Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2019

31.01.2019 | Original Paper: Sol-gel and hybrid materials for catalytic, photoelectrochemical and sensor applications

CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method

verfasst von: Dawei Chen, Dongsen Mao, Guo Wang, Xiaoming Guo, Jun Yu

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A series of CuO-ZnO-ZrO2 catalysts were synthesized by the polymeric precursor method, and characterized by X-ray diffraction (XRD), N2 physisorption, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), temperature-programmed reduction with H2 (H2-TPR), reactive N2O adsorption, and adsorption of H2 and CO2 followed by temperature-programmed desorption (H2-TPD, CO2-TPD) techniques. The catalytic performances of all samples for methanol synthesis from hydrogenation of CO2 were evaluated under the experimental condition of 240 °C, 3 MPa, and SV = 1800–6000 mL·gcat−1·h−1. The effects of the calcination temperature on physicochemical and catalytic properties of all catalysts were investigated. The results indicate that the catalyst prepared under 400 °C calcination possesses the smallest Cu crystallites, largest metallic Cu surface area, and thus exhibits the highest methanol yield.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2013) Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl Catal A 468:442–452CrossRef Gao P, Li F, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2013) Influence of modifier (Mn, La, Ce, Zr and Y) on the performance of Cu/Zn/Al catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol. Appl Catal A 468:442–452CrossRef
2.
Zurück zum Zitat Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F (2009) Basic evidences for methanol-synthesis catalyst design. Catal Today 143:80–85CrossRef Arena F, Italiano G, Barbera K, Bonura G, Spadaro L, Frusteri F (2009) Basic evidences for methanol-synthesis catalyst design. Catal Today 143:80–85CrossRef
3.
Zurück zum Zitat Jones JP, Surya Prakash GK, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466CrossRef Jones JP, Surya Prakash GK, Olah GA (2014) Electrochemical CO2 reduction: recent advances and current trends. Isr J Chem 54:1451–1466CrossRef
4.
Zurück zum Zitat Olah GA, Goeppert A, Prakash GKS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRef Olah GA, Goeppert A, Prakash GKS (2008) Chemical recycling of carbon dioxide to methanol and dimethyl ether: from greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons. J Org Chem 74:487–498CrossRef
5.
Zurück zum Zitat Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107CrossRef Olah GA (2013) Towards oil independence through renewable methanol chemistry. Angew Chem Int Ed 52:104–107CrossRef
6.
Zurück zum Zitat Karelovic A, Ruiz P (2015) The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catal Sci Technol 5:869–881CrossRef Karelovic A, Ruiz P (2015) The role of copper particle size in low pressure methanol synthesis via CO2 hydrogenation over Cu/ZnO catalysts. Catal Sci Technol 5:869–881CrossRef
7.
Zurück zum Zitat Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567CrossRef Jadhav SG, Vaidya PD, Bhanage BM, Joshi JB (2014) Catalytic carbon dioxide hydrogenation to methanol: a review of recent studies. Chem Eng Res Des 92:2557–2567CrossRef
8.
Zurück zum Zitat Li C, Yuan X, Fujimoto K (2014) Development of highly stable catalyst for methanol synthesis from carbon dioxide. Appl Catal A 469:306–311CrossRef Li C, Yuan X, Fujimoto K (2014) Development of highly stable catalyst for methanol synthesis from carbon dioxide. Appl Catal A 469:306–311CrossRef
9.
Zurück zum Zitat Chang K, Wang T, Chen JG (2017) Hydrogenation of CO2 to methanol over CuCeTiOx catalysts. Appl Catal B 206:704–711CrossRef Chang K, Wang T, Chen JG (2017) Hydrogenation of CO2 to methanol over CuCeTiOx catalysts. Appl Catal B 206:704–711CrossRef
10.
Zurück zum Zitat Natesakhawat S, Ohodnicki Jr PR, Howard BH, Lekse JW, Baltrus JP, Matranga C (2013) Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide. Top Catal 56:1752–1763CrossRef Natesakhawat S, Ohodnicki Jr PR, Howard BH, Lekse JW, Baltrus JP, Matranga C (2013) Adsorption and deactivation characteristics of Cu/ZnO-based catalysts for methanol synthesis from carbon dioxide. Top Catal 56:1752–1763CrossRef
11.
Zurück zum Zitat Frei E, Schaadt A, Ludwig T, Hillebrecht H, Krossing I (2014) The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2. ChemCatChem 6:1721–1730CrossRef Frei E, Schaadt A, Ludwig T, Hillebrecht H, Krossing I (2014) The influence of the precipitation/ageing temperature on a Cu/ZnO/ZrO2 catalyst for methanol synthesis from H2 and CO2. ChemCatChem 6:1721–1730CrossRef
12.
Zurück zum Zitat Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185–194CrossRef Arena F, Barbera K, Italiano G, Bonura G, Spadaro L, Frusteri F (2007) Synthesis, characterization and activity pattern of Cu-ZnO/ZrO2 catalysts in the hydrogenation of carbon dioxide to methanol. J Catal 249:185–194CrossRef
13.
Zurück zum Zitat Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2010) Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271:178–185CrossRef Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2010) Glycine-nitrate combustion synthesis of CuO-ZnO-ZrO2 catalysts for methanol synthesis from CO2 hydrogenation. J Catal 271:178–185CrossRef
14.
Zurück zum Zitat Li L, Mao DS, Yu J, Guo XM (2015) Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J Power Sour 279:394–404CrossRef Li L, Mao DS, Yu J, Guo XM (2015) Highly selective hydrogenation of CO2 to methanol over CuO-ZnO-ZrO2 catalysts prepared by a surfactant-assisted co-precipitation method. J Power Sour 279:394–404CrossRef
15.
Zurück zum Zitat Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J (2016) Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Convers Manag 118:21–31CrossRef Witoon T, Kachaban N, Donphai W, Kidkhunthod P, Faungnawakij K, Chareonpanich M, Limtrakul J (2016) Tuning of catalytic CO2 hydrogenation by changing composition of CuO–ZnO–ZrO2 catalysts. Energy Convers Manag 118:21–31CrossRef
16.
Zurück zum Zitat Angelo L, Kobl K, Tejada LMM, Zimmermann Y, Parkhomenko K, Roger A (2015) Study of CuZnMOx oxides (M = Al, Zr,Ce,CeZr) for the catalytic hydrogenation of CO2 into methanol. C R Chim 18:250–260CrossRef Angelo L, Kobl K, Tejada LMM, Zimmermann Y, Parkhomenko K, Roger A (2015) Study of CuZnMOx oxides (M = Al, Zr,Ce,CeZr) for the catalytic hydrogenation of CO2 into methanol. C R Chim 18:250–260CrossRef
17.
Zurück zum Zitat Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid–state reaction. Catal Commun 12:1095–1098CrossRef Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) CO2 hydrogenation to methanol over Cu/ZnO/ZrO2 catalysts prepared via a route of solid–state reaction. Catal Commun 12:1095–1098CrossRef
18.
Zurück zum Zitat Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2009) Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catal Commun 10:1661–1664CrossRef Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2009) Combustion synthesis of CuO-ZnO-ZrO2 catalysts for the hydrogenation of carbon dioxide to methanol. Catal Commun 10:1661–1664CrossRef
19.
Zurück zum Zitat Vijayakumar M, Inaguma Y, Mashiko W, Crosnier MPL, Claude B (2004) Synthesis of fine powders of Li3xLa2/3-xTiO3 perovskite by a polymerizable precursor method. Chem Mater 16:2719–2724CrossRef Vijayakumar M, Inaguma Y, Mashiko W, Crosnier MPL, Claude B (2004) Synthesis of fine powders of Li3xLa2/3-xTiO3 perovskite by a polymerizable precursor method. Chem Mater 16:2719–2724CrossRef
20.
Zurück zum Zitat Farhadi-Khouzani M, Fereshteh Z, Loghman-Estarki MR, Razavi RS (2012) Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization. J Sol-Gel Sci Technol 64:193–199CrossRef Farhadi-Khouzani M, Fereshteh Z, Loghman-Estarki MR, Razavi RS (2012) Different morphologies of ZnO nanostructures via polymeric complex sol–gel method: synthesis and characterization. J Sol-Gel Sci Technol 64:193–199CrossRef
21.
Zurück zum Zitat Dang HT, Le TK (2016) Precursor chain length dependence of polymeric precursor method for the preparation of magnetic Fenton-like CuFe2O4-based catalysts. J Sol-Gel Sci Technol 80:160–167CrossRef Dang HT, Le TK (2016) Precursor chain length dependence of polymeric precursor method for the preparation of magnetic Fenton-like CuFe2O4-based catalysts. J Sol-Gel Sci Technol 80:160–167CrossRef
22.
Zurück zum Zitat Giraldi TR, Arruda CC, da Costa GM, Longo E, Ribeiro C (2009) Heterogeneous Fenton reactants: a study of the behavior of iron oxide nanoparticles obtained by the polymeric precursor method. J Sol-Gel Sci Technol 52:299–303CrossRef Giraldi TR, Arruda CC, da Costa GM, Longo E, Ribeiro C (2009) Heterogeneous Fenton reactants: a study of the behavior of iron oxide nanoparticles obtained by the polymeric precursor method. J Sol-Gel Sci Technol 52:299–303CrossRef
23.
Zurück zum Zitat Choudhary N, Verma MK, Sharma ND, Sharma S, Singh D (2018) Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties. J Sol-Gel Sci Technol 86:73–82CrossRef Choudhary N, Verma MK, Sharma ND, Sharma S, Singh D (2018) Superparamagnetic nanosized perovskite oxide La0.5Sr0.5Ti0.5Fe0.5O3 synthesized by modified polymeric precursor method: effect of calcination temperature on structural and magnetic properties. J Sol-Gel Sci Technol 86:73–82CrossRef
24.
Zurück zum Zitat Guo XM, Mao DS, Lu GZ, Wang S (2013) The influence of ZnO on the performance of CuO-ZrO2 for methanol synthesis via CO2 hydrogenation. J Shanghai Inst Technol (Nat Sci) 13:259–262 Guo XM, Mao DS, Lu GZ, Wang S (2013) The influence of ZnO on the performance of CuO-ZrO2 for methanol synthesis via CO2 hydrogenation. J Shanghai Inst Technol (Nat Sci) 13:259–262
25.
Zurück zum Zitat Huang C, Mao DS, Guo XM, Yu J (2017) Microwave-assisted hydrothermal synthesis of CuO-ZnO-ZrO2 as catalyst for direct synthesis of methanol by carbon dioxide hydrogenation. Energy Technol 5:2100–2107CrossRef Huang C, Mao DS, Guo XM, Yu J (2017) Microwave-assisted hydrothermal synthesis of CuO-ZnO-ZrO2 as catalyst for direct synthesis of methanol by carbon dioxide hydrogenation. Energy Technol 5:2100–2107CrossRef
26.
Zurück zum Zitat Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl Catal B 152-153:152–161CrossRef Bonura G, Cordaro M, Cannilla C, Arena F, Frusteri F (2014) The changing nature of the active site of Cu-Zn-Zr catalysts for the CO2 hydrogenation reaction to methanol. Appl Catal B 152-153:152–161CrossRef
27.
Zurück zum Zitat Batyrev ED, Van den Heuvel JC, Beckers J, Jansen WPA, Castricum HL (2005) The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. J Catal 229:136–143CrossRef Batyrev ED, Van den Heuvel JC, Beckers J, Jansen WPA, Castricum HL (2005) The effect of the reduction temperature on the structure of Cu/ZnO/SiO2 catalysts for methanol synthesis. J Catal 229:136–143CrossRef
28.
Zurück zum Zitat Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N (2001) Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2—effects of the calcination and reduction conditions on the catalytic performance. Appl Catal A 207:121–128CrossRef Fujita S, Moribe S, Kanamori Y, Kakudate M, Takezawa N (2001) Preparation of a coprecipitated Cu/ZnO catalyst for the methanol synthesis from CO2—effects of the calcination and reduction conditions on the catalytic performance. Appl Catal A 207:121–128CrossRef
29.
Zurück zum Zitat Chen DW, Mao DS, Guo XM, Yu J (2018) CO2 hydrogenation to methanol over CuO–ZnO–TiO2–ZrO2: a comparison of catalysts prepared by sol-gel, solid-state reaction and solution–combustion. J Sol-Gel Sci Technol 86:719–730CrossRef Chen DW, Mao DS, Guo XM, Yu J (2018) CO2 hydrogenation to methanol over CuO–ZnO–TiO2–ZrO2: a comparison of catalysts prepared by sol-gel, solid-state reaction and solution–combustion. J Sol-Gel Sci Technol 86:719–730CrossRef
30.
Zurück zum Zitat Han YT, Yang PC, Meng XH, Yan JS, Wang HY (2013) Preparation and characterization of hierarchical porous TiO2/γ-Al2O3 composite support. Acta Pet Sin 29:785–790 Han YT, Yang PC, Meng XH, Yan JS, Wang HY (2013) Preparation and characterization of hierarchical porous TiO2/γ-Al2O3 composite support. Acta Pet Sin 29:785–790
31.
Zurück zum Zitat Bagherzadeh SB, Haghighi M, Rahemi N (2017) Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading. Energy Convers Manag 134:88–102CrossRef Bagherzadeh SB, Haghighi M, Rahemi N (2017) Novel oxalate gel coprecipitation synthesis of ZrO2-CeO2-promoted CuO-ZnO-Al2O3 nanocatalyst for fuel cell-grade hydrogen production from methanol: Influence of ceria-zirconia loading. Energy Convers Manag 134:88–102CrossRef
32.
Zurück zum Zitat Ajamein H, Haghighi M, Shokrani R, Abdollahifar M (2016) On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: effect of precursor, ultrasound irradiation and urea/nitrate ratio. J Mol Catal A 421:222–234CrossRef Ajamein H, Haghighi M, Shokrani R, Abdollahifar M (2016) On the solution combustion synthesis of copper based nanocatalysts for steam methanol reforming: effect of precursor, ultrasound irradiation and urea/nitrate ratio. J Mol Catal A 421:222–234CrossRef
33.
Zurück zum Zitat Amadine O, Essamlali Y, Fihri A, Larzek M (2017) Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Adv 7:12586–12597CrossRef Amadine O, Essamlali Y, Fihri A, Larzek M (2017) Effect of calcination temperature on the structure and catalytic performance of copper-ceria mixed oxide catalysts in phenol hydroxylation. RSC Adv 7:12586–12597CrossRef
34.
Zurück zum Zitat Xiao J, Mao DS, Guo XM, Yu J (2015) Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol. Appl Surf Sci 338:146–153CrossRef Xiao J, Mao DS, Guo XM, Yu J (2015) Effect of TiO2, ZrO2, and TiO2-ZrO2 on the performance of CuO-ZnO catalyst for CO2 hydrogenation to methanol. Appl Surf Sci 338:146–153CrossRef
35.
Zurück zum Zitat Wang G, Mao DS, Guo XM, Yu J (2018) Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification. Appl Surf Sci 456:403–409CrossRef Wang G, Mao DS, Guo XM, Yu J (2018) Enhanced performance of the CuO-ZnO-ZrO2 catalyst for CO2 hydrogenation to methanol by WO3 modification. Appl Surf Sci 456:403–409CrossRef
36.
Zurück zum Zitat Chalorngtham J, Witoon T, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2016) CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem Eng J 293:327–336CrossRef Chalorngtham J, Witoon T, Dumrongbunditkul P, Chareonpanich M, Limtrakul J (2016) CO2 hydrogenation to methanol over Cu/ZrO2 catalysts: effects of zirconia phases. Chem Eng J 293:327–336CrossRef
37.
Zurück zum Zitat Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki Jr PR, Howard BH, Deng XY, Matranga C (2012) Active sites and structure–activity relationships of copper–based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal 2:1667–1676CrossRef Natesakhawat S, Lekse JW, Baltrus JP, Ohodnicki Jr PR, Howard BH, Deng XY, Matranga C (2012) Active sites and structure–activity relationships of copper–based catalysts for carbon dioxide hydrogenation to methanol. ACS Catal 2:1667–1676CrossRef
38.
Zurück zum Zitat Zhan H, Li F, Gao P, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2014) Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors. J Power Sour 251:113–121CrossRef Zhan H, Li F, Gao P, Zhao N, Xiao F, Wei W, Zhong L, Sun Y (2014) Methanol synthesis from CO2 hydrogenation over La-M-Cu-Zn-O (M = Y, Ce, Mg, Zr) catalysts derived from perovskite-type precursors. J Power Sour 251:113–121CrossRef
39.
Zurück zum Zitat Bando KK, Sayama K, Kusama H, Okabe K, Arakawa H (1997) In–situ FT–IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, A12O3, and TiO2. Appl Catal A 165:391–409CrossRef Bando KK, Sayama K, Kusama H, Okabe K, Arakawa H (1997) In–situ FT–IR study on CO2 hydrogenation over Cu catalysts supported on SiO2, A12O3, and TiO2. Appl Catal A 165:391–409CrossRef
40.
Zurück zum Zitat Din IU, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcinations temperature. J Power Sour 274:619–628CrossRef Din IU, Shaharun MS, Subbarao D, Naeem A (2015) Synthesis, characterization and activity pattern of carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Influence of calcinations temperature. J Power Sour 274:619–628CrossRef
41.
Zurück zum Zitat Bell AT (2001) Molecular design of highly active methanol synthesis catalysts. Stud Surf Sci Catal 136:13–19CrossRef Bell AT (2001) Molecular design of highly active methanol synthesis catalysts. Stud Surf Sci Catal 136:13–19CrossRef
42.
Zurück zum Zitat Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A 345:60–68CrossRef Guo XM, Mao DS, Lu GZ, Wang S, Wu GS (2011) The influence of La doping on the catalytic behavior of Cu/ZrO2 for methanol synthesis from CO2 hydrogenation. J Mol Catal A 345:60–68CrossRef
43.
Zurück zum Zitat Arena F, Mezzatesta G, Zafaana G, Trunfio G, Frusteri F, Spadaro L (2013) How oxide carriers control the catalytic functionality of Cu-ZnO system in the hydrogenation of CO2 to methanol. Catal Today 210:39–46CrossRef Arena F, Mezzatesta G, Zafaana G, Trunfio G, Frusteri F, Spadaro L (2013) How oxide carriers control the catalytic functionality of Cu-ZnO system in the hydrogenation of CO2 to methanol. Catal Today 210:39–46CrossRef
44.
Zurück zum Zitat Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L, Frusteri F (2011) Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal Today 171:251–256CrossRef Bonura G, Arena F, Mezzatesta G, Cannilla C, Spadaro L, Frusteri F (2011) Role of the ceria promoter and carrier on the functionality of Cu-based catalysts in the CO2-to-methanol hydrogenation reaction. Catal Today 171:251–256CrossRef
45.
Zurück zum Zitat An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840CrossRef An B, Zhang J, Cheng K, Ji P, Wang C, Lin W (2017) Confinement of ultrasmall Cu/ZnOx nanoparticles in metal–organic frameworks for selective methanol synthesis from catalytic hydrogenation of CO2. J Am Chem Soc 139:3834–3840CrossRef
46.
Zurück zum Zitat Arakawa H, Dubois JL, Sayama K (1992) Selective conversion of CO2 to methanol by catalytic hydrogenation over promoted copper catalyst. Energy Convers Manag 33:521–528CrossRef Arakawa H, Dubois JL, Sayama K (1992) Selective conversion of CO2 to methanol by catalytic hydrogenation over promoted copper catalyst. Energy Convers Manag 33:521–528CrossRef
47.
Zurück zum Zitat An X, Li J, Zuo Y, Zhang Q, Wang D, Wang J (2007) A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst. Catal Lett 118:264–269CrossRef An X, Li J, Zuo Y, Zhang Q, Wang D, Wang J (2007) A Cu/Zn/Al/Zr fibrous catalyst that is an improved CO2 hydrogenation to methanol catalyst. Catal Lett 118:264–269CrossRef
48.
Zurück zum Zitat Din IU, Shaharun MS, Naeem A, Tasleem S, Johan MR (2018) Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chem Eng J 334:619–629CrossRef Din IU, Shaharun MS, Naeem A, Tasleem S, Johan MR (2018) Carbon nanofibers based copper/zirconia catalysts for carbon dioxide hydrogenation to methanol: Effect of copper concentration. Chem Eng J 334:619–629CrossRef
49.
Zurück zum Zitat Ma Y, Sun Q, Wu D, Fan WH, Zhang YL, Deng JF (1998) A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal A 171:45–55CrossRef Ma Y, Sun Q, Wu D, Fan WH, Zhang YL, Deng JF (1998) A practical approach for the preparation of high activity Cu/ZnO/ZrO2 catalyst for methanol synthesis from CO2 hydrogenation. Appl Catal A 171:45–55CrossRef
50.
Zurück zum Zitat Jung KT, Bell AT (2002) Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper. Catal Lett 80:63–68CrossRef Jung KT, Bell AT (2002) Effects of zirconia phase on the synthesis of methanol over zirconia-supported copper. Catal Lett 80:63–68CrossRef
51.
Zurück zum Zitat Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Energy Convers Manag 103:886–894CrossRef Witoon T, Bumrungsalee S, Chareonpanich M, Limtrakul J (2015) Effect of hierarchical meso–macroporous alumina-supported copper catalyst for methanol synthesis from CO2 hydrogenation. Energy Convers Manag 103:886–894CrossRef
52.
Zurück zum Zitat Lei H, Nie RF, Wu GQ, Hou ZY (2015) Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology. Fuel 154:161–166CrossRef Lei H, Nie RF, Wu GQ, Hou ZY (2015) Hydrogenation of CO2 to CH3OH over Cu/ZnO catalysts with different ZnO morphology. Fuel 154:161–166CrossRef
Metadaten
Titel
CO2 hydrogenation to methanol over CuO-ZnO-ZrO2 catalyst prepared by polymeric precursor method
verfasst von
Dawei Chen
Dongsen Mao
Guo Wang
Xiaoming Guo
Jun Yu
Publikationsdatum
31.01.2019
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2019
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-019-04924-5

Weitere Artikel der Ausgabe 3/2019

Journal of Sol-Gel Science and Technology 3/2019 Zur Ausgabe

Original Paper: Nano- and macroporous materials (aerogels, xerogels, cryogels, etc.)

Multifunctional C/SiO2/SiC-based aerogels and composites for thermal insulators and electromagnetic interference shielding

Original Paper: Sol-gel and hybrid materials for energy, environment and building applications

One-step novel synthesis of CoFe2O4/graphene composites for organic dye removal

Original Paper: Sol−gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Structural, electrical, and optical properties of polycrystalline (1−x)BiFeO3-xBi0.5K0.5TiO3 thin films

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Influence of silane coupling agent on the properties of UV curable SiO2-PMMA hybrid nanocomposite

Original Paper:Nano-structured materials (particles, fibers, colloids, composites, etc.)

Modifications in structural, optical and electrical properties of nanocrystalline CdO: role of sintering temperature

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Co3O4 nanocrystals grown on graphene nanosheets for high-performance supercapacitor with excellent rate capability

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.