Skip to main content
Erschienen in: Wireless Networks 6/2017

24.03.2016

Collision resolving relay selection in large-scale blind relay networks

verfasst von: Fengchen Ouyang, Jianhua Ge, Fengkui Gong, Jun Hou

Erschienen in: Wireless Networks | Ausgabe 6/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Optimal relay selection in large-scale networks is a difficult task since the network is usually considered as blind due to the high volume and collection difficulty of the relays’ information. In this paper, we develop a collision resolving relay selection (CReS) scheme that achieves the optimal relay from a random set of candidates without the previous knowledge of any individual relay. By introducing stochastic geometry based quality-of-service region, the relation between the distribution of the available relay number and the transmission request is established. Furthermore, the selection phase of the CReS scheme is divided into two sub-phases according to different distributions of the relay number in boundless and bounded regions. A switch rule is proposed when several relays collide in the first sub-phase, followed by the second sub-phase to resolve the collision with the splitting algorithm. The optimal solution that requires minimum selection slots for all sub-phases is derived. In addition, a sub-optimal solution is also explored to reduce the computational complexity. The scheme shows a better applicability than conventional information-based schemes in view of its little information requirement when dealing with large-scale relay allocation problems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
Only single relay selection is considered in this paper.
 
2
It is clear that with no blank region, the available region and the QoS region are equal in the first unit.
 
3
Relays in the original relay region \({\mathbb {R}}^2\) is no longer a PPP in the second unit since a determined blank region \({\mathcal {S}}^{\mathrm{B}}\) has already been observed.
 
Literatur
1.
Zurück zum Zitat Song, H. H., Qiu, L., & Zhang, Y. (2009). NetQuest: A flexible framework for large-scale network measurement. IEEE/ACM Transactions on Networking, 17(1), 106–119.CrossRef Song, H. H., Qiu, L., & Zhang, Y. (2009). NetQuest: A flexible framework for large-scale network measurement. IEEE/ACM Transactions on Networking, 17(1), 106–119.CrossRef
2.
Zurück zum Zitat Kim, S., & Chun, Y. (2013). Reliability-rate tradeoff in large-scale multiple access relay networks. IEEE Journal on Selected Areas in Communications, 31(8), 1414–1422.CrossRef Kim, S., & Chun, Y. (2013). Reliability-rate tradeoff in large-scale multiple access relay networks. IEEE Journal on Selected Areas in Communications, 31(8), 1414–1422.CrossRef
3.
Zurück zum Zitat Koulali, M.-A., Rabat, M., Kobbane, A., El Koutbi, M., & Ben-Othman, J. (2012). Optimal distributed relay selection for duty-cycling wireless sensor networks. In: Proceedings of GLOBECOM (pp. 145–150). Koulali, M.-A., Rabat, M., Kobbane, A., El Koutbi, M., & Ben-Othman, J. (2012). Optimal distributed relay selection for duty-cycling wireless sensor networks. In: Proceedings of GLOBECOM (pp. 145–150).
4.
Zurück zum Zitat Zou, Y., Wang, X., & Shen, W. (2013). Intercept probability analysis of cooperative wireless networks with best relay selection in the presence of eavesdropping attack. In Proceedings of ICC (pp. 2183–2187). Zou, Y., Wang, X., & Shen, W. (2013). Intercept probability analysis of cooperative wireless networks with best relay selection in the presence of eavesdropping attack. In Proceedings of ICC (pp. 2183–2187).
5.
Zurück zum Zitat Chen, G., Tian, Z., Gong, Y., & Chambers, J. (2014). Decode-and-forward buffer-aided relay selection in cognitive relay networks. IEEE Transactions on Vehicular Technology, 63(9), 4723–4728.CrossRef Chen, G., Tian, Z., Gong, Y., & Chambers, J. (2014). Decode-and-forward buffer-aided relay selection in cognitive relay networks. IEEE Transactions on Vehicular Technology, 63(9), 4723–4728.CrossRef
6.
Zurück zum Zitat Seyfi, M., Muhaidat, S., Liang, J., & Dianati, M. (2011). Effect of feedback delay on the performance of cooperative networks with relay selection. IEEE Transactions on Wireless Communications, 10(12), 4161–4171.CrossRef Seyfi, M., Muhaidat, S., Liang, J., & Dianati, M. (2011). Effect of feedback delay on the performance of cooperative networks with relay selection. IEEE Transactions on Wireless Communications, 10(12), 4161–4171.CrossRef
7.
Zurück zum Zitat Yan, Y., Huang, J., & Wang, J. (2013). Dynamic bargaining for relay-based cooperative spectrum sharing. IEEE Journal on Selected Areas in Communications, 31(8), 1480–1493.CrossRef Yan, Y., Huang, J., & Wang, J. (2013). Dynamic bargaining for relay-based cooperative spectrum sharing. IEEE Journal on Selected Areas in Communications, 31(8), 1480–1493.CrossRef
8.
Zurück zum Zitat Chae, C., Tang, T., Heath, R. W, Jr., & Cho, S. (2008). MIMO relaying with linear processing for multiuser transmission in fixed relay networks. IEEE Transactions on Signal Processing, 56(2), 727–738.MathSciNetCrossRef Chae, C., Tang, T., Heath, R. W, Jr., & Cho, S. (2008). MIMO relaying with linear processing for multiuser transmission in fixed relay networks. IEEE Transactions on Signal Processing, 56(2), 727–738.MathSciNetCrossRef
9.
Zurück zum Zitat Jing, Y., & Jafarkhani, H. (2009). Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications, 8(3), 1414–1423.CrossRef Jing, Y., & Jafarkhani, H. (2009). Single and multiple relay selection schemes and their achievable diversity orders. IEEE Transactions on Wireless Communications, 8(3), 1414–1423.CrossRef
10.
Zurück zum Zitat Zou, Y., Champagne, B., Zhu, W., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228. Zou, Y., Champagne, B., Zhu, W., & Hanzo, L. (2015). Relay-selection improves the security-reliability trade-off in cognitive radio systems. IEEE Transactions on Communications, 63(1), 215–228.
11.
Zurück zum Zitat Ouyang, F., Ge, J., & Hou, J. (2014). Cooperative waiting-time reduction for cognitive radio networks using Stackelberg game. IET Communications, 8(17), 3072–3080.CrossRef Ouyang, F., Ge, J., & Hou, J. (2014). Cooperative waiting-time reduction for cognitive radio networks using Stackelberg game. IET Communications, 8(17), 3072–3080.CrossRef
12.
Zurück zum Zitat Park, S., Kim, D., & Nam, S. (2011). Adaptive threshold based relay selection for minimum feedback and channel usage. IEEE Transactions on Wireless Communications, 10(11), 3620–3625.CrossRef Park, S., Kim, D., & Nam, S. (2011). Adaptive threshold based relay selection for minimum feedback and channel usage. IEEE Transactions on Wireless Communications, 10(11), 3620–3625.CrossRef
13.
Zurück zum Zitat Tao, T., & Czylwik, A. (2013). Beamforming design and relay selection form multiple MIMO AF relay systems with limited feedback. In Proceedings of IEEE VTC Spring (pp. 1–5). Tao, T., & Czylwik, A. (2013). Beamforming design and relay selection form multiple MIMO AF relay systems with limited feedback. In Proceedings of IEEE VTC Spring (pp. 1–5).
14.
Zurück zum Zitat Zhang, X., Jafarkhani, H., Ghrayeb, A., & Hasna, M. O. (2014). Relay assignment in multiple source-destination cooperative networks with limited feedback. IEEE Transactions on Wireless Communications, 13(10), 5741–5751.CrossRef Zhang, X., Jafarkhani, H., Ghrayeb, A., & Hasna, M. O. (2014). Relay assignment in multiple source-destination cooperative networks with limited feedback. IEEE Transactions on Wireless Communications, 13(10), 5741–5751.CrossRef
15.
Zurück zum Zitat Taleb, T., & Ksentini, A. (2013). Follow me cloud: Interworking federated clouds and distributed mobile networks. IEEE Networks, 27(5), 12–19.CrossRef Taleb, T., & Ksentini, A. (2013). Follow me cloud: Interworking federated clouds and distributed mobile networks. IEEE Networks, 27(5), 12–19.CrossRef
16.
Zurück zum Zitat Ouyang, F., Ge, J., Gong, F., & Hou, J. (2015). Random access based blind relay selection in large-scale relay networks. IEEE Communications Letters, 19(2), 255–258.CrossRef Ouyang, F., Ge, J., Gong, F., & Hou, J. (2015). Random access based blind relay selection in large-scale relay networks. IEEE Communications Letters, 19(2), 255–258.CrossRef
17.
Zurück zum Zitat Qin, X., & Berry, R. (2004). Opportunistic splitting algorithms for wireless networks. In Proceedings of INFOCOM (pp. 1662–1672). Qin, X., & Berry, R. (2004). Opportunistic splitting algorithms for wireless networks. In Proceedings of INFOCOM (pp. 1662–1672).
18.
Zurück zum Zitat Shah, V., Mehta, N. B., & Yim, R. (2010). Splitting algorithms for fast relay selection: Generalizations, analysis, and a unified view. IEEE Transactions on Wireless Communications, 9(4), 1525–1535.CrossRef Shah, V., Mehta, N. B., & Yim, R. (2010). Splitting algorithms for fast relay selection: Generalizations, analysis, and a unified view. IEEE Transactions on Wireless Communications, 9(4), 1525–1535.CrossRef
19.
Zurück zum Zitat Shah, V., Mehta, N. B., & Yim, R. (2010). The relay selection and transmission trade-off in cooperative communication systems. IEEE Transactions on Wireless Communications, 9(8), 2505–2515.CrossRef Shah, V., Mehta, N. B., & Yim, R. (2010). The relay selection and transmission trade-off in cooperative communication systems. IEEE Transactions on Wireless Communications, 9(8), 2505–2515.CrossRef
20.
Zurück zum Zitat Baccelli, F., & Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks: Volume I–Theory. Foundations and Trends in Networking, 3(3/4), 249–449.CrossRefMATH Baccelli, F., & Blaszczyszyn, B. (2009). Stochastic geometry and wireless networks: Volume I–Theory. Foundations and Trends in Networking, 3(3/4), 249–449.CrossRefMATH
21.
Zurück zum Zitat Cho, S., Choi, W., & Huang, K. (2011). QoS provisioning relay selection in random relay networks. IEEE Transactions on Vehicular Technology, 60(6), 2680–2689.CrossRef Cho, S., Choi, W., & Huang, K. (2011). QoS provisioning relay selection in random relay networks. IEEE Transactions on Vehicular Technology, 60(6), 2680–2689.CrossRef
22.
Zurück zum Zitat Li, B., Li, H., Wang, W., Hu, Z., & Yin, Q. (2013). Energy-effective relay selection by utilizing spacial diversity for random wireless sensor networks. IEEE Communications Letters, 17(10), 1972–1975.CrossRef Li, B., Li, H., Wang, W., Hu, Z., & Yin, Q. (2013). Energy-effective relay selection by utilizing spacial diversity for random wireless sensor networks. IEEE Communications Letters, 17(10), 1972–1975.CrossRef
23.
Zurück zum Zitat Zhai, C., Zhang, W., & Mao, G. (2012). Cooperative spectrum sharing between cellular and Ad-Hoc networks. IEEE Transactions on Wireless Communications, 13(7), 4025–4037.CrossRef Zhai, C., Zhang, W., & Mao, G. (2012). Cooperative spectrum sharing between cellular and Ad-Hoc networks. IEEE Transactions on Wireless Communications, 13(7), 4025–4037.CrossRef
24.
Zurück zum Zitat Lin, Z., Li, Y., Wen, S., Gao, Y., Zhang, X., & Yang, D. (2014). Stochastic geometry analysis of achievable transmission capacity for relay-assisted device-to-device networks. In Proceedings of ICC (pp. 2251–2256). Lin, Z., Li, Y., Wen, S., Gao, Y., Zhang, X., & Yang, D. (2014). Stochastic geometry analysis of achievable transmission capacity for relay-assisted device-to-device networks. In Proceedings of ICC (pp. 2251–2256).
25.
Zurück zum Zitat Deng, N., Zhang, S., Zhou, W., & Zhu, J. (2012). A stochastic geometry approach to energy efficiency in relay-assisted cellular networks. In Proceedings of GLOBECOM (pp. 3484–3489). Deng, N., Zhang, S., Zhou, W., & Zhu, J. (2012). A stochastic geometry approach to energy efficiency in relay-assisted cellular networks. In Proceedings of GLOBECOM (pp. 3484–3489).
26.
Zurück zum Zitat Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH Laneman, J. N., Tse, D. N. C., & Wornell, G. W. (2004). Cooperative diversity in wireless networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory, 50(12), 3062–3080.MathSciNetCrossRefMATH
27.
Zurück zum Zitat Baddeley, A. (2007). Spatial point processes and their applications. In Stochastic Geometry, Lecture Notes in Mathematics (pp. 1–75). Springer. Baddeley, A. (2007). Spatial point processes and their applications. In Stochastic Geometry, Lecture Notes in Mathematics (pp. 1–75). Springer.
Metadaten
Titel
Collision resolving relay selection in large-scale blind relay networks
verfasst von
Fengchen Ouyang
Jianhua Ge
Fengkui Gong
Jun Hou
Publikationsdatum
24.03.2016
Verlag
Springer US
Erschienen in
Wireless Networks / Ausgabe 6/2017
Print ISSN: 1022-0038
Elektronische ISSN: 1572-8196
DOI
https://doi.org/10.1007/s11276-016-1254-7

Weitere Artikel der Ausgabe 6/2017

Wireless Networks 6/2017 Zur Ausgabe

Neuer Inhalt