Skip to main content
Erschienen in: Journal of Sol-Gel Science and Technology 3/2019

21.11.2018 | Original Paper:Nano-structured materials (particles, fibers, colloids, composites, etc.)

Modifications in structural, optical and electrical properties of nanocrystalline CdO: role of sintering temperature

verfasst von: Pratima Makwana, Davit Dhruv, Sapana Solanki, Hetal Boricha, A. Satyaprasad, M. Ranjan, P. S. Solanki, N. A. Shah

Erschienen in: Journal of Sol-Gel Science and Technology | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Present report deals with the synthesis of nanocrystalline cadmium oxide (CdO) using low-cost acetate precursor based modified sol–gel technique. Final product was sintered at different temperatures and studied for their structural, optical and electrical properties. In this present work, we report the sintering temperature-dependent structural, optical and electrical properties of nanocrystalline cadmium oxide (CdO) grown by cost effective sol–gel method. Structural properties of CdO materials were investigated by X–ray diffraction (XRD) which reveals the crystalline phase of the samples without any detectable impurity within the range of measurements. Crystallite size (CS), calculated using Scherer’s formula, is found in the range of nanometer (<100 nm) and increases with increasing sintering temperature. Average crystallite size of all CdO nanocrystals were estimated using the William–Hall (W–H) plots from XRD patterns. Furthermore, transmission electron microscopy (TEM) images were captured to check the crystallinity and particle growth of the samples. The optical properties of nanocrystalline CdO were studied by using UV–Visible (UV–Vis) absorption spectrum. High absorption has been observed for nanocrystalline CdO sintered at lower temperatures. The band gap of nanocrystalline CdO was calculated by using Tauc’s law where band gap increases with increasing sintering temperature. The electrical properties of the samples were studied by performing dielectric and AC conductivity measurements. It is observed that dielectric constant decreases with increase in frequency and sintering temperature. Variation in AC conductivity with light and sintering temperature has been discussed in detail.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wang YG, Xu G, Ren ZH, Wei X, Weng WJ, Du PY, Shen G, Han GR (2007) J Am Ceram Soc 90:2615–2617CrossRef Wang YG, Xu G, Ren ZH, Wei X, Weng WJ, Du PY, Shen G, Han GR (2007) J Am Ceram Soc 90:2615–2617CrossRef
4.
Zurück zum Zitat Joshi Z, Dhruv D, Rathod KN, Markna JH, Satyaprasad A, Joshi AD, Solanki PS, Shah NA (2018) J Mater Sci Technol 34:488–495CrossRef Joshi Z, Dhruv D, Rathod KN, Markna JH, Satyaprasad A, Joshi AD, Solanki PS, Shah NA (2018) J Mater Sci Technol 34:488–495CrossRef
5.
Zurück zum Zitat Rathod KN, Zalak Joshi, Davit Dhruv, Keval Gadani, Hetal Boricha, Joshi AD, Solanki PS, Shah NA (2018) Mater Res Exp 5:035040CrossRef Rathod KN, Zalak Joshi, Davit Dhruv, Keval Gadani, Hetal Boricha, Joshi AD, Solanki PS, Shah NA (2018) Mater Res Exp 5:035040CrossRef
6.
Zurück zum Zitat Khushal S, Rathod KN, Gadani K, Boricha H, Shrimali VG, Rajyaguru B, Donga A, Joshi AD, Pandya DD, Shah NA, Solanki PS (2017) AIP Conf Proc 1837:030006pp)CrossRef Khushal S, Rathod KN, Gadani K, Boricha H, Shrimali VG, Rajyaguru B, Donga A, Joshi AD, Pandya DD, Shah NA, Solanki PS (2017) AIP Conf Proc 1837:030006pp)CrossRef
7.
Zurück zum Zitat Farbod M, Dehbidi VK, Shoushtari MZ (2017) Ceram Int 43:13670–13676CrossRef Farbod M, Dehbidi VK, Shoushtari MZ (2017) Ceram Int 43:13670–13676CrossRef
8.
Zurück zum Zitat Islam MA, Roy RC, Hossain J, Julkarnain M, Khan KA (2017) Mater Res 20:102–108CrossRef Islam MA, Roy RC, Hossain J, Julkarnain M, Khan KA (2017) Mater Res 20:102–108CrossRef
9.
Zurück zum Zitat Prabaharan DMDM, Sadaiyandi K, Mahendran M, Sagadevan S (2016) Mater Res 19:478–482CrossRef Prabaharan DMDM, Sadaiyandi K, Mahendran M, Sagadevan S (2016) Mater Res 19:478–482CrossRef
10.
Zurück zum Zitat Akgul G, Akgul FA, Attenkofer K, Winterer M (2013) J Alloy Compd 554:177–181CrossRef Akgul G, Akgul FA, Attenkofer K, Winterer M (2013) J Alloy Compd 554:177–181CrossRef
12.
Zurück zum Zitat Liao JM, Liu KJ, Zhang JM, Xu J, Yu DP (2007) Phys Lett A 367:207–210CrossRef Liao JM, Liu KJ, Zhang JM, Xu J, Yu DP (2007) Phys Lett A 367:207–210CrossRef
13.
15.
Zurück zum Zitat Velayutham TS, Mjid WHA, Gan WC, Zak AK, Gan SN (2012) J Appl Phys 112:054106CrossRef Velayutham TS, Mjid WHA, Gan WC, Zak AK, Gan SN (2012) J Appl Phys 112:054106CrossRef
16.
Zurück zum Zitat Budhiraja N, Sharma A, Dahiya S, Kumar S, Rajesh (2014) J Nanomater Mol Nanotechnol 3:1000145 Budhiraja N, Sharma A, Dahiya S, Kumar S, Rajesh (2014) J Nanomater Mol Nanotechnol 3:1000145
17.
Zurück zum Zitat Tripathi R, Dutta A, Das S, Kumar A, Sinha TP (2016) Appl Nanosci 6:175–181CrossRef Tripathi R, Dutta A, Das S, Kumar A, Sinha TP (2016) Appl Nanosci 6:175–181CrossRef
18.
Zurück zum Zitat Sagadevan S, Veeralakshmi A (2014) Int J Chem Mol Eng 8:1492–1495 Sagadevan S, Veeralakshmi A (2014) Int J Chem Mol Eng 8:1492–1495
19.
Zurück zum Zitat Cristaldi DA, Millesi S, Crupi I, Impellizzeri G, Priolo F, Jacobs RMJ, Egdell RG, Gulino A (2014) J Phys Chem C 118:15019–15026CrossRef Cristaldi DA, Millesi S, Crupi I, Impellizzeri G, Priolo F, Jacobs RMJ, Egdell RG, Gulino A (2014) J Phys Chem C 118:15019–15026CrossRef
20.
Zurück zum Zitat Sr. Lewis RJ (1997) Hawley’s condensed chemical dictionary. 13th ed. p 189, john willey &sons, New York Sr. Lewis RJ (1997) Hawley’s condensed chemical dictionary. 13th ed. p 189, john willey &sons, New York
21.
Zurück zum Zitat Hampel CA, Hawley GG (1973) The encyclopedia of chemistry. 3rd ed. p 169, Reinhold Pub. Corpn., New York Hampel CA, Hawley GG (1973) The encyclopedia of chemistry. 3rd ed. p 169, Reinhold Pub. Corpn., New York
22.
Zurück zum Zitat Hampel CA (1954) Rare metals hand book. p 87–103, Reinhold, New York Hampel CA (1954) Rare metals hand book. p 87–103, Reinhold, New York
23.
Zurück zum Zitat Mane RS, Pathan HM, Lokhande CD, Han SH (2006) Sol Energ 80:185–190CrossRef Mane RS, Pathan HM, Lokhande CD, Han SH (2006) Sol Energ 80:185–190CrossRef
24.
25.
Zurück zum Zitat Usharani K, Balu AR, Suganya M, Nagarethinam VS (2015) Q J Appl Chem Res 9:47–63 Usharani K, Balu AR, Suganya M, Nagarethinam VS (2015) Q J Appl Chem Res 9:47–63
29.
30.
Zurück zum Zitat Vagadia M, Ravalia A, Khachar U, Solanki PS, Doshi RR, Rayaprol S, Kuberkar DG (2011) Mater Res Bull 46:1933–1937CrossRef Vagadia M, Ravalia A, Khachar U, Solanki PS, Doshi RR, Rayaprol S, Kuberkar DG (2011) Mater Res Bull 46:1933–1937CrossRef
32.
Zurück zum Zitat Joshi Z, Dhruv D, Rathod KN, Boricha H, Gadani K, Pandya DD, Joshi AD, Solanki PS, Shah NA (2018) Prog Solid State Chem 49:23–36CrossRef Joshi Z, Dhruv D, Rathod KN, Boricha H, Gadani K, Pandya DD, Joshi AD, Solanki PS, Shah NA (2018) Prog Solid State Chem 49:23–36CrossRef
33.
Zurück zum Zitat Thakrar K, Dhruv D, Rathod KN, Joshi Z, Gadani K, Pandya DD, Markna JH, Kataria BR, Solanki PS, Kuberkar DG, Shah NA (2016) J Sol–Gel Sci Technol 79:144–150CrossRef Thakrar K, Dhruv D, Rathod KN, Joshi Z, Gadani K, Pandya DD, Markna JH, Kataria BR, Solanki PS, Kuberkar DG, Shah NA (2016) J Sol–Gel Sci Technol 79:144–150CrossRef
34.
Zurück zum Zitat Dhruv D, Joshi Z, Kansara S, Keshvani MJ, Pandya DD, Asokan K, Solanki PS, Kuberkar DG, Shah NA (2016) Adv Sci Let 22:843–848CrossRef Dhruv D, Joshi Z, Kansara S, Keshvani MJ, Pandya DD, Asokan K, Solanki PS, Kuberkar DG, Shah NA (2016) Adv Sci Let 22:843–848CrossRef
35.
Zurück zum Zitat Gadani K, Keshvani MJ, Dhruv D, Boricha H, Rathod KN, Prajapati P, Joshi AD, Pandya DD, Shah NA, Solanki PS (2017) J Alloy Compd 719:47–57CrossRef Gadani K, Keshvani MJ, Dhruv D, Boricha H, Rathod KN, Prajapati P, Joshi AD, Pandya DD, Shah NA, Solanki PS (2017) J Alloy Compd 719:47–57CrossRef
36.
Zurück zum Zitat Solanki PS, Doshi RR, Thaker CM, Pandya S, Ganesan V, Kuberkar DG (2009) J Nanosci Nanotechnol 9:5681–5686CrossRef Solanki PS, Doshi RR, Thaker CM, Pandya S, Ganesan V, Kuberkar DG (2009) J Nanosci Nanotechnol 9:5681–5686CrossRef
37.
Zurück zum Zitat Hasiang HI, Lin KY, Yen FS, Hwang CY (2001) J Mater Sci 36:3809–3815CrossRef Hasiang HI, Lin KY, Yen FS, Hwang CY (2001) J Mater Sci 36:3809–3815CrossRef
38.
Zurück zum Zitat Marques LGA, CavalcanteLS, Simoes AZ, Pontes FM, Santos–Junior LS, Santos MRMC, Rosa ILV, Varela JA, Longo E (2007) Mater Chem Phys 105:293–297CrossRef Marques LGA, CavalcanteLS, Simoes AZ, Pontes FM, Santos–Junior LS, Santos MRMC, Rosa ILV, Varela JA, Longo E (2007) Mater Chem Phys 105:293–297CrossRef
39.
41.
42.
Zurück zum Zitat Kansara SB, Dhruv D, Joshi Z, Pandya DD, Rayaprol S, Solanki PS, Kuberkar DG, Shah NA (2015) Appl Surf Sci 356:1272–1281CrossRef Kansara SB, Dhruv D, Joshi Z, Pandya DD, Rayaprol S, Solanki PS, Kuberkar DG, Shah NA (2015) Appl Surf Sci 356:1272–1281CrossRef
43.
Zurück zum Zitat Kuberkar DG, Doshi RR, Solanki PS, Khachar U, Vagadia M, Ravalia A, Ganesan V (2012) Appl Surf Sci 258:9041–9046CrossRef Kuberkar DG, Doshi RR, Solanki PS, Khachar U, Vagadia M, Ravalia A, Ganesan V (2012) Appl Surf Sci 258:9041–9046CrossRef
44.
Zurück zum Zitat Vagadia M, Ravalia A, Katba S, Solanki PS, Bapna K, Kumar M, Choudhary RJ, Phase DM, Kuberkar DG (2014) J Alloy Compd 610:113–117CrossRef Vagadia M, Ravalia A, Katba S, Solanki PS, Bapna K, Kumar M, Choudhary RJ, Phase DM, Kuberkar DG (2014) J Alloy Compd 610:113–117CrossRef
45.
Zurück zum Zitat Rathod KN, Thakrar K, Gadani K, Joshi Z, Dhruv D, Boricha H, Kansara S, Pandya DD, Asokan K, Solanki PS, Shah NA (2017) Mater Chem Phys 198:200–208CrossRef Rathod KN, Thakrar K, Gadani K, Joshi Z, Dhruv D, Boricha H, Kansara S, Pandya DD, Asokan K, Solanki PS, Shah NA (2017) Mater Chem Phys 198:200–208CrossRef
46.
Zurück zum Zitat Shrimali VG, Rathod KN, Dhruv D, Zankat A, Sagapariya K, Solanki S, Solanki PS, Shah NA, Kataria BR (2018) Int J Mod Phys B 32:1850143 Shrimali VG, Rathod KN, Dhruv D, Zankat A, Sagapariya K, Solanki S, Solanki PS, Shah NA, Kataria BR (2018) Int J Mod Phys B 32:1850143
47.
Zurück zum Zitat Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M (2018) Fornt Microbiol 9:1218CrossRef Tiwari V, Mishra N, Gadani K, Solanki PS, Shah NA, Tiwari M (2018) Fornt Microbiol 9:1218CrossRef
48.
Zurück zum Zitat Zak AK, Majid WHA, Abrishami ME, Yousefi R (2011) Solid State Sci 13:251–256CrossRef Zak AK, Majid WHA, Abrishami ME, Yousefi R (2011) Solid State Sci 13:251–256CrossRef
49.
Zurück zum Zitat Joshi Z, Dhruv D, Rathod KN, Gadani K, Joshi AD, Solanki PS, Shah NA (2018) Mater Today Proc 5:9922–9926CrossRef Joshi Z, Dhruv D, Rathod KN, Gadani K, Joshi AD, Solanki PS, Shah NA (2018) Mater Today Proc 5:9922–9926CrossRef
51.
Zurück zum Zitat Ravalia AB, Vagadia MV, Khachar UD, Doshi RR, Solanki PS, Savalia BT, Shah NA, Kuberkar DG (2011) AIP Conf Proc 1349:1143–1144CrossRef Ravalia AB, Vagadia MV, Khachar UD, Doshi RR, Solanki PS, Savalia BT, Shah NA, Kuberkar DG (2011) AIP Conf Proc 1349:1143–1144CrossRef
53.
Zurück zum Zitat Joshi Z, Dhruv D, Kansara S, Vagadia M, Barot N, Mehta PK, Solanki PS, Kuberkar DG, Shah NA (2014) AIP Conf Proc 1591:1306–1308CrossRef Joshi Z, Dhruv D, Kansara S, Vagadia M, Barot N, Mehta PK, Solanki PS, Kuberkar DG, Shah NA (2014) AIP Conf Proc 1591:1306–1308CrossRef
57.
Zurück zum Zitat Farea AMM, Kumar A, Batoo KM, Yousef A, Alimuddin (2008) Phys B 403:684–701CrossRef Farea AMM, Kumar A, Batoo KM, Yousef A, Alimuddin (2008) Phys B 403:684–701CrossRef
59.
Zurück zum Zitat Seeger A, Lunkenheimer P, Hemberger J, Mukhin AA, Ivanov VY, Baldashov AM, Loidl A (1999) J Phys Condens Matter 11:3273–3290CrossRef Seeger A, Lunkenheimer P, Hemberger J, Mukhin AA, Ivanov VY, Baldashov AM, Loidl A (1999) J Phys Condens Matter 11:3273–3290CrossRef
60.
Metadaten
Titel
Modifications in structural, optical and electrical properties of nanocrystalline CdO: role of sintering temperature
verfasst von
Pratima Makwana
Davit Dhruv
Sapana Solanki
Hetal Boricha
A. Satyaprasad
M. Ranjan
P. S. Solanki
N. A. Shah
Publikationsdatum
21.11.2018
Verlag
Springer US
Erschienen in
Journal of Sol-Gel Science and Technology / Ausgabe 3/2019
Print ISSN: 0928-0707
Elektronische ISSN: 1573-4846
DOI
https://doi.org/10.1007/s10971-018-4876-7

Weitere Artikel der Ausgabe 3/2019

Journal of Sol-Gel Science and Technology 3/2019 Zur Ausgabe

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Mesoporous silica modified luminescent Gd2O3:Eu nanoparticles: physicochemical and luminescence properties

Original Paper: Sol-gel and hybrid materials for dielectric, electronic, magnetic and ferroelectric applications

Multiferroism and magnetoelectric coupling in single-phase Yb and X (X = Nb, Mn, Mo) co-doped BiFeO3 ceramics

Original Paper: Sol-gel and hybrid materials for optical, photonic and optoelectronic applications

Influence of silane coupling agent on the properties of UV curable SiO2-PMMA hybrid nanocomposite

Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)

Synthesis and characterization of CuZnO@GO nanocomposites and their enhanced antibacterial activity with visible light

Original Paper: Sol–gel and hybrid materials with surface modification for applications

Superhydrophobic and oleophobic textiles with hierarchical micro-nano structure constructed by sol–gel method

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.