Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2012

01.02.2012

Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics

verfasst von: Yi Sun, Aaditya V. Rangan, Douglas Zhou, David Cai

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We present an event tree analysis of studying the dynamics of the Hodgkin-Huxley (HH) neuronal networks. Our study relies on a coarse-grained projection to event trees and to the event chains that comprise these trees by using a statistical collection of spatial-temporal sequences of relevant physiological observables (such as sequences of spiking multiple neurons). This projection can retain information about network dynamics that covers multiple features, swiftly and robustly. We demonstrate that for even small differences in inputs, some dynamical regimes of HH networks contain sufficiently higher order statistics as reflected in event chains within the event tree analysis. Therefore, this analysis is effective in discriminating small differences in inputs. Moreover, we use event trees to analyze the results computed from an efficient library-based numerical method proposed in our previous work, where a pre-computed high resolution data library of typical neuronal trajectories during the interval of an action potential (spike) allows us to avoid resolving the spikes in detail. In this way, we can evolve the HH networks using time steps one order of magnitude larger than the typical time steps used for resolving the trajectories without the library, while achieving comparable statistical accuracy in terms of average firing rate and power spectra of voltage traces. Our numerical simulation results show that the library method is efficient in the sense that the results generated by using this numerical method with much larger time steps contain sufficiently high order statistical structure of firing events that are similar to the ones obtained using a regular HH solver. We use our event tree analysis to demonstrate these statistical similarities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abraham, N. M., et al. (2004). Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron, 44, 865–876.PubMed Abraham, N. M., et al. (2004). Maintaining accuracy at the expense of speed: Stimulus similarity defines odor discrimination time in mice. Neuron, 44, 865–876.PubMed
Zurück zum Zitat Cai, D., Rangan, A. V., & McLaughlin, D. W. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in v1. Proceedings of the National Academy of Sciences of the United States of America, 102, 5868–5873.PubMedCrossRef Cai, D., Rangan, A. V., & McLaughlin, D. W. (2005). Architectural and synaptic mechanisms underlying coherent spontaneous activity in v1. Proceedings of the National Academy of Sciences of the United States of America, 102, 5868–5873.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press. Dayan, P., & Abbott, L. F. (2001). Theoretical neuroscience: Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press.
Zurück zum Zitat Gardiner, C. W. (1998). A handbook of stochastic methods. Berlin: Springer. Gardiner, C. W. (1998). A handbook of stochastic methods. Berlin: Springer.
Zurück zum Zitat Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs, NJ: Prentice Hall. Gear, C. W. (1971). Numerical initial value problems in ordinary differential equations. Englewood Cliffs, NJ: Prentice Hall.
Zurück zum Zitat Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998) On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467–483.PubMedCrossRef Hansel, D., Mato, G., Meunier, C., & Neltner, L. (1998) On numerical simulations of integrate-and-fire neural networks. Neural Computation, 10, 467–483.PubMedCrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMed
Zurück zum Zitat Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory–inhibitory balance. Journal of Neuroscience, 23, 3006–3015.PubMed Litvak, V., Sompolinsky, H., Segev, I., & Abeles, M. (2003). On the transmission of rate code in long feedforward networks with excitatory–inhibitory balance. Journal of Neuroscience, 23, 3006–3015.PubMed
Zurück zum Zitat Mainen, Z. F. (2006). Behavioral analysis of olfactory coding and computation in rodents. Current Opinion in Neurobiology, 16, 429–434.PubMedCrossRef Mainen, Z. F. (2006). Behavioral analysis of olfactory coding and computation in rodents. Current Opinion in Neurobiology, 16, 429–434.PubMedCrossRef
Zurück zum Zitat Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.PubMedCrossRef Mattia, M., & Del Giudice, P. (2000). Efficient event-driven simulation of large networks of spiking neurons and dynamical synapses. Neural Computation, 12, 2305–2329.PubMedCrossRef
Zurück zum Zitat McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences of the United States of America, 97, 8087–8092.PubMedCrossRef McLaughlin, D., Shapley, R., Shelley, M., & Wielaard, J. (2000). A neuronal network model of macaque primary visual cortex (V1): Orientation selectivity and dynamics in the input layer 4Cα. Proceedings of the National Academy of Sciences of the United States of America, 97, 8087–8092.PubMedCrossRef
Zurück zum Zitat Rangan, A. V., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22, 81–100.PubMedCrossRef Rangan, A. V., & Cai, D. (2007). Fast numerical methods for simulating large-scale integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 22, 81–100.PubMedCrossRef
Zurück zum Zitat Rangan, A. V., Cai, D., & McLaughlin D. W. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 102, 18793–18800.PubMedCrossRef Rangan, A. V., Cai, D., & McLaughlin D. W. (2005). Modeling the spatiotemporal cortical activity associated with the line-motion illusion in primary visual cortex. Proceedings of the National Academy of Sciences of the United States of America, 102, 18793–18800.PubMedCrossRef
Zurück zum Zitat Rangan, A. V., Cai, D., & McLaughlin, D. W. (2008). Quantifying neuronal network dynamics through coarse-grained event trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 10990–10995.PubMedCrossRef Rangan, A. V., Cai, D., & McLaughlin, D. W. (2008). Quantifying neuronal network dynamics through coarse-grained event trees. Proceedings of the National Academy of Sciences of the United States of America, 105, 10990–10995.PubMedCrossRef
Zurück zum Zitat Reutimann, J., Giugliano, M., & Fusi, S. (2003). Event-based simulation of spiking neurons with stochastic dynamics. Neural Computation, 15, 811–830.PubMedCrossRef Reutimann, J., Giugliano, M., & Fusi, S. (2003). Event-based simulation of spiking neurons with stochastic dynamics. Neural Computation, 15, 811–830.PubMedCrossRef
Zurück zum Zitat Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22, 9475–9489.PubMed Roitman, J. D., & Shadlen, M. N. (2002). Response of neurons in the lateral intraparietal area during a combined visual discrimination reaction time task. Journal of Neuroscience, 22, 9475–9489.PubMed
Zurück zum Zitat Rousselet, G. A., Mace, M. J., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. Journal of Visualization, 3, 440–455. Rousselet, G. A., Mace, M. J., & Fabre-Thorpe, M. (2003). Is it an animal? Is it a human face? Fast processing in upright and inverted natural scenes. Journal of Visualization, 3, 440–455.
Zurück zum Zitat Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70, 1966–1969.CrossRef Rudolph, M., & Destexhe, A. (2007). How much can we trust neural simulation strategies? Neurocomputing, 70, 1966–1969.CrossRef
Zurück zum Zitat Schuster, H. G., & Just, W. (2005). Deterministic Chaos. Weinheim: Wiley-VCH Verlag.CrossRef Schuster, H. G., & Just, W. (2005). Deterministic Chaos. Weinheim: Wiley-VCH Verlag.CrossRef
Zurück zum Zitat Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed Shadlen, M. N., & Newsome, W. T. (1998). The variable discharge of cortical neurons: Implications for connectivity, computation, and information coding. Journal of Neuroscience, 18, 3870–3896.PubMed
Zurück zum Zitat Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.PubMedCrossRef Shelley, M. J., & Tao, L. (2001). Efficient and accurate time-stepping schemes for integrate-and-fire neuronal networks. Journal of Computational Neuroscience, 11, 111–119.PubMedCrossRef
Zurück zum Zitat Somers, D., Nelson, S., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.PubMed Somers, D., Nelson, S., & Sur, M. (1995). An emergent model of orientation selectivity in cat visual cortical simple cells. Journal of Neuroscience, 15, 5448–5465.PubMed
Zurück zum Zitat Sun, Y., Zhou, D., Rangan, A. V., & Cai, D. (2009). Library-based numerical reduction of the Hodgkin-Huxley neuron for network simulation. Journal of Computational Neuroscience, 27, 369–390.PubMedCrossRef Sun, Y., Zhou, D., Rangan, A. V., & Cai, D. (2009). Library-based numerical reduction of the Hodgkin-Huxley neuron for network simulation. Journal of Computational Neuroscience, 27, 369–390.PubMedCrossRef
Zurück zum Zitat Sun, Y., Zhou, D., Rangan, A. V., & Cai, D. (2010). Pseudo-Lyapunov exponents and predictability of HH neuronal network dynamics. Journal of Computational Neuroscience, 28, 247–266.PubMedCrossRef Sun, Y., Zhou, D., Rangan, A. V., & Cai, D. (2010). Pseudo-Lyapunov exponents and predictability of HH neuronal network dynamics. Journal of Computational Neuroscience, 28, 247–266.PubMedCrossRef
Zurück zum Zitat Thorpe, S. J., & Gautrais, J. (1998). Rank order coding. In: J. Bower (Ed.), Computational neuroscience: Trends in research (pp. 113–119). New York: Plenum.CrossRef Thorpe, S. J., & Gautrais, J. (1998). Rank order coding. In: J. Bower (Ed.), Computational neuroscience: Trends in research (pp. 113–119). New York: Plenum.CrossRef
Zurück zum Zitat Troyer, T., Krukowski, A., Priebe, N., & Miller, K. (1998). Contrast invariant orientation tuning in cat visual cortex with feedforward tuning and correlation based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed Troyer, T., Krukowski, A., Priebe, N., & Miller, K. (1998). Contrast invariant orientation tuning in cat visual cortex with feedforward tuning and correlation based intracortical connectivity. Journal of Neuroscience, 18, 5908–5927.PubMed
Zurück zum Zitat Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224–1229.PubMedCrossRef Uchida, N., & Mainen, Z. F. (2003). Speed and accuracy of olfactory discrimination in the rat. Nature Neuroscience, 6, 1224–1229.PubMedCrossRef
Zurück zum Zitat Uchida, N., Kepecs, A., & Mainen, Z. F. (2006). Seeing at a glance, smelling in a whiff: Rapid forms of perceptual decision making. Nature Reviews. Neuroscience, 7, 485–491.PubMedCrossRef Uchida, N., Kepecs, A., & Mainen, Z. F. (2006). Seeing at a glance, smelling in a whiff: Rapid forms of perceptual decision making. Nature Reviews. Neuroscience, 7, 485–491.PubMedCrossRef
Zurück zum Zitat Victor, J. D., & Purpura, K. P. (1997). Sensory coding in cortical neurons: Recent results and speculations. Annals of the New York Academy of Sciences, 835, 330–352.PubMedCrossRef Victor, J. D., & Purpura, K. P. (1997). Sensory coding in cortical neurons: Recent results and speculations. Annals of the New York Academy of Sciences, 835, 330–352.PubMedCrossRef
Metadaten
Titel
Coarse-grained event tree analysis for quantifying Hodgkin-Huxley neuronal network dynamics
verfasst von
Yi Sun
Aaditya V. Rangan
Douglas Zhou
David Cai
Publikationsdatum
01.02.2012
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2012
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-011-0339-7

Weitere Artikel der Ausgabe 1/2012

Journal of Computational Neuroscience 1/2012 Zur Ausgabe

Premium Partner