Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 2/2013

01.08.2013 | Industrial Application

CO 2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm

verfasst von: Charles V. Camp, Andrew Assadollahi

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A procedure is developed for the design of reinforced concrete footings subjected to vertical, concentric column loads that satisfies both structural requirements and geotechnical limit states using a hybrid Big Bang-Big Crunch (BB-BC) algorithm. The objectives of the optimization are to minimize cost, CO\(_{2}\) emissions, and the weighted aggregate of cost and CO\(_{2}\). Cost is based on the materials and labor required for the construction of reinforced concrete footings and CO\(_{2}\) emissions are associated with the extraction and transportation of raw materials; processing, manufacturing, and fabrication of products; and the emissions of equipment involved in the construction process. The cost and CO\(_{2}\) objective functions are based on weighted values and are subjected to bending moment, shear force, and reinforcing details specified by the American Concrete Institute (ACI 318-11), as well as soil bearing and displacement limits. Two sets of design examples are presented: low-cost and low-CO\(_{2}\) emission designs based solely on geotechnical considerations; and designs that also satisfy the ACI 318-11 code for structural concrete. A multi-objective optimization is applied to cost and CO\(_{2}\) emissions. Results are presented that demonstrate the effects of applied load, soil properties, allowable settlement, and concrete strength on designs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat American Concrete Institute (1991) Standard practice for selecting proportions for normal, heavyweight and mass concrete. ACI 211.1–91 American Concrete Institute (1991) Standard practice for selecting proportions for normal, heavyweight and mass concrete. ACI 211.1–91
Zurück zum Zitat American Concrete Institute (2011) Building code requirements for structural concrete and commentary. ACI 318–11 American Concrete Institute (2011) Building code requirements for structural concrete and commentary. ACI 318–11
Zurück zum Zitat American Society of Civil Engineers (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7–10 American Society of Civil Engineers (2010) Minimum design loads for buildings and other structures. ASCE/SEI 7–10
Zurück zum Zitat Camp CV (2007) Design of space trusses using big-bang-big crunch optimization. J Struct Eng 133(7):999–1007CrossRef Camp CV (2007) Design of space trusses using big-bang-big crunch optimization. J Struct Eng 133(7):999–1007CrossRef
Zurück zum Zitat Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng 130(5):741–751CrossRef Camp CV, Bichon BJ (2004) Design of space trusses using ant colony optimization. J Struct Eng 130(5):741–751CrossRef
Zurück zum Zitat Camp CV, Akin A (2012) Design of retaining walls using big bang-big crunch optimization. J Struct Eng 138(3):438–448CrossRef Camp CV, Akin A (2012) Design of retaining walls using big bang-big crunch optimization. J Struct Eng 138(3):438–448CrossRef
Zurück zum Zitat Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng Struct 48:363–372CrossRef Camp CV, Huq F (2013) CO2 and cost optimization of reinforced concrete frames using a big bang-big crunch algorithm. Eng Struct 48:363–372CrossRef
Zurück zum Zitat Camp CV, Pezeshk S, Hansson H (2003) Flexural design of reinforced concrete frames using a genetic algorithm. J Struct Eng 129(1):1–11CrossRef Camp CV, Pezeshk S, Hansson H (2003) Flexural design of reinforced concrete frames using a genetic algorithm. J Struct Eng 129(1):1–11CrossRef
Zurück zum Zitat Coello CA (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1:269–308 Coello CA (1999) A comprehensive survey of evolutionary-based multiobjective optimization techniques. Knowl Inf Syst 1:269–308
Zurück zum Zitat Coello CA, Christiansen AD, Santos F (1997) A simple genetic algorithm for the design of reinforced concrete beams. Eng Comput 13:185–196CrossRef Coello CA, Christiansen AD, Santos F (1997) A simple genetic algorithm for the design of reinforced concrete beams. Eng Comput 13:185–196CrossRef
Zurück zum Zitat Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37:106–111CrossRef Erol OK, Eksin I (2006) A new optimization method: big bang-big crunch. Adv Eng Softw 37:106–111CrossRef
Zurück zum Zitat Govindaraj V, Ramasamy JV (2005) Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput Struct 84:34–48CrossRef Govindaraj V, Ramasamy JV (2005) Optimum detailed design of reinforced concrete continuous beams using genetic algorithms. Comput Struct 84:34–48CrossRef
Zurück zum Zitat Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140CrossRef Kaveh A, Talatahari S (2009) Size optimization of space trusses using big bang-big crunch algorithm. Comput Struct 87:1129–1140CrossRef
Zurück zum Zitat Kaveh A, Talatahari S (2010) A discrete big bang-big crunch algorithm for optimal design of skeletal structures. Asian J Civil Eng 11(1):103–122 Kaveh A, Talatahari S (2010) A discrete big bang-big crunch algorithm for optimal design of skeletal structures. Asian J Civil Eng 11(1):103–122
Zurück zum Zitat Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2011) Modified particle swarm optimization for optimum design of spread footing and retaining wall. J Zheijiang Univ-Sci A (Appl Phys Eng) 12(6):415–426CrossRef Khajehzadeh M, Taha MR, El-Shafie A, Eslami M (2011) Modified particle swarm optimization for optimum design of spread footing and retaining wall. J Zheijiang Univ-Sci A (Appl Phys Eng) 12(6):415–426CrossRef
Zurück zum Zitat Kwak HG, Kim J (2008) Optimum design of reinforced concrete plane frames based on predetermined section database. Comput Aided Des 40:396–408CrossRef Kwak HG, Kim J (2008) Optimum design of reinforced concrete plane frames based on predetermined section database. Comput Aided Des 40:396–408CrossRef
Zurück zum Zitat Kwak HG, Kim J (2009) An integrated genetic algorithm complemented with direct search for optimum design of RC frames. Comput Aided Des 41:490–500CrossRef Kwak HG, Kim J (2009) An integrated genetic algorithm complemented with direct search for optimum design of RC frames. Comput Aided Des 41:490–500CrossRef
Zurück zum Zitat Lee CL, Ahn J (2003) Flexural design of reinforced concrete frames by genetic algorithm. J Struct Eng 129(6):762–774CrossRef Lee CL, Ahn J (2003) Flexural design of reinforced concrete frames by genetic algorithm. J Struct Eng 129(6):762–774CrossRef
Zurück zum Zitat Lepš M, Šejnoha M (2003) New approach to optimization of reinforced concrete beams. Comput Struct 81:1957–1966CrossRef Lepš M, Šejnoha M (2003) New approach to optimization of reinforced concrete beams. Comput Struct 81:1957–1966CrossRef
Zurück zum Zitat Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26:369–395MathSciNetMATHCrossRef Marler RT, Arora JS (2004) Survey of multi-objective optimization methods for engineering. Struct Multidisc Optim 26:369–395MathSciNetMATHCrossRef
Zurück zum Zitat Mehta PK (2002) Greening of the concrete industry for sustainable development. In: Concrete International, July 23–28 Mehta PK (2002) Greening of the concrete industry for sustainable development. In: Concrete International, July 23–28
Zurück zum Zitat Mehta PK, Merman H (2009) Tools for reducing carbon emissions due to cement consumption. In: Structure, January 11–15 Mehta PK, Merman H (2009) Tools for reducing carbon emissions due to cement consumption. In: Structure, January 11–15
Zurück zum Zitat Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: ACM symposium on applied computing SAC, Madrid, Spain, pp 603–607, March 10–14 Parsopoulos KE, Vrahatis MN (2002) Particle swarm optimization method in multiobjective problems. In: ACM symposium on applied computing SAC, Madrid, Spain, pp 603–607, March 10–14
Zurück zum Zitat Paya I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of concrete building frames by simulated annealing. Comput-Aided Civil Infrastruct Eng 23(8):596–610CrossRef Paya I, Yepes V, González-Vidosa F, Hospitaler A (2008) Multiobjective optimization of concrete building frames by simulated annealing. Comput-Aided Civil Infrastruct Eng 23(8):596–610CrossRef
Zurück zum Zitat Paya-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-optimization of reinforced concrete frames by simulated annealing. Eng Struct 31:1501–1508CrossRef Paya-Zaforteza I, Yepes V, Hospitaler A, González-Vidosa F (2009) CO2-optimization of reinforced concrete frames by simulated annealing. Eng Struct 31:1501–1508CrossRef
Zurück zum Zitat Perea C, Alcala J, Yepes V, González-Vidosa F, Hospitaler A (2008) Design of reinforced concrete bridge frames by heuristic optimization. Adv Eng Softw 39:676–688CrossRef Perea C, Alcala J, Yepes V, González-Vidosa F, Hospitaler A (2008) Design of reinforced concrete bridge frames by heuristic optimization. Adv Eng Softw 39:676–688CrossRef
Zurück zum Zitat Poulos HG, Davis EH (1974) Elastic solutions for soil and rock mechanics. Wiley, New York Poulos HG, Davis EH (1974) Elastic solutions for soil and rock mechanics. Wiley, New York
Zurück zum Zitat Rafiqa MY, Southcombea C (1998) Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput Struct 69:443–457CrossRef Rafiqa MY, Southcombea C (1998) Genetic algorithms in optimal design and detailing of reinforced concrete biaxial columns supported by a declarative approach for capacity checking. Comput Struct 69:443–457CrossRef
Zurück zum Zitat Rajeev S, Krishnamoorthy CS (1998) Genetic algorithms-based methodology for design optimization of reinforced concrete frames. Computer-Aided Civil Infrastruct Eng 13:63–74CrossRef Rajeev S, Krishnamoorthy CS (1998) Genetic algorithms-based methodology for design optimization of reinforced concrete frames. Computer-Aided Civil Infrastruct Eng 13:63–74CrossRef
Zurück zum Zitat Sahaba MG, Ashourb AF, Toropovc VV (2004) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27:313–322CrossRef Sahaba MG, Ashourb AF, Toropovc VV (2004) Cost optimisation of reinforced concrete flat slab buildings. Eng Struct 27:313–322CrossRef
Zurück zum Zitat Sarma KC, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng 124(5):570–578CrossRef Sarma KC, Adeli H (1998) Cost optimization of concrete structures. J Struct Eng 124(5):570–578CrossRef
Zurück zum Zitat Suman (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 28:1849–1871CrossRef Suman (2004) Study of simulated annealing based algorithms for multiobjective optimization of a constrained problem. Comput Chem Eng 28:1849–1871CrossRef
Zurück zum Zitat United Nations Intergovernmental Panel on Climate Change (2007). In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate Change (2007): Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland United Nations Intergovernmental Panel on Climate Change (2007). In: Core Writing Team, Pachauri RK, Reisinger A (eds) Climate Change (2007): Synthesis report. Contribution of working groups I, II and III to the fourth assessment report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland
Zurück zum Zitat Vesic AS (1975) Bearing capacity of shallow foundations. In: Winterkorn H, Fang HY (eds) Foundation engineering handbook, Chap 3. Van Nostrand Reinhold, New York Vesic AS (1975) Bearing capacity of shallow foundations. In: Winterkorn H, Fang HY (eds) Foundation engineering handbook, Chap 3. Van Nostrand Reinhold, New York
Zurück zum Zitat Villalba P, Alcalá J, Yepes V, González-Vidosa F (2010) CO2 optimization of reinforced concrete cantilever retaining walls. In: 2nd International Conference on Engineering Optimization, September 6–9. Lisbon, Portugal Villalba P, Alcalá J, Yepes V, González-Vidosa F (2010) CO2 optimization of reinforced concrete cantilever retaining walls. In: 2nd International Conference on Engineering Optimization, September 6–9. Lisbon, Portugal
Zurück zum Zitat Wang Y (2009) Reliability-based economic design optimization of spread foundations. J Struct Eng 135(7):954–959 Wang Y (2009) Reliability-based economic design optimization of spread foundations. J Struct Eng 135(7):954–959
Zurück zum Zitat Wang Y, Kulhawy FH (2008) Economic design optimization of foundations. J Geotech Geoenviron 134(8):1097–1105CrossRef Wang Y, Kulhawy FH (2008) Economic design optimization of foundations. J Geotech Geoenviron 134(8):1097–1105CrossRef
Zurück zum Zitat Whitman RV, Richart FE (1967) Dynamic procedures for dynamically loaded foundations. J Soil Mech Found Div 93(SM6):169–193 Whitman RV, Richart FE (1967) Dynamic procedures for dynamically loaded foundations. J Soil Mech Found Div 93(SM6):169–193
Zurück zum Zitat Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2 optimization design of reinforced concrete cantilever retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386CrossRef Yepes V, González-Vidosa F, Alcalá J, Villalba P (2012) CO2 optimization design of reinforced concrete cantilever retaining walls based on a VNS-threshold acceptance strategy. J Comput Civ Eng 26(3):378–386CrossRef
Metadaten
Titel
CO 2 and cost optimization of reinforced concrete footings using a hybrid big bang-big crunch algorithm
verfasst von
Charles V. Camp
Andrew Assadollahi
Publikationsdatum
01.08.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 2/2013
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-013-0897-6

Weitere Artikel der Ausgabe 2/2013

Structural and Multidisciplinary Optimization 2/2013 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.