Skip to main content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

Erschienen in: Multimedia Systems 6/2022

07.07.2022 | Regular Paper

Combating multimodal fake news on social media: methods, datasets, and future perspective

verfasst von: Sakshini Hangloo, Bhavna Arora

Erschienen in: Multimedia Systems | Ausgabe 6/2022

Einloggen

Abstract

The growth in the use of social media platforms such as Facebook and Twitter over the past decade has significantly facilitated and improved the way people communicate with each other. However, the information that is available and shared online is not always credible. These platforms provide a fertile ground for the rapid propagation of breaking news along with other misleading information. The enormous amounts of fake news present online have the potential to trigger serious problems at an individual level and in society at large. Detecting whether the given information is fake or not is a challenging problem and the traits of social media makes the task even more complicated as it eases the generation and spread of content to the masses leading to an enormous volume of content to analyze. The multimedia nature of fake news on online platforms has not been explored fully. This survey presents a comprehensive overview of the state-of-the-art techniques for combating fake news on online media with the prime focus on deep learning (DL) techniques keeping multimodality under consideration. Apart from this, various DL frameworks, pre-trained models, and transfer learning approaches are also underlined. As till date, there are only limited multimodal datasets that are available for this task, the paper highlights various data collection strategies that can be used along with a comparative analysis of available multimodal fake news datasets. The paper also highlights and discusses various open areas and challenges in this direction.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
5.
Zurück zum Zitat R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” Lr. 2020 - 12th Int. Conf. Lang. Resour. Eval. Conf. Proc., pp. 6086–6093, 2020. R. Oshikawa, J. Qian, and W. Y. Wang, “A survey on natural language processing for fake news detection,” Lr. 2020 - 12th Int. Conf. Lang. Resour. Eval. Conf. Proc., pp. 6086–6093, 2020.
17.
Zurück zum Zitat J. Ma et al., “Detecting rumors from microblogs with recurrent neural networks,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 3818–3824, 2016. J. Ma et al., “Detecting rumors from microblogs with recurrent neural networks,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, pp. 3818–3824, 2016.
32.
Zurück zum Zitat Sam Spencer and R. Srikant, “Maximum likelihood rumor source detection in a star network.” Sam Spencer and R. Srikant, “Maximum likelihood rumor source detection in a star network.”
38.
Zurück zum Zitat G. Gorrell, K. Bontcheva, L. Derczynski, E. Kochkina, M. Liakata, and A. Zubiaga, “RumourEval 2019: Determining rumour veracity and support for rumours,” arXiv, pp. 69–76, 2018. G. Gorrell, K. Bontcheva, L. Derczynski, E. Kochkina, M. Liakata, and A. Zubiaga, “RumourEval 2019: Determining rumour veracity and support for rumours,” arXiv, pp. 69–76, 2018.
54.
Zurück zum Zitat K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015—Conf. Track Proc., pp. 1–14, 2015. K. Simonyan and A. Zisserman, “Very deep convolutional networks for large-scale image recognition,” 3rd Int. Conf. Learn. Represent. ICLR 2015—Conf. Track Proc., pp. 1–14, 2015.
57.
Zurück zum Zitat J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.—Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019. J. Devlin, M. W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-training of deep bidirectional transformers for language understanding,” NAACL HLT 2019 - 2019 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol.—Proc. Conf., vol. 1, no. Mlm, pp. 4171–4186, 2019.
58.
Zurück zum Zitat Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized autoregressive pretraining for language understanding,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, pp. 1–18, 2019. Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. Salakhutdinov, and Q. V. Le, “XLNet: Generalized autoregressive pretraining for language understanding,” Adv. Neural Inf. Process. Syst., vol. 32, no. NeurIPS, pp. 1–18, 2019.
61.
Zurück zum Zitat A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection and resolution of rumours in social media: A survey,” arXiv, vol. 51, no. 2, 2017. A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter, “Detection and resolution of rumours in social media: A survey,” arXiv, vol. 51, no. 2, 2017.
81.
Zurück zum Zitat P. Galán-García, J. G. de la Puerta, C. L. Gómez, I. Santos, and P. G. Bringas, “Supervised Machine Learning for the Detection of Troll Profiles in Twitter Social Network: Application to a Real Case of Cyberbullying Patxi,” Log. J. IGPL, pp. 42–53, 2016, https://​doi.​org/​10.​1007/​978-3-319-01854-6. P. Galán-García, J. G. de la Puerta, C. L. Gómez, I. Santos, and P. G. Bringas, “Supervised Machine Learning for the Detection of Troll Profiles in Twitter Social Network: Application to a Real Case of Cyberbullying Patxi,” Log. J. IGPL, pp. 42–53, 2016, https://​doi.​org/​10.​1007/​978-3-319-01854-6.
85.
Zurück zum Zitat Y. Liu and Y. B. Wu, “Early Detection of Fake News on Social Media Through Propagation Path Classification with Recurrent and Convolutional Networks,” pp. 354–361. Y. Liu and Y. B. Wu, “Early Detection of Fake News on Social Media Through Propagation Path Classification with Recurrent and Convolutional Networks,” pp. 354–361.
89.
Zurück zum Zitat Boididou, C., et al.: Verifying Multimedia Use at MediaEval 2016. CEUR Workshop Proc. 1739, 4–6 (2016) Boididou, C., et al.: Verifying Multimedia Use at MediaEval 2016. CEUR Workshop Proc. 1739, 4–6 (2016)
90.
Zurück zum Zitat P. Zhou, H. Xintong, V. I. Morariu, and L. S. Davis, “Learning Rich Features for Image Manipulation Detection,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1053–1061, 2018, [Online]. Available: http://​openaccess.​thecvf.​com/​content_​cvpr_​2018/​papers/​Zhou_​Learning_​Rich_​Features_​CVPR_​2018_​paper.​pdf%0A, http://dl.acm.org/citation.cfm?doid=3133956.3134027. P. Zhou, H. Xintong, V. I. Morariu, and L. S. Davis, “Learning Rich Features for Image Manipulation Detection,” Proc. IEEE Conf. Comput. Vis. Pattern Recognit., pp. 1053–1061, 2018, [Online]. Available: http://​openaccess.​thecvf.​com/​content_​cvpr_​2018/​papers/​Zhou_​Learning_​Rich_​Features_​CVPR_​2018_​paper.​pdf%0A, http://dl.acm.org/citation.cfm?doid=3133956.3134027.
104.
Zurück zum Zitat S. Ahmed, K. Hinkelmann, and F. Corradini, “Combining machine learning with knowledge engineering to detect fake news in social networks - A survey,” CEUR Workshop Proc., vol. 2350, 2019. S. Ahmed, K. Hinkelmann, and F. Corradini, “Combining machine learning with knowledge engineering to detect fake news in social networks - A survey,” CEUR Workshop Proc., vol. 2350, 2019.
105.
Zurück zum Zitat E. Ortega-fernández, G. Padilla-castillo, S. L. Carcelén-garcía, and M. Arias-oliva, “fact checking agencies and processes to fight against fake news,” pp. 219–228, 2020. E. Ortega-fernández, G. Padilla-castillo, S. L. Carcelén-garcía, and M. Arias-oliva, “fact checking agencies and processes to fight against fake news,” pp. 219–228, 2020.
111.
Zurück zum Zitat P. Meel and D. K. Vishwakarma, “Multi-modal Fusion using Fine-tuned Self- attention and Transfer Learning for Veracity Analysis of Web Information.” P. Meel and D. K. Vishwakarma, “Multi-modal Fusion using Fine-tuned Self- attention and Transfer Learning for Veracity Analysis of Web Information.”
114.
Zurück zum Zitat S. Singhal, “SpotFake : A Multi-modal Framework for Fake News Detection,” 2015. S. Singhal, “SpotFake : A Multi-modal Framework for Fake News Detection,” 2015.
127.
Zurück zum Zitat A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017. A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 2017-Decem, no. Nips, pp. 5999–6009, 2017.
130.
Zurück zum Zitat Jindal, S., Sood, R., Singh, R., Vatsa, M., Chakraborty, T.: NewsBag: a multimodal benchmark dataset for fake news detection. CEUR Workshop Proc. 2560, 138–145 (2020) Jindal, S., Sood, R., Singh, R., Vatsa, M., Chakraborty, T.: NewsBag: a multimodal benchmark dataset for fake news detection. CEUR Workshop Proc. 2560, 138–145 (2020)
134.
Zurück zum Zitat Y. Qi, D. S. Sachan, M. Felix, S. J. Padmanabhan, and G. Neubig, “When and why are pre-trainedword embeddings useful for neural machine translation?,” NAACL HLT 2018 - 2018 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 2, pp. 529–535, 2018, https://​doi.​org/​10.​18653/​v1/​n18-2084. Y. Qi, D. S. Sachan, M. Felix, S. J. Padmanabhan, and G. Neubig, “When and why are pre-trainedword embeddings useful for neural machine translation?,” NAACL HLT 2018 - 2018 Conf. North Am. Chapter Assoc. Comput. Linguist. Hum. Lang. Technol. - Proc. Conf., vol. 2, pp. 529–535, 2018, https://​doi.​org/​10.​18653/​v1/​n18-2084.
138.
139.
Zurück zum Zitat D. Milne and I. H. Witten, “Learning to Link with Wikipedia,” 2008. D. Milne and I. H. Witten, “Learning to Link with Wikipedia,” 2008.
141.
Zurück zum Zitat F. Suchanek et al., “Yago : A Core of Semantic Knowledge Unifying WordNet and Wikipedia,” 2007. F. Suchanek et al., “Yago : A Core of Semantic Knowledge Unifying WordNet and Wikipedia,” 2007.
Metadaten
Titel
Combating multimodal fake news on social media: methods, datasets, and future perspective
verfasst von
Sakshini Hangloo
Bhavna Arora
Publikationsdatum
07.07.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Multimedia Systems / Ausgabe 6/2022
Print ISSN: 0942-4962
Elektronische ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-022-00966-y

Weitere Artikel der Ausgabe 6/2022

Multimedia Systems 6/2022 Zur Ausgabe