Skip to main content

2018 | OriginalPaper | Buchkapitel

Coalescence Characteristics of Liquid Drops with Application to Dropwise Condensation

verfasst von : Praveen M. Somwanshi, K. Muralidhar, Sameer Khandekar

Erschienen in: Droplet and Spray Transport: Paradigms and Applications

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The process in which two or more adjoining liquid drops contact each other and merge to form a single drop is referred as coalescence. Drop coalescence is seen in many applications including dropwise condensation of vapor on textured surfaces and in micro-fluidics to enhance scalar mixing with the host medium. Coalescence is initiated with bridge formation at the interface and is followed by large fluid velocities during which the participating liquid media are momentarily set into motion. The origin of coalescence is the internal pressure difference between the initial drops as well as the pressure difference relative to the negative bridge curvature which serves as location of low pressure. The conversion of surface energy to kinetic energy is accompanied by changes in gravitational energy and viscous dissipation. Dissipation here refers to the bulk as well as that occurring at the three-phase contact line over the surface. Contact line motion can be substantial, thus making the surface characteristics central to flow oscillations and decay. After equilibrium is achieved, the single coalesced drop will have a smaller curvature, indicating an irreversible loss of surface energy as dissipation of the coalescence process. The first part of the present chapter examines the literature on the subject and provides a state-of-the-art review. In the second part, an experiment involving two small water drops that are placed adjacent to each other on the hydrophobic surface is discussed. Sessile configuration is considered, and the resulting coalescence process is imaged using a high-speed camera. The three-phase contact line of the combined drop remains unpinned and moves in time, while the liquid bridge relaxes when flow takes place from a region of higher to lower pressure. The digital image sequence is analyzed to find the position of the instantaneous center of mass of the drop, whose movement yields the two velocity components. The possibility of distinct timescales during coalescence is explored from these experiments. The third part of this chapter examines an important application wherein vapor condenses on horizontal and inclined surfaces in the form of drops. Here, drops formed at selected nuclei over the surface grow with time by direct condensation, contact neighboring drops, and grow subsequently by coalescence. At certain instants, the drop volume may be large enough to make them gravitationally unstable, forcing them to leave the surface. While these condensation cycles may last for a few hundred seconds, each coalescence event itself will persist only for a few milliseconds. Coalescence should still be represented in the mathematical model of dropwise condensation, particularly from the viewpoint of local wall shear stresses.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
Authors have studied the pendant configuration also, although for brevity, the primary focus of discussion here is on sessile configuration. The relevant data for pendant configuration are quoted, wherever deemed necessary, for comparative purposes.
 
2
Coalescence data reported in the previous sections primarily focus on sessile configuration, with qualitative comparison with the pendant configuration [Footnote 1]. The difference between the two configurations, insofar as the estimation of velocity and timescales relevant to the coalescence process, and its bearing on the condensation cycle are concerned, is expected to be small.
 
Literatur
Zurück zum Zitat Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503CrossRef Aarts DGAL, Lekkerkerker HNW, Guo H, Wegdam GH, Bonn D (2005) Hydrodynamics of droplet coalescence. Phys Rev Lett 95:164503CrossRef
Zurück zum Zitat Andrieu C, Beysens DA, Nikolayev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438MathSciNetCrossRef Andrieu C, Beysens DA, Nikolayev VS, Pomeau Y (2002) Coalescence of sessile drops. J Fluid Mech 453:427–438MathSciNetCrossRef
Zurück zum Zitat Azehara H, Kasanuma Y, Ide K, Hidaka K, Tokumotona H (2008) Distinct chemical contrast in adhesion force images of hydrophobic–hydrophilic patterned surfaces using multiwalled carbon nanotube probe tips. Jpn J Appl Phys 47:3594–3599CrossRef Azehara H, Kasanuma Y, Ide K, Hidaka K, Tokumotona H (2008) Distinct chemical contrast in adhesion force images of hydrophobic–hydrophilic patterned surfaces using multiwalled carbon nanotube probe tips. Jpn J Appl Phys 47:3594–3599CrossRef
Zurück zum Zitat Carey VP (2007) Liquid–vapor phase–change phenomena, 2nd edn. Hemisphere Publishing Corp, New York Carey VP (2007) Liquid–vapor phase–change phenomena, 2nd edn. Hemisphere Publishing Corp, New York
Zurück zum Zitat Chatterjee A, Derby MM, Peles Y, Jensen MK (2014) Enhancement of condensation heat transfer with patterned surfaces. Int J Heat Mass Transf 71:675–681CrossRef Chatterjee A, Derby MM, Peles Y, Jensen MK (2014) Enhancement of condensation heat transfer with patterned surfaces. Int J Heat Mass Transf 71:675–681CrossRef
Zurück zum Zitat Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education Inc., New Jersey Gonzalez RC, Woods RE, Eddins SL (2004) Digital image processing using MATLAB. Pearson Education Inc., New Jersey
Zurück zum Zitat Graham PJ, Farhangi MM, Dolatabadi A (2012) Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys Fluids 24:112105CrossRef Graham PJ, Farhangi MM, Dolatabadi A (2012) Dynamics of droplet coalescence in response to increasing hydrophobicity. Phys Fluids 24:112105CrossRef
Zurück zum Zitat Gunjan MR, Somwanshi P, Agrawal A, Khandekar S, Muralidhar K (2015) Recoil of drops during coalescence on superhydrophobic surfaces. Interfacial Phenom. Heat Transf. 3:203–220CrossRef Gunjan MR, Somwanshi P, Agrawal A, Khandekar S, Muralidhar K (2015) Recoil of drops during coalescence on superhydrophobic surfaces. Interfacial Phenom. Heat Transf. 3:203–220CrossRef
Zurück zum Zitat Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer Briefs in Applied Sciences and Technology. Springer New YorkCrossRef Khandekar S, Muralidhar K (2014) Dropwise condensation on inclined textured surfaces. Springer Briefs in Applied Sciences and Technology. Springer New YorkCrossRef
Zurück zum Zitat Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transfer 133:081502–081502CrossRef Kim S, Kim KJ (2011) Dropwise condensation modeling suitable for superhydrophobic surfaces. J Heat Transfer 133:081502–081502CrossRef
Zurück zum Zitat Kim W-S, Jung-Ho J, Byeong-Soo B (2006) Low adhesive force of fluorinated sol–gel hybrid materials for easy de-moulding in a UV-based nano-imprint process. Nanotechnology 17:1212CrossRef Kim W-S, Jung-Ho J, Byeong-Soo B (2006) Low adhesive force of fluorinated sol–gel hybrid materials for easy de-moulding in a UV-based nano-imprint process. Nanotechnology 17:1212CrossRef
Zurück zum Zitat Koch G, Kraft K, Leipertz A (1998) Parameter study on the performance of dropwise condensation. Revue Générale de Thermique 37:539–548CrossRef Koch G, Kraft K, Leipertz A (1998) Parameter study on the performance of dropwise condensation. Revue Générale de Thermique 37:539–548CrossRef
Zurück zum Zitat Larmour IA, Bell SEJ, Saunders GC (2007) Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Ed 46:710–1712CrossRef Larmour IA, Bell SEJ, Saunders GC (2007) Remarkably simple fabrication of superhydrophobic surfaces using electroless galvanic deposition. Angew Chem Int Ed 46:710–1712CrossRef
Zurück zum Zitat Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir: ACS J Surf Colloids 22:8864–8872CrossRef Leach RN, Stevens F, Langford SC, Dickinson JT (2006) Dropwise condensation: experiments and simulations of nucleation and growth of water drops in a cooling system. Langmuir: ACS J Surf Colloids 22:8864–8872CrossRef
Zurück zum Zitat Leipertz A (2010) J3 dropwise condensation. VDI Heat Atlas. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 933–938 Leipertz A (2010) J3 dropwise condensation. VDI Heat Atlas. Springer, Berlin Heidelberg, Berlin, Heidelberg, pp 933–938
Zurück zum Zitat Narhe R, Beysens D, Nikolayev VS (2004) Contact line dynamics in drop coalescence and spreading. Langmuir 20:1213–1221CrossRef Narhe R, Beysens D, Nikolayev VS (2004) Contact line dynamics in drop coalescence and spreading. Langmuir 20:1213–1221CrossRef
Zurück zum Zitat Paulsen JD, Burton JC, Nagel SR (2011) Viscous to inertial crossover in liquid drop coalescence. Phys Rev Lett 106:114501CrossRef Paulsen JD, Burton JC, Nagel SR (2011) Viscous to inertial crossover in liquid drop coalescence. Phys Rev Lett 106:114501CrossRef
Zurück zum Zitat Paulsen JD, Burton JC, Nagel SR, Appathurai S, Harris MT, Basaran OA (2012) The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc Natl Acad Sci 109:6857–6861CrossRef Paulsen JD, Burton JC, Nagel SR, Appathurai S, Harris MT, Basaran OA (2012) The inexorable resistance of inertia determines the initial regime of drop coalescence. Proc Natl Acad Sci 109:6857–6861CrossRef
Zurück zum Zitat Rausch MH, Fröba AP, Leipertz A (2008) Dropwise condensation heat transfer on ion implanted aluminum surfaces. Int J Heat Mass Transf 51:1061–1070CrossRef Rausch MH, Fröba AP, Leipertz A (2008) Dropwise condensation heat transfer on ion implanted aluminum surfaces. Int J Heat Mass Transf 51:1061–1070CrossRef
Zurück zum Zitat Ren SL, Yang SR, Wang JQ, Liu WM, Zhao YP (2004) Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface. Chem Mater 16:428–434CrossRef Ren SL, Yang SR, Wang JQ, Liu WM, Zhao YP (2004) Preparation and tribological studies of stearic acid self-assembled monolayers on polymer-coated silicon surface. Chem Mater 16:428–434CrossRef
Zurück zum Zitat Rose JW (2002) Dropwise condensation theory and experiment: a review. Proc Inst Mech Eng Part A J Power Energy 216:115–128CrossRef Rose JW (2002) Dropwise condensation theory and experiment: a review. Proc Inst Mech Eng Part A J Power Energy 216:115–128CrossRef
Zurück zum Zitat Rykaczewski K, Scott JHJ, Rajauria S, Chinn J, Chinn AM, Jones W (2011) Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter 7:8749–8752CrossRef Rykaczewski K, Scott JHJ, Rajauria S, Chinn J, Chinn AM, Jones W (2011) Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces. Soft Matter 7:8749–8752CrossRef
Zurück zum Zitat Sikarwar BS, Battoo NK, Khandekar S, Muralidhar K (2011) Dropwise condensation underneath chemically textured surfaces: simulation and experiments. J Heat Transfer 133:021501–021501CrossRef Sikarwar BS, Battoo NK, Khandekar S, Muralidhar K (2011) Dropwise condensation underneath chemically textured surfaces: simulation and experiments. J Heat Transfer 133:021501–021501CrossRef
Zurück zum Zitat Sikarwar BS, Khandekar S, Agrawal S, Kumar S, Muralidhar K (2012) Dropwise condensation studies on multiple scales. Heat Transf Eng 33:301–341CrossRef Sikarwar BS, Khandekar S, Agrawal S, Kumar S, Muralidhar K (2012) Dropwise condensation studies on multiple scales. Heat Transf Eng 33:301–341CrossRef
Zurück zum Zitat Sikarwar BS, Khandekar S, Muralidhar K (2013) Simulation of flow and heat transfer in a drop sliding underneath a hydrophobic surface. Int J Heat Mass Transf 57:786–811CrossRef Sikarwar BS, Khandekar S, Muralidhar K (2013) Simulation of flow and heat transfer in a drop sliding underneath a hydrophobic surface. Int J Heat Mass Transf 57:786–811CrossRef
Zurück zum Zitat Somwanshi PM, Muralidhar K, Khandekar S (2017) Coalescence characteristics of pendant and sessile drops over a superhydrophobic surface (manuscript under review) Somwanshi PM, Muralidhar K, Khandekar S (2017) Coalescence characteristics of pendant and sessile drops over a superhydrophobic surface (manuscript under review)
Zurück zum Zitat Sprittles JE, Shikhmurzaev YD (2012) Coalescence of liquid drops: different models versus experiment. Phys Fluids 24:122105CrossRef Sprittles JE, Shikhmurzaev YD (2012) Coalescence of liquid drops: different models versus experiment. Phys Fluids 24:122105CrossRef
Zurück zum Zitat Tambe NS, Bhushan B (2005) Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates. Nanotechnology 16:1549CrossRef Tambe NS, Bhushan B (2005) Nanotribological characterization of self-assembled monolayers deposited on silicon and aluminium substrates. Nanotechnology 16:1549CrossRef
Zurück zum Zitat Thoroddsen ST, Takehara K, Etoh TG (2005) The coalescence speed of a pendent and a sessile drop. J Fluid Mech 527:85–114MathSciNetCrossRef Thoroddsen ST, Takehara K, Etoh TG (2005) The coalescence speed of a pendent and a sessile drop. J Fluid Mech 527:85–114MathSciNetCrossRef
Zurück zum Zitat Thoroddsen ST, Qian B, Etoh TG, Takehara K (2007) The initial coalescence of miscible drops. Phys Fluids 19:072110CrossRef Thoroddsen ST, Qian B, Etoh TG, Takehara K (2007) The initial coalescence of miscible drops. Phys Fluids 19:072110CrossRef
Zurück zum Zitat Vemuri S, Kim KJ (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49:649–657CrossRef Vemuri S, Kim KJ (2006) An experimental and theoretical study on the concept of dropwise condensation. Int J Heat Mass Transf 49:649–657CrossRef
Zurück zum Zitat Vemuri S, Kim KJ, Wood BD, Govindaraju S, Bell TW (2006) Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl Ther Eng 26:421–429CrossRef Vemuri S, Kim KJ, Wood BD, Govindaraju S, Bell TW (2006) Long term testing for dropwise condensation using self-assembled monolayer coatings of n-octadecyl mercaptan. Appl Ther Eng 26:421–429CrossRef
Zurück zum Zitat Wang F-C, Yang F, Zhao Y-P (2011) Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett 98:053112CrossRef Wang F-C, Yang F, Zhao Y-P (2011) Size effect on the coalescence-induced self-propelled droplet. Appl Phys Lett 98:053112CrossRef
Zurück zum Zitat Weeks M (2007) Digital signal processing using MATLAB and wavelets. Infinity Science Press LLC, MassachusettsMATH Weeks M (2007) Digital signal processing using MATLAB and wavelets. Infinity Science Press LLC, MassachusettsMATH
Zurück zum Zitat Wu M, Cubaud T, Ho C-M (2004) Scaling law in liquid drop coalescence driven by surface tension. Phys Fluids 16:L51–L54CrossRef Wu M, Cubaud T, Ho C-M (2004) Scaling law in liquid drop coalescence driven by surface tension. Phys Fluids 16:L51–L54CrossRef
Zurück zum Zitat Yeh S-I, Fang W-F, Sheen H-J, Yang J-T (2013) Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid Nanofluid 14:785–795CrossRef Yeh S-I, Fang W-F, Sheen H-J, Yang J-T (2013) Droplets coalescence and mixing with identical and distinct surface tension on a wettability gradient surface. Microfluid Nanofluid 14:785–795CrossRef
Zurück zum Zitat Zhang FH, Li EQ, Thoroddsen ST (2009) Satellite formation during coalescence of unequal size drops. Phys Rev Lett 102:104502CrossRef Zhang FH, Li EQ, Thoroddsen ST (2009) Satellite formation during coalescence of unequal size drops. Phys Rev Lett 102:104502CrossRef
Metadaten
Titel
Coalescence Characteristics of Liquid Drops with Application to Dropwise Condensation
verfasst von
Praveen M. Somwanshi
K. Muralidhar
Sameer Khandekar
Copyright-Jahr
2018
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-10-7233-8_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.