Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2018

08.12.2017

Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations

verfasst von: Manuel Beiran, Alexandra Kruscha, Jan Benda, Benjamin Lindner

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We compare the information transmission of a time-dependent signal by two types of uncoupled neuron populations that differ in their sources of variability: i) a homogeneous population whose units receive independent noise and ii) a deterministic heterogeneous population, where each unit exhibits a different baseline firing rate (’disorder’). Our criterion for making both sources of variability quantitatively comparable is that the interspike-interval distributions are identical for both systems. Numerical simulations using leaky integrate-and-fire neurons unveil that a non-zero amount of both noise or disorder maximizes the encoding efficiency of the homogeneous and heterogeneous system, respectively, as a particular case of suprathreshold stochastic resonance. Our findings thus illustrate that heterogeneity can render similarly profitable effects for neuronal populations as dynamic noise. The optimal noise/disorder depends on the system size and the properties of the stimulus such as its intensity or cutoff frequency. We find that weak stimuli are better encoded by a noiseless heterogeneous population, whereas for strong stimuli a homogeneous population outperforms an equivalent heterogeneous system up to a moderate noise level. Furthermore, we derive analytical expressions of the coherence function for the cases of very strong noise and of vanishing intrinsic noise or heterogeneity, which predict the existence of an optimal noise intensity. Our results show that, depending on the type of signal, noise as well as heterogeneity can enhance the encoding performance of neuronal populations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abbott, L., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E, 48, 1483.CrossRef Abbott, L., & van Vreeswijk, C. (1993). Asynchronous states in networks of pulse-coupled oscillators. Physical Review E, 48, 1483.CrossRef
Zurück zum Zitat Alijani, A., & Richardson, M.J.E. (2011). Rate response of neurons subject to fast or frozen noise: from stochastic and homogeneous to deterministic and heterogeneous populations. Physical Review E, 84, 011,919–1.CrossRef Alijani, A., & Richardson, M.J.E. (2011). Rate response of neurons subject to fast or frozen noise: from stochastic and homogeneous to deterministic and heterogeneous populations. Physical Review E, 84, 011,919–1.CrossRef
Zurück zum Zitat Ashida, G., & Kubo, M. (2010). Suprathreshold stochastic resonance induced by ion channel fluctuation. Physica D, 239, 237.CrossRef Ashida, G., & Kubo, M. (2010). Suprathreshold stochastic resonance induced by ion channel fluctuation. Physica D, 239, 237.CrossRef
Zurück zum Zitat Benzi, R., Sutera, A., Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A, 14, L453.CrossRef Benzi, R., Sutera, A., Vulpiani, A. (1981). The mechanism of stochastic resonance. Journal of Physics A, 14, L453.CrossRef
Zurück zum Zitat Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183.CrossRefPubMed Brunel, N. (2000). Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. Journal of Computational Neuroscience, 8, 183.CrossRefPubMed
Zurück zum Zitat Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621.CrossRefPubMed Brunel, N., & Hakim, V. (1999). Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Computation, 11, 1621.CrossRefPubMed
Zurück zum Zitat Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186.CrossRefPubMed Brunel, N., Chance, F.S., Fourcaud, N., Abbott, L.F. (2001). Effects of synaptic noise and filtering on the frequency response of spiking neurons. Physical Review Letters, 86, 2186.CrossRefPubMed
Zurück zum Zitat Chacron, M.J., Longtin, A., Maler, L. (2003). The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 14, 803.CrossRef Chacron, M.J., Longtin, A., Maler, L. (2003). The effects of spontaneous activity, background noise, and the stimulus ensemble on information transfer in neurons. Network: Computation in Neural Systems, 14, 803.CrossRef
Zurück zum Zitat Chance, F.S., Abbott, L.F., Reyes, A.D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773.CrossRefPubMed Chance, F.S., Abbott, L.F., Reyes, A.D. (2002). Gain modulation from background synaptic input. Neuron, 35, 773.CrossRefPubMed
Zurück zum Zitat Chelaru, M., & Dragoi, V. (2008). Efficient coding in heterogeneous neuronal populations. Proceedings of the National Academy of Sciences of the United States of America, 105, 16,344.CrossRef Chelaru, M., & Dragoi, V. (2008). Efficient coding in heterogeneous neuronal populations. Proceedings of the National Academy of Sciences of the United States of America, 105, 16,344.CrossRef
Zurück zum Zitat Cox, D.R., & Lewis, P.A.W. (1966). The statistical analysis of series of events. London: Chapman and Hall.CrossRef Cox, D.R., & Lewis, P.A.W. (1966). The statistical analysis of series of events. London: Chapman and Hall.CrossRef
Zurück zum Zitat Darling, D.A., & Siegert, A.J.F. (1953). The 1st passage problem for a continuous markov process. Annals of Mathematical Statistics, 24, 624.CrossRef Darling, D.A., & Siegert, A.J.F. (1953). The 1st passage problem for a continuous markov process. Annals of Mathematical Statistics, 24, 624.CrossRef
Zurück zum Zitat Das, A., Stocks, N.G., Hines, E.L. (2009). Enhanced coding for exponentially distributed signals using suprathreshold stochastic resonance. Communications in Nonlinear Science, 14, 223.CrossRef Das, A., Stocks, N.G., Hines, E.L. (2009). Enhanced coding for exponentially distributed signals using suprathreshold stochastic resonance. Communications in Nonlinear Science, 14, 223.CrossRef
Zurück zum Zitat Dummer, B., Wieland, S., Lindner, B. (2014). Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity. Frontiers in Computational Neuroscience, 8, 104.CrossRefPubMedPubMedCentral Dummer, B., Wieland, S., Lindner, B. (2014). Self-consistent determination of the spike-train power spectrum in a neural network with sparse connectivity. Frontiers in Computational Neuroscience, 8, 104.CrossRefPubMedPubMedCentral
Zurück zum Zitat Durrant, S., Kang, Y., Stocks, N., Feng, J. (2011). Suprathreshold stochastic resonance in neural processing tuned by correlation. Physical Review E, 84, 011,923.CrossRef Durrant, S., Kang, Y., Stocks, N., Feng, J. (2011). Suprathreshold stochastic resonance in neural processing tuned by correlation. Physical Review E, 84, 011,923.CrossRef
Zurück zum Zitat Fisch, K., Schwalger, T., Lindner, B., Herz, A., Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32, 17,332.CrossRef Fisch, K., Schwalger, T., Lindner, B., Herz, A., Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32, 17,332.CrossRef
Zurück zum Zitat Gabbiani, F., Metzner, W., Wessel, R., Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564.CrossRefPubMed Gabbiani, F., Metzner, W., Wessel, R., Koch, C. (1996). From stimulus encoding to feature extraction in weakly electric fish. Nature, 384, 564.CrossRefPubMed
Zurück zum Zitat Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70, 223.CrossRef Gammaitoni, L., Hänggi, P., Jung, P., Marchesoni, F. (1998). Stochastic resonance. Reviews of Modern Physics, 70, 223.CrossRef
Zurück zum Zitat Golomb, D., & Rinzel, J. (1993). Dynamics of globally coupled inhibitory neurons with heterogeneity. Physical Review E, 48, 4810.CrossRef Golomb, D., & Rinzel, J. (1993). Dynamics of globally coupled inhibitory neurons with heterogeneity. Physical Review E, 48, 4810.CrossRef
Zurück zum Zitat Grewe, J., Kruscha, A., Lindner, B., Benda, J. (2017). Synchronous spikes are necessary but not sufficient for a synchrony code. Proceedings of the National Academy of Sciences of the United States of America, 114, E1977.CrossRefPubMedPubMedCentral Grewe, J., Kruscha, A., Lindner, B., Benda, J. (2017). Synchronous spikes are necessary but not sufficient for a synchrony code. Proceedings of the National Academy of Sciences of the United States of America, 114, E1977.CrossRefPubMedPubMedCentral
Zurück zum Zitat Gussin, D., Benda, J., Maler, L. (2007). Limits of linear rate coding of dynamic stimuli by electroreceptor afferents. Journal of Neurophysiology, 97, 2917.CrossRefPubMed Gussin, D., Benda, J., Maler, L. (2007). Limits of linear rate coding of dynamic stimuli by electroreceptor afferents. Journal of Neurophysiology, 97, 2917.CrossRefPubMed
Zurück zum Zitat Harrison, P.M., Badel, L., Wall, M.J., Richardson, M.J.E. (2015). Experimentally verified parameter sets for modelling heterogeneous neocortical pyramidal-cell populations. PLoS Computational Biology, 11, 8.CrossRef Harrison, P.M., Badel, L., Wall, M.J., Richardson, M.J.E. (2015). Experimentally verified parameter sets for modelling heterogeneous neocortical pyramidal-cell populations. PLoS Computational Biology, 11, 8.CrossRef
Zurück zum Zitat Hoch, T., Wenning, G., Obermayer, K. (2003). Optimal noise-aided signal transmission through populations of neurons. Physical Review E, 68, 011,911–1.CrossRef Hoch, T., Wenning, G., Obermayer, K. (2003). Optimal noise-aided signal transmission through populations of neurons. Physical Review E, 68, 011,911–1.CrossRef
Zurück zum Zitat Homstron, L., Eeuwes, L., Roberts, P., Porfors, C. (2010). Efficient encoding of vocalizations in the auditory midbrain. Journal of Neuroscience, 30, 802.CrossRef Homstron, L., Eeuwes, L., Roberts, P., Porfors, C. (2010). Efficient encoding of vocalizations in the auditory midbrain. Journal of Neuroscience, 30, 802.CrossRef
Zurück zum Zitat Hromádka, T., DeWeese, M., Zador, A. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology, 6, 0124.CrossRef Hromádka, T., DeWeese, M., Zador, A. (2008). Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biology, 6, 0124.CrossRef
Zurück zum Zitat Hunsberger, E., Scott, M., Eliasmith, C. (2014). The competing benefits of noise and heterogeneity in neural coding. Neural Computation, 26, 1600.CrossRefPubMed Hunsberger, E., Scott, M., Eliasmith, C. (2014). The competing benefits of noise and heterogeneity in neural coding. Neural Computation, 26, 1600.CrossRefPubMed
Zurück zum Zitat Lerchner, A., Sterner, G., Hertz, J., Ahmadi, M. (2006). Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex. Network: Computation in Neural Systems, 17, 131.CrossRef Lerchner, A., Sterner, G., Hertz, J., Ahmadi, M. (2006). Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex. Network: Computation in Neural Systems, 17, 131.CrossRef
Zurück zum Zitat Lindner, B. (2016). Mechanisms of information filtering in neural systems. IEEE Transactions on Molecular Biological and Multiscale Communications, 2, 5.CrossRef Lindner, B. (2016). Mechanisms of information filtering in neural systems. IEEE Transactions on Molecular Biological and Multiscale Communications, 2, 5.CrossRef
Zurück zum Zitat Lindner, B., & Schimansky-Geier, L. (2001). Transmission of noise coded versus additive signals through a neuronal ensemble. Physical Review Letters, 86, 2934.CrossRefPubMed Lindner, B., & Schimansky-Geier, L. (2001). Transmission of noise coded versus additive signals through a neuronal ensemble. Physical Review Letters, 86, 2934.CrossRefPubMed
Zurück zum Zitat Lindner, B., Schimansky-Geier, L., Longtin, A. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031,916.CrossRef Lindner, B., Schimansky-Geier, L., Longtin, A. (2002). Maximizing spike train coherence or incoherence in the leaky integrate-and-fire model. Physical Review E, 66, 031,916.CrossRef
Zurück zum Zitat Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 15, 1498.CrossRefPubMedPubMedCentral Litwin-Kumar, A., & Doiron, B. (2012). Slow dynamics and high variability in balanced cortical networks with clustered connections. Nature Neuroscience, 15, 1498.CrossRefPubMedPubMedCentral
Zurück zum Zitat Longtin, A. (1993). Stochastic resonance in neuron models. Journal of Statistical Physics, 70, 309.CrossRef Longtin, A. (1993). Stochastic resonance in neuron models. Journal of Statistical Physics, 70, 309.CrossRef
Zurück zum Zitat Maler, L. (2009). Receptive field organization across multiple electrosensory maps. Journal of Comparative Neurology, 516, 376.CrossRefPubMed Maler, L. (2009). Receptive field organization across multiple electrosensory maps. Journal of Comparative Neurology, 516, 376.CrossRefPubMed
Zurück zum Zitat Marsat, G., & Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology, 104, 2543.CrossRefPubMed Marsat, G., & Maler, L. (2010). Neural heterogeneity and efficient population codes for communication signals. Journal of Neurophysiology, 104, 2543.CrossRefPubMed
Zurück zum Zitat McDonnell, M.D., & Ward, L.M. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12, 415.CrossRefPubMed McDonnell, M.D., & Ward, L.M. (2011). The benefits of noise in neural systems: bridging theory and experiment. Nature Reviews Neuroscience, 12, 415.CrossRefPubMed
Zurück zum Zitat McDonnell, M.D., Stocks, N.G., Abbott, D. (2007). Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. Physical Review E, 75, 061,105.CrossRef McDonnell, M.D., Stocks, N.G., Abbott, D. (2007). Optimal stimulus and noise distributions for information transmission via suprathreshold stochastic resonance. Physical Review E, 75, 061,105.CrossRef
Zurück zum Zitat Mejias, J.F., & Longtin, A. (2012). Optimal heterogeneity for coding in spiking neural networks. Physical Review Letters, 108, 228,102.CrossRef Mejias, J.F., & Longtin, A. (2012). Optimal heterogeneity for coding in spiking neural networks. Physical Review Letters, 108, 228,102.CrossRef
Zurück zum Zitat Mejias, J., & Longtin, A. (2014). Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Frontiers in Computational Neuroscience 8. Mejias, J., & Longtin, A. (2014). Differential effects of excitatory and inhibitory heterogeneity on the gain and asynchronous state of sparse cortical networks. Frontiers in Computational Neuroscience 8.
Zurück zum Zitat Metzen, M.G., & Chacron, M.J. (2015). Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features. Journal of Neuroscience, 35, 3124.CrossRefPubMedPubMedCentral Metzen, M.G., & Chacron, M.J. (2015). Neural heterogeneities determine response characteristics to second-, but not first-order stimulus features. Journal of Neuroscience, 35, 3124.CrossRefPubMedPubMedCentral
Zurück zum Zitat Nicolis, C. (1982). Stochastic aspects of climatic transitions - response to a periodic forcing. Tellus, 34, 1.CrossRef Nicolis, C. (1982). Stochastic aspects of climatic transitions - response to a periodic forcing. Tellus, 34, 1.CrossRef
Zurück zum Zitat Nikitin, A., Khovanov, I.A., Morse, R.P., Stocks, N.G. (2010). Enhanced information transmission with signal dependent noise in an array of lif neurons. European Physical Journal Special Topics, 187, 205.CrossRef Nikitin, A., Khovanov, I.A., Morse, R.P., Stocks, N.G. (2010). Enhanced information transmission with signal dependent noise in an array of lif neurons. European Physical Journal Special Topics, 187, 205.CrossRef
Zurück zum Zitat O’Connor, D., Peron, S., Huber, D., Svoboda, K. (2010). Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron, 67, 1048.CrossRefPubMed O’Connor, D., Peron, S., Huber, D., Svoboda, K. (2010). Neural activity in barrel cortex underlying vibrissa-based object localization in mice. Neuron, 67, 1048.CrossRefPubMed
Zurück zum Zitat Olmi, S., Livi, R., Politi, A., Torcini, A. (2010). Collective oscillations in disordered neural networks. Physical Review E, 81, 046,119.CrossRef Olmi, S., Livi, R., Politi, A., Torcini, A. (2010). Collective oscillations in disordered neural networks. Physical Review E, 81, 046,119.CrossRef
Zurück zum Zitat Osborne, L.C., Palmer, S.E., Lisberger, S.G., Bialek, W. (2008). The neural basis for combinatorial coding in a cortical population response. Journal of Neuroscience, 28, 13,522.CrossRef Osborne, L.C., Palmer, S.E., Lisberger, S.G., Bialek, W. (2008). The neural basis for combinatorial coding in a cortical population response. Journal of Neuroscience, 28, 13,522.CrossRef
Zurück zum Zitat Ostojic, S. (2014). Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature Neuroscience, 17, 594.CrossRefPubMed Ostojic, S. (2014). Two types of asynchronous activity in networks of excitatory and inhibitory spiking neurons. Nature Neuroscience, 17, 594.CrossRefPubMed
Zurück zum Zitat Ostojic, S., & Brunel, N. (2011). From spiking neuron models to linear-nonlinear models. PLoS Computational Biology, 7, e1001,056.CrossRef Ostojic, S., & Brunel, N. (2011). From spiking neuron models to linear-nonlinear models. PLoS Computational Biology, 7, e1001,056.CrossRef
Zurück zum Zitat Ostojic, S., Brunel, N., Hakim, V. (2009a). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. Journal of Neuroscience, 29, 10,234.CrossRef Ostojic, S., Brunel, N., Hakim, V. (2009a). How connectivity, background activity, and synaptic properties shape the cross-correlation between spike trains. Journal of Neuroscience, 29, 10,234.CrossRef
Zurück zum Zitat Ostojic, S., Brunel, N., Hakim, V. (2009b). Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. Journal of Computational Neuroscience, 26, 369.CrossRefPubMed Ostojic, S., Brunel, N., Hakim, V. (2009b). Synchronization properties of networks of electrically coupled neurons in the presence of noise and heterogeneities. Journal of Computational Neuroscience, 26, 369.CrossRefPubMed
Zurück zum Zitat Padmanabhan, K., & Urban, N. (2010). Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neuroscience, 13, 1276.CrossRefPubMedPubMedCentral Padmanabhan, K., & Urban, N. (2010). Intrinsic biophysical diversity decorrelates neuronal firing while increasing information content. Nature Neuroscience, 13, 1276.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sadeghi, S.G., Chacron, M.J., Taylor, M.C., Cullen, K.E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. Journal of Neuroscience, 27(4), 771.CrossRefPubMedPubMedCentral Sadeghi, S.G., Chacron, M.J., Taylor, M.C., Cullen, K.E. (2007). Neural variability, detection thresholds, and information transmission in the vestibular system. Journal of Neuroscience, 27(4), 771.CrossRefPubMedPubMedCentral
Zurück zum Zitat Sceniak, M.P., & Sabo, S.L. (2010). Modulation of firing rate by background synaptic noise statistics in rat visual cortical neurons. Journal of Neurophysiology, 104, 2792.CrossRefPubMed Sceniak, M.P., & Sabo, S.L. (2010). Modulation of firing rate by background synaptic noise statistics in rat visual cortical neurons. Journal of Neurophysiology, 104, 2792.CrossRefPubMed
Zurück zum Zitat Schmid, G., Goychuk, I., Hänggi, P. (2004). Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Physical Biology, 1, 61.CrossRefPubMed Schmid, G., Goychuk, I., Hänggi, P. (2004). Effect of channel block on the spiking activity of excitable membranes in a stochastic Hodgkin-Huxley model. Physical Biology, 1, 61.CrossRefPubMed
Zurück zum Zitat Shadlen, M., & Newsome, W. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569.CrossRefPubMed Shadlen, M., & Newsome, W. (1994). Noise, neural codes and cortical organization. Current Opinion in Neurobiology, 4, 569.CrossRefPubMed
Zurück zum Zitat Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146, 1082.CrossRefPubMed Shafi, M., Zhou, Y., Quintana, J., Chow, C., Fuster, J., Bodner, M. (2007). Variability in neuronal activity in primate cortex during working memory tasks. Neuroscience, 146, 1082.CrossRefPubMed
Zurück zum Zitat Shamir, M., & Sompolinsky, H. (2006). Implications of neuronal diversity on population coding. Neural Computation, 18(8), 1951.CrossRefPubMed Shamir, M., & Sompolinsky, H. (2006). Implications of neuronal diversity on population coding. Neural Computation, 18(8), 1951.CrossRefPubMed
Zurück zum Zitat Steinmetz, P.N., Manwani, A., Koch, C., London, M., Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9, 133.CrossRefPubMed Steinmetz, P.N., Manwani, A., Koch, C., London, M., Segev, I. (2000). Subthreshold voltage noise due to channel fluctuations in active neuronal membranes. Journal of Computational Neuroscience, 9, 133.CrossRefPubMed
Zurück zum Zitat Stocks, N.G. (2000). Suprathreshold stochastic resonance in multilevel threshold systems. Physical Review Letters, 84, 2310.CrossRefPubMed Stocks, N.G. (2000). Suprathreshold stochastic resonance in multilevel threshold systems. Physical Review Letters, 84, 2310.CrossRefPubMed
Zurück zum Zitat Stocks, N.G., & Mannella, R. (2001). Generic noise-enhanced coding in neuronal arrays. Physical Review E, 64, 030,902.CrossRef Stocks, N.G., & Mannella, R. (2001). Generic noise-enhanced coding in neuronal arrays. Physical Review E, 64, 030,902.CrossRef
Zurück zum Zitat Strong, S.P., Koberle, R., van Steveninck, R.R.D., Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197.CrossRef Strong, S.P., Koberle, R., van Steveninck, R.R.D., Bialek, W. (1998). Entropy and information in neural spike trains. Physical Review Letters, 80, 197.CrossRef
Zurück zum Zitat Tripathy, S.J., Padmanabhan, K., Gerkin, R.C., Urban, N.N. (2013). Intermediate intrinsic diversity enhances neural population coding. Proceedings of the National Academy of Sciences of the United States of America, 110, 8248.CrossRefPubMedPubMedCentral Tripathy, S.J., Padmanabhan, K., Gerkin, R.C., Urban, N.N. (2013). Intermediate intrinsic diversity enhances neural population coding. Proceedings of the National Academy of Sciences of the United States of America, 110, 8248.CrossRefPubMedPubMedCentral
Zurück zum Zitat Vilela, R.D., & Lindner, B. (2009a). Are the input parameters of white-noise-driven integrate & fire neurons uniquely determined by rate and CV? Journal of Theoretical Biology, 257, 90.CrossRefPubMed Vilela, R.D., & Lindner, B. (2009a). Are the input parameters of white-noise-driven integrate & fire neurons uniquely determined by rate and CV? Journal of Theoretical Biology, 257, 90.CrossRefPubMed
Zurück zum Zitat Vilela, R.D., & Lindner, B. (2009b). A comparative study of three different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 80, 031,909.CrossRef Vilela, R.D., & Lindner, B. (2009b). A comparative study of three different integrate-and-fire neurons: spontaneous activity, dynamical response, and stimulus-induced correlation. Physical Review E, 80, 031,909.CrossRef
Zurück zum Zitat Voronenko, S., & Lindner, B. (2017). Nonlinear response of noisy neurons. New Journal of Physics, 19, 033,038.CrossRef Voronenko, S., & Lindner, B. (2017). Nonlinear response of noisy neurons. New Journal of Physics, 19, 033,038.CrossRef
Zurück zum Zitat van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724.CrossRefPubMed van Vreeswijk, C., & Sompolinsky, H. (1996). Chaos in neuronal networks with balanced excitatory and inhibitory activity. Science, 274, 1724.CrossRefPubMed
Zurück zum Zitat Wessel, R., Koch, C., Gabbiani, F. (1996). Coding of time varying elcetric field amplitude modulations in a wave-type electric fish. Journal of Neurophysiology, 75, 2280.CrossRefPubMed Wessel, R., Koch, C., Gabbiani, F. (1996). Coding of time varying elcetric field amplitude modulations in a wave-type electric fish. Journal of Neurophysiology, 75, 2280.CrossRefPubMed
Zurück zum Zitat Wieland, S., Bernardi, D., Schwalger, T., Lindner, B. (2015). Slow fluctuations in recurrent networks of spiking neurons. Physical Review E, 92, 040,901(R).CrossRef Wieland, S., Bernardi, D., Schwalger, T., Lindner, B. (2015). Slow fluctuations in recurrent networks of spiking neurons. Physical Review E, 92, 040,901(R).CrossRef
Zurück zum Zitat Wiesenfeld, K., & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS. Nature, 373, 33.CrossRefPubMed Wiesenfeld, K., & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages to crayfish and SQUIDS. Nature, 373, 33.CrossRefPubMed
Zurück zum Zitat Wolfart, J., Debay, D., Masson, G.L., Destexhe, A., Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760.CrossRefPubMed Wolfart, J., Debay, D., Masson, G.L., Destexhe, A., Bal, T. (2005). Synaptic background activity controls spike transfer from thalamus to cortex. Nature Neuroscience, 8, 1760.CrossRefPubMed
Metadaten
Titel
Coding of time-dependent stimuli in homogeneous and heterogeneous neural populations
verfasst von
Manuel Beiran
Alexandra Kruscha
Jan Benda
Benjamin Lindner
Publikationsdatum
08.12.2017
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2018
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-017-0674-4

Weitere Artikel der Ausgabe 2/2018

Journal of Computational Neuroscience 2/2018 Zur Ausgabe