, T. K. Y. (1999). Maximum ratio transmission. IEEE Transaction on Communications, 47, 1458–1461.CrossRef
26.
Zurück zum Zitat Viterbi, A. J. (1995). CDMA: Principles of spread spectrum communication. Reading, MA: Addison-Wesley.MATH Viterbi, A. J. (1995). CDMA: Principles of spread spectrum communication. Reading, MA: Addison-Wesley.MATH
Metadaten
Titel
Clustering for determining distributed antenna locations in wireless networks
verfasst von
Zekeriya Uykan
Riku Jäntti
Publikationsdatum
13.01.2017
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2018
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1437-2

Weitere Artikel der Ausgabe 6/2018

Wireless Networks 6/2018 Zur Ausgabe

Neuer Inhalt