Skip to main content
Erschienen in: Cognitive Neurodynamics 6/2012

01.12.2012 | Research Article

Combined effects of LTP/LTD and synaptic scaling in formation of discrete and line attractors with persistent activity from non-trivial baseline

verfasst von: Timothee Leleu, Kazuyuki Aihara

Erschienen in: Cognitive Neurodynamics | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we analyze combined effects of LTP/LTD and synaptic scaling and study the creation of persistent activity from a periodic or chaotic baseline attractor. The bifurcations leading to the creation of new attractors have been detailed; this was achieved using a mean field approximation. Attractors encoding persistent activity can notably appear via generalized period-doubling bifurcations, tangent bifurcations of the second iterates or boundary crises, after which the basins of attraction become irregular. Synaptic scaling is shown to maintain the coexistence of a state of persistent activity and the baseline. According to the rate of change of the external inputs, different types of attractors can be formed: line attractors for rapidly changing external inputs and discrete attractors for constant external inputs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
It is important to note that phenomena that are related to spike timing (such as synchrony of spikes) are not taken into account here; however, they may play an important role in cognition studies (a temporal-coding hypothesis). Synchronous firing may disrupt persistent activity (Compte 2006) because of the different time scales for the receptors (primarily AMPA and GABAA), and create oscillations (Compte et al. 2003). All receptors are assumed to have an identical time scale for simplicity; thus only asynchronous persistent activity is considered in the following.
 
2
Note that the chaos observed in this network is of a different nature than the one observed in Sompolinsky et al. (1988), Doyon et al. (1994). Here, the average activity over the population of neurons, which is given by the mean field approximation, is chaotic (see Appendix 4).
 
3
Otherwise, only LTP/LTD are active, see Eq. (7).
 
4
An infinite set of maps indexed by the step n are thus considered.
 
5
A soft bifurcation induces new stable attractors in a small neighborhood of the old one. For example, tangent bifurcations far from the cusp and subcritical pitchfork bifurcations are hard, whereas supercritical pitchfork bifurcations are soft (Hoppensteadt and Izhikevich 1997).
 
6
For a normally hyperbolic invariant manifold (NHIM), the contraction vectors orthogonal to the manifold are stronger than those along the manifold (Hoppensteadt and Izhikevich 1997). NHIM can be interpreted as the generalization of a hyperbolic fixed point to non-trivial attractors. Formal definitions can be found in Fenichel (1972); Hirsch and Shub (1977), Pesin (2004). A fundamental property of these manifolds is that they are persistent under perturbations, i.e., the perturbed invariant manifold has normal and tangent subspaces that are close to the original manifold. This structural stability assures that an attractor of the perturbed system lies near an attractor of the unperturbed system.
 
7
Note that the assumption in Eq. (19) does not hold for \(\Updelta^{T_s} X_i(n), T_s \ll T_0\). Indeed, the terms X i (n) and X i (n − T s ) average almost identical trajectories, and therefore do not describe the attractors of two different dynamical systems (perturbed \(\tilde{G}(n)\) and unperturbed \(\tilde{G}(n-T_1)\)), but the difference between consecutive steps of the same attractor. In that case, these consecutive steps could be at a distance that is equal to the size of the attractor.
 
8
These populations should not be confused with excitatory and inhibitory populations which are common in neuroscience; for example in the Wilson-Conwan model (1972).
 
9
For simplicity, we assume γ+ =  − γ = γ > 0. Similar dynamics to the ones described in the following are also observed for other choices of γ and are not restrained to this set of parameters.
 
10
These two curves are the equivalent of nullclines for a system of differential equations.
 
11
Other distribution functions that induce multiple discrete attractors could be considered. This article focus only on the uniform distribution to show the creation of line attractors.
 
12
Simply considering the symmetry of the change in weights, all neurons are similarly affected by synaptic plasticity.
 
13
“Complex” refers here to the Kolmogorov-Sinai entropy.
 
14
The creation of fractal basin boundaries is also observed for systems with continuous time (Ott 1993), and is not an artifact due to the discrete time used in the current article.
 
Literatur
Zurück zum Zitat Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183PubMedCrossRef Abbott LF, Nelson SB (2000) Synaptic plasticity: taming the beast. Nat Neurosci 3:1178–1183PubMedCrossRef
Zurück zum Zitat Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144(6–7):333–340CrossRef Aihara K, Takabe T, Toyoda M (1990) Chaotic neural networks. Phys Lett A 144(6–7):333–340CrossRef
Zurück zum Zitat Amari S-I (1971) Characteristics of randomly connected threshold-element networks and network systems. Proc IEEE 59(1):35–47CrossRef Amari S-I (1971) Characteristics of randomly connected threshold-element networks and network systems. Proc IEEE 59(1):35–47CrossRef
Zurück zum Zitat Amari S-I (1972) Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans Comput C-21(11):1197–1206CrossRef Amari S-I (1972) Learning patterns and pattern sequences by self-organizing nets of threshold elements. IEEE Trans Comput C-21(11):1197–1206CrossRef
Zurück zum Zitat Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487PubMedCrossRef Artola A, Singer W (1993) Long-term depression of excitatory synaptic transmission and its relationship to long-term potentiation. Trends Neurosci 16:480–487PubMedCrossRef
Zurück zum Zitat Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56PubMedCrossRef Bartos M, Vida I, Jonas P (2007) Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks. Nat Rev Neurosci 8(1):45–56PubMedCrossRef
Zurück zum Zitat Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMed Bienenstock EL, Cooper LN, Munro PW (1982) Theory for the development of neuron selectivity: orientation specificity and binocular interaction in visual cortex. J Neurosci 2:32–48PubMed
Zurück zum Zitat Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13(2):204–211PubMedCrossRef Brody CD, Romo R, Kepecs A (2003) Basic mechanisms for graded persistent activity: discrete attractors, continuous attractors, and dynamic representations. Curr Opin Neurobiol 13(2):204–211PubMedCrossRef
Zurück zum Zitat Brunel N (1996) Hebbian learning of context in recurrent neural networks. Neural Comput Appl 8:1677–1710PubMedCrossRef Brunel N (1996) Hebbian learning of context in recurrent neural networks. Neural Comput Appl 8:1677–1710PubMedCrossRef
Zurück zum Zitat Brunel N (2003) Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cereb Cortex 13(11):1151–1161PubMedCrossRef Brunel N (2003) Dynamics and plasticity of stimulus-selective persistent activity in cortical network models. Cereb Cortex 13(11):1151–1161PubMedCrossRef
Zurück zum Zitat Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10(2):113–125PubMedCrossRef Buonomano DV, Maass W (2009) State-dependent computations: spatiotemporal processing in cortical networks. Nat Rev Neurosci 10(2):113–125PubMedCrossRef
Zurück zum Zitat Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput Appl 16(5):885–940PubMedCrossRef Burkitt AN, Meffin H, Grayden DB (2004) Spike-timing-dependent plasticity: the relationship to rate-based learning for models with weight dynamics determined by a stable fixed point. Neural Comput Appl 16(5):885–940PubMedCrossRef
Zurück zum Zitat Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain Behav Evol 125:935–951PubMedCrossRef Buxhoeveden DP, Casanova MF (2002) The minicolumn hypothesis in neuroscience. Brain Behav Evol 125:935–951PubMedCrossRef
Zurück zum Zitat Buzsaki G (2010) Neural syntax: Cell assemblies, synapsembles, and readers. Neuron 68(3):362–385PubMedCrossRef Buzsaki G (2010) Neural syntax: Cell assemblies, synapsembles, and readers. Neuron 68(3):362–385PubMedCrossRef
Zurück zum Zitat Caianiello ER (1961) Outline of a theory of thought-processes and thinking machines. J Theor Biol 1:204–235PubMedCrossRef Caianiello ER (1961) Outline of a theory of thought-processes and thinking machines. J Theor Biol 1:204–235PubMedCrossRef
Zurück zum Zitat Cessac B, Doyon B, Quoy M, Samuelides M (1994) Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Phys D 74:24–44CrossRef Cessac B, Doyon B, Quoy M, Samuelides M (1994) Mean-field equations, bifurcation map and route to chaos in discrete time neural networks. Phys D 74:24–44CrossRef
Zurück zum Zitat Churchland M et al (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci 13:369–378PubMedCrossRef Churchland M et al (2010) Stimulus onset quenches neural variability: a widespread cortical phenomenon. Nat Neurosci 13:369–378PubMedCrossRef
Zurück zum Zitat Compte A (2006) Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory. Neurosci Behav Physiol 139:135–151PubMedCrossRef Compte A (2006) Computational and in vitro studies of persistent activity: edging towards cellular and synaptic mechanisms of working memory. Neurosci Behav Physiol 139:135–151PubMedCrossRef
Zurück zum Zitat Compte A, Brunel N, Goldman-Rakic PS, Wang X-J (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923PubMedCrossRef Compte A, Brunel N, Goldman-Rakic PS, Wang X-J (2000) Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cereb Cortex 10(9):910–923PubMedCrossRef
Zurück zum Zitat Compte A, Constantinidis C, Tegner J, Raghavachari S, Chafee MV, Goldman-Rakic PS, Wang X-J (2003) Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J Neurophysiol 90:3441–3454PubMedCrossRef Compte A, Constantinidis C, Tegner J, Raghavachari S, Chafee MV, Goldman-Rakic PS, Wang X-J (2003) Temporally irregular mnemonic persistent activity in prefrontal neurons of monkeys during a delayed response task. J Neurophysiol 90:3441–3454PubMedCrossRef
Zurück zum Zitat Dauce E, Quoy M, Cessac B, Doyon B, Samuelides M (1998) Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Networks 11(3):521–533PubMedCrossRef Dauce E, Quoy M, Cessac B, Doyon B, Samuelides M (1998) Self-organization and dynamics reduction in recurrent networks: stimulus presentation and learning. Neural Networks 11(3):521–533PubMedCrossRef
Zurück zum Zitat Doyon B, Cessac B, Quoy M, Samuelides M (1994) On bifurcations and chaos in random neural networks. Acta Biotheor 42(2):215–225CrossRef Doyon B, Cessac B, Quoy M, Samuelides M (1994) On bifurcations and chaos in random neural networks. Acta Biotheor 42(2):215–225CrossRef
Zurück zum Zitat Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3:1184–1191PubMedCrossRef Durstewitz D, Seamans JK, Sejnowski TJ (2000) Neurocomputational models of working memory. Nat Neurosci 3:1184–1191PubMedCrossRef
Zurück zum Zitat Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292–303PubMedCrossRef Faisal AA, Selen LPJ, Wolpert DM (2008) Noise in the nervous system. Nat Rev Neurosci 9(4):292–303PubMedCrossRef
Zurück zum Zitat Fenichel N (1972) Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J 21(3):193–226CrossRef Fenichel N (1972) Persistence and smoothness of invariant manifolds for flows. Indiana Univ Math J 21(3):193–226CrossRef
Zurück zum Zitat Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349PubMed Funahashi S, Bruce CJ, Goldman-Rakic PS (1989) Mnemonic coding of visual space in the monkey’s dorsolateral prefrontal cortex. J Neurophysiol 61:331–349PubMed
Zurück zum Zitat Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3):181–200CrossRef Grebogi C, Ott E, Yorke JA (1983) Crises, sudden changes in chaotic attractors, and transient chaos. Physica D 7(1–3):181–200CrossRef
Zurück zum Zitat Grebogi C, Ott E, Yorke JA (1986) Metamorphoses of basin boundaries in nonlinear dynamical systems. Phys Rev Lett 56:1011–1014PubMedCrossRef Grebogi C, Ott E, Yorke JA (1986) Metamorphoses of basin boundaries in nonlinear dynamical systems. Phys Rev Lett 56:1011–1014PubMedCrossRef
Zurück zum Zitat Hansel D, Sompolinsky H (1998) Modeling feature selectivity in local cortical circuits. In: Methods in neuronal modeling: from synapse to networks. MIT Press, Cambridge Hansel D, Sompolinsky H (1998) Modeling feature selectivity in local cortical circuits. In: Methods in neuronal modeling: from synapse to networks. MIT Press, Cambridge
Zurück zum Zitat Hebb D (1949) The organization of behavior. Wiley, New York Hebb D (1949) The organization of behavior. Wiley, New York
Zurück zum Zitat Heemels W, Lehmann D, Lunze J, De Schutter B (2009) Introduction to hybrid systems. In: Lunze J, Lamnabhi-Lagarrigue F (eds) Handbook of hybrid systems control—theory tools applications, Cambridge University Press, Cambridge Heemels W, Lehmann D, Lunze J, De Schutter B (2009) Introduction to hybrid systems. In: Lunze J, Lamnabhi-Lagarrigue F (eds) Handbook of hybrid systems control—theory tools applications, Cambridge University Press, Cambridge
Zurück zum Zitat Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley Longman Publishing Co, Inc, Boston Hertz J, Krogh A, Palmer RG (1991) Introduction to the theory of neural computation. Addison-Wesley Longman Publishing Co, Inc, Boston
Zurück zum Zitat Hirsch MW, Pugh CC, Shub M (1977) Invariant manifolds. Springer, New York Hirsch MW, Pugh CC, Shub M (1977) Invariant manifolds. Springer, New York
Zurück zum Zitat Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci 79(8):2554–2558PubMedCrossRef Hopfield JJ (1982) Neural networks and physical systems with emergent collective computational abilities. Proc Nat Acad Sci 79(8):2554–2558PubMedCrossRef
Zurück zum Zitat Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New YorkCrossRef Hoppensteadt FC, Izhikevich EM (1997) Weakly connected neural networks. Springer, New YorkCrossRef
Zurück zum Zitat Ikegaya Y (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Sci Agric 304:559–564PubMedCrossRef Ikegaya Y (2004) Synfire chains and cortical songs: temporal modules of cortical activity. Sci Agric 304:559–564PubMedCrossRef
Zurück zum Zitat Ibarz B, Casado J, Sanjuan M (2011) Map-based models in neuronal dynamics. Phys Rep 501:1–74CrossRef Ibarz B, Casado J, Sanjuan M (2011) Map-based models in neuronal dynamics. Phys Rep 501:1–74CrossRef
Zurück zum Zitat Katori Y, Sakamoto K, Saito N, Tanji J, Mushiake H, Aihara K (2011) Representational switching by dynamical reorganization of attractor structure in a network model of the prefrontal cortex. PLoS Comput Biol 7(11):e1002266PubMedCrossRef Katori Y, Sakamoto K, Saito N, Tanji J, Mushiake H, Aihara K (2011) Representational switching by dynamical reorganization of attractor structure in a network model of the prefrontal cortex. PLoS Comput Biol 7(11):e1002266PubMedCrossRef
Zurück zum Zitat Korn H (2003) Is there chaos in the brain? ii. Experimental evidence and related models. CR Biol 326(9):787–840CrossRef Korn H (2003) Is there chaos in the brain? ii. Experimental evidence and related models. CR Biol 326(9):787–840CrossRef
Zurück zum Zitat Kuznetsov YA (1998) Elements of applied bifurcation theory. 2nd edn. Springer, New York Kuznetsov YA (1998) Elements of applied bifurcation theory. 2nd edn. Springer, New York
Zurück zum Zitat Leleu T, Aihara K (2011) Sequential memory retention by stabilization of cell assemblies. In: Post-conference proceedings of the 3rd international conference on cognitive neurodynamics, 9–13 June 2011 (in press) Leleu T, Aihara K (2011) Sequential memory retention by stabilization of cell assemblies. In: Post-conference proceedings of the 3rd international conference on cognitive neurodynamics, 9–13 June 2011 (in press)
Zurück zum Zitat Li Y, Nara S (2008) Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model. Cogn Neurodyn 2(1):39–48PubMedCrossRef Li Y, Nara S (2008) Novel tracking function of moving target using chaotic dynamics in a recurrent neural network model. Cogn Neurodyn 2(1):39–48PubMedCrossRef
Zurück zum Zitat Major G, Tank D (2004) Persistent neural activity: prevalence and mechanisms. Curr Opin Neurobiol 14(6):675–684PubMedCrossRef Major G, Tank D (2004) Persistent neural activity: prevalence and mechanisms. Curr Opin Neurobiol 14(6):675–684PubMedCrossRef
Zurück zum Zitat Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizawa S, Nagumo J-I (1987) Chaos and phase locking in normal squid axons. Phys Lett A 123(4):162–166CrossRef Matsumoto G, Aihara K, Hanyu Y, Takahashi N, Yoshizawa S, Nagumo J-I (1987) Chaos and phase locking in normal squid axons. Phys Lett A 123(4):162–166CrossRef
Zurück zum Zitat McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115–133CrossRef McCulloch W, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 7:115–133CrossRef
Zurück zum Zitat Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nat Biotechnol 335(6193):817–820PubMedCrossRef Miyashita Y (1988) Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nat Biotechnol 335(6193):817–820PubMedCrossRef
Zurück zum Zitat Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective persistent activity induced by hebbian learning in a recurrent cortical network. Eur J Neurosci 18(7):2011–2024PubMedCrossRef Mongillo G, Amit DJ, Brunel N (2003) Retrospective and prospective persistent activity induced by hebbian learning in a recurrent cortical network. Eur J Neurosci 18(7):2011–2024PubMedCrossRef
Zurück zum Zitat Moynot O, Samuelides M (2002) Large deviations and mean-field theory for asymmetric random recurrent neural networks. Probab Theory Relat Fields 123:41–75CrossRef Moynot O, Samuelides M (2002) Large deviations and mean-field theory for asymmetric random recurrent neural networks. Probab Theory Relat Fields 123:41–75CrossRef
Zurück zum Zitat Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J (2006) Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50(4):631–641PubMedCrossRef Mushiake H, Saito N, Sakamoto K, Itoyama Y, Tanji J (2006) Activity in the lateral prefrontal cortex reflects multiple steps of future events in action plans. Neuron 50(4):631–641PubMedCrossRef
Zurück zum Zitat Nagumo J, Sato S (1972) On a response characteristic of a mathematical neuron model. Biol Cybern 10:155–164 Nagumo J, Sato S (1972) On a response characteristic of a mathematical neuron model. Biol Cybern 10:155–164
Zurück zum Zitat Naya Y, Sakai K, Miyashita Y (1996) Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc Nat Acad Sci 93:2664–2669PubMedCrossRef Naya Y, Sakai K, Miyashita Y (1996) Activity of primate inferotemporal neurons related to a sought target in pair-association task. Proc Nat Acad Sci 93:2664–2669PubMedCrossRef
Zurück zum Zitat Ott E (1993) Chaos in dynamical systems. Cambridge University Press, New York Ott E (1993) Chaos in dynamical systems. Cambridge University Press, New York
Zurück zum Zitat Ozaki TJ et al (2012) Traveling EEG slow oscillation along the dorsal attention network initiates spontaneous perceptual switching. Cogn Neurodyn 6(2):185–198PubMedCrossRef Ozaki TJ et al (2012) Traveling EEG slow oscillation along the dorsal attention network initiates spontaneous perceptual switching. Cogn Neurodyn 6(2):185–198PubMedCrossRef
Zurück zum Zitat Pesin YB (2004) Lectures on partial hyperbolicity and stable ergodicity. Zurich Lect Adv Math Pesin YB (2004) Lectures on partial hyperbolicity and stable ergodicity. Zurich Lect Adv Math
Zurück zum Zitat Pool RR, Mato G (2010) Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex. Neural Comput Appl 22:1837–1859PubMedCrossRef Pool RR, Mato G (2010) Hebbian plasticity and homeostasis in a model of hypercolumn of the visual cortex. Neural Comput Appl 22:1837–1859PubMedCrossRef
Zurück zum Zitat Pulvermler F (1996) Hebb’s concept of cell assemblies an the psychophysiology of word processing. Psychophysiology 33(4):317–333CrossRef Pulvermler F (1996) Hebb’s concept of cell assemblies an the psychophysiology of word processing. Psychophysiology 33(4):317–333CrossRef
Zurück zum Zitat Rajan K, Abbott LF, Sompolinsky H (2010) Stimulus-dependent suppression of chaos in recurrent neural networks. Phys Rev E 82:011903CrossRef Rajan K, Abbott LF, Sompolinsky H (2010) Stimulus-dependent suppression of chaos in recurrent neural networks. Phys Rev E 82:011903CrossRef
Zurück zum Zitat Ranck JB Jr (1985) Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. In: Electrical activity of the archicortex. Publishing House of the Hungarian Academy of Sciences Ranck JB Jr (1985) Head direction cells in the deep cell layer of dorsal presubiculum in freely moving rats. In: Electrical activity of the archicortex. Publishing House of the Hungarian Academy of Sciences
Zurück zum Zitat Renart A, Moreno-Bote R, Wang X-J, Parga N (2007) Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput Appl 19:1–46PubMedCrossRef Renart A, Moreno-Bote R, Wang X-J, Parga N (2007) Mean-driven and fluctuation-driven persistent activity in recurrent networks. Neural Comput Appl 19:1–46PubMedCrossRef
Zurück zum Zitat Renart A, Song P, Wang X-J (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38(3):473–485PubMedCrossRef Renart A, Song P, Wang X-J (2003) Robust spatial working memory through homeostatic synaptic scaling in heterogeneous cortical networks. Neuron 38(3):473–485PubMedCrossRef
Zurück zum Zitat Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nat Biotechnol 399:470–473PubMedCrossRef Romo R, Brody CD, Hernandez A, Lemus L (1999) Neuronal correlates of parametric working memory in the prefrontal cortex. Nat Biotechnol 399:470–473PubMedCrossRef
Zurück zum Zitat Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nat Biotechnol 354:152–155PubMedCrossRef Sakai K, Miyashita Y (1991) Neural organization for the long-term memory of paired associates. Nat Biotechnol 354:152–155PubMedCrossRef
Zurück zum Zitat Siri B, Berry H, Cessac B, Delord B, Quoy M (2008) A mathematical analysis of the effects of hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Neural Comput Appl 20(12):2937–2966PubMedCrossRef Siri B, Berry H, Cessac B, Delord B, Quoy M (2008) A mathematical analysis of the effects of hebbian learning rules on the dynamics and structure of discrete-time random recurrent neural networks. Neural Comput Appl 20(12):2937–2966PubMedCrossRef
Zurück zum Zitat Skarda C, Freeman W (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195CrossRef Skarda C, Freeman W (1987) How brains make chaos in order to make sense of the world. Behav Brain Sci 10:161–195CrossRef
Zurück zum Zitat Softky WR, Koch C (1992) Cortical cells should fire regularly, but do not. Neural Comput Appl 4:643–646CrossRef Softky WR, Koch C (1992) Cortical cells should fire regularly, but do not. Neural Comput Appl 4:643–646CrossRef
Zurück zum Zitat Sompolinsky H, Crisanti A, Sommers HJ (1988) Chaos in random neural networks. Phys Rev Lett 61(3):259–262PubMedCrossRef Sompolinsky H, Crisanti A, Sommers HJ (1988) Chaos in random neural networks. Phys Rev Lett 61(3):259–262PubMedCrossRef
Zurück zum Zitat Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810PubMedCrossRef Tsuda I (2001) Toward an interpretation of dynamic neural activity in terms of chaotic dynamical systems. Behav Brain Sci 24:793–810PubMedCrossRef
Zurück zum Zitat Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell (Cambridge, MA, US) 135(3):422–435PubMedCrossRef Turrigiano GG (2008) The self-tuning neuron: synaptic scaling of excitatory synapses. Cell (Cambridge, MA, US) 135(3):422–435PubMedCrossRef
Zurück zum Zitat Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nat Biotechnol 391(6670):892–896PubMedCrossRef Turrigiano GG, Leslie KR, Desai NS, Rutherford LC, Nelson SB (1998) Activity-dependent scaling of quantal amplitude in neocortical neurons. Nat Biotechnol 391(6670):892–896PubMedCrossRef
Zurück zum Zitat Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107PubMedCrossRef Turrigiano GG, Nelson SB (2004) Homeostatic plasticity in the developing nervous system. Nat Rev Neurosci 5(2):97–107PubMedCrossRef
Zurück zum Zitat Wang L (2007) Interactions between neural networks: a mechanism for tuning chaos and oscillations. Cogn Neurodyn 1(2):185–188PubMedCrossRef Wang L (2007) Interactions between neural networks: a mechanism for tuning chaos and oscillations. Cogn Neurodyn 1(2):185–188PubMedCrossRef
Zurück zum Zitat Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24(8):455–463PubMedCrossRef Wang X-J (2001) Synaptic reverberation underlying mnemonic persistent activity. Trends Neurosci 24(8):455–463PubMedCrossRef
Zurück zum Zitat Wennekers T, Palm G (2009) Syntactic sequencing in Hebbian cell assemblies. Cogn Neurodyn 3(4):429–441PubMedCrossRef Wennekers T, Palm G (2009) Syntactic sequencing in Hebbian cell assemblies. Cogn Neurodyn 3(4):429–441PubMedCrossRef
Zurück zum Zitat Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24PubMedCrossRef Wilson HR, Cowan JD (1972) Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J 12(1):1–24PubMedCrossRef
Zurück zum Zitat Yoshida H, Kurata S, Li Y, Nara S (2010) Chaotic neural network applied to two-dimensional motion control. Cogn Neurodyn 4(1):69–80PubMedCrossRef Yoshida H, Kurata S, Li Y, Nara S (2010) Chaotic neural network applied to two-dimensional motion control. Cogn Neurodyn 4(1):69–80PubMedCrossRef
Zurück zum Zitat Zheng G, Tonnelier A (2008) Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation. Cogn Neurodyn 3(3):197–204PubMedCrossRef Zheng G, Tonnelier A (2008) Chaotic solutions in the quadratic integrate-and-fire neuron with adaptation. Cogn Neurodyn 3(3):197–204PubMedCrossRef
Metadaten
Titel
Combined effects of LTP/LTD and synaptic scaling in formation of discrete and line attractors with persistent activity from non-trivial baseline
verfasst von
Timothee Leleu
Kazuyuki Aihara
Publikationsdatum
01.12.2012
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 6/2012
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9211-3

Weitere Artikel der Ausgabe 6/2012

Cognitive Neurodynamics 6/2012 Zur Ausgabe

Neuer Inhalt