Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 13/2019

04.06.2019

Comparative study of La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (R = La, Eu and Ho) nanoparticles: effect of A-cation size and sintering temperature

verfasst von: Mukesh Kumar Verma, Narayan Dutt Sharma, Nisha Choudhary, Suman Sharma, Devinder Singh

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 13/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A systematic study of nanocrystalline La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (R = La, Eu and Ho) manganites has been undertaken to analyse the effect of sintering temperature and A-site cation radius on the structural and magnetic properties. In order to acquire a series of samples with different particle sizes, the samples were prepared by a solution combustion method and were subjected to annealing at four different temperatures. Rietveld analysis of X-ray diffraction (XRD) data confirmed the presence of orthorhombic symmetry with Pbnm space group for all the samples. The grain size retrieved from the TEM analysis is greater than the noted crystallite size calculated from XRD by the Scherrer’s equation. A paramagnetic-ferromagnetic transition is shown by all our investigated compounds at low temperature. With increasing sintering temperature or particle size, the Curie temperature (Tc) was found to increase, which is attributed to the magnetically disordered surface layer. All the phases obey Curie–Weiss law in the high temperature region and the effective magnetic moment calculated from the high temperature paramagnetic region shows an increase with sintering temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat N. Kumar, A. Shukla, N. Kumar, R.N. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)–O3BiFeO 3 solid solution. RSC Adv. 8, 36939–36950 (2018)CrossRef N. Kumar, A. Shukla, N. Kumar, R.N. Choudhary, A. Kumar, Structural, electrical, and multiferroic characteristics of lead-free multiferroic: Bi(Co0.5Ti0.5)–O3BiFeO 3 solid solution. RSC Adv. 8, 36939–36950 (2018)CrossRef
2.
Zurück zum Zitat N. Kumar, A. Shukla, R.N. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3BiFeO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)CrossRef N. Kumar, A. Shukla, R.N. Choudhary, Structural, dielectric, electrical and magnetic characteristics of lead-free multiferroic: Bi(Cd0.5Ti0.5)O3BiFeO3 solid solution. J. Alloys Compd. 747, 895–904 (2018)CrossRef
3.
Zurück zum Zitat N. Kumar, A. Shukla, R.N. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. 28, 6673–6684 (2017) N. Kumar, A. Shukla, R.N. Choudhary, Structural, electrical and magnetic characteristics of Ni/Ti modified BiFeO3 lead free multiferroic material. J. Mater. Sci.: Mater. Electron. 28, 6673–6684 (2017)
4.
Zurück zum Zitat N. Kumar, A. Shukla, R.N. Choudhary, Development of lead-free multifunctional materials Bi (Co0.45Ti0.45Fe0.10)O3. Progress in Natural Science: Materials International 28, 308–314 (2018)CrossRef N. Kumar, A. Shukla, R.N. Choudhary, Development of lead-free multifunctional materials Bi (Co0.45Ti0.45Fe0.10)O3. Progress in Natural Science: Materials International 28, 308–314 (2018)CrossRef
5.
Zurück zum Zitat N. Kumar, A. Shukla, N. Kumar, R.N. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co035Ti035Fe030)O3. Ceram. Int. 45, 822–831 (2019)CrossRef N. Kumar, A. Shukla, N. Kumar, R.N. Choudhary, Structural, electrical and magnetic properties of eco-friendly complex multiferroic material: Bi(Co035Ti035Fe030)O3. Ceram. Int. 45, 822–831 (2019)CrossRef
6.
Zurück zum Zitat K. De, S. Das, A. Roy, P. Dhak, M. Willinger, J.S. Amaral, V.S. Amaral, S. Giri, S. Majumder, C.J. Silva, M.J. Gomes, Enhanced ferromagnetism and glassy state in phase separated La0.95Sr0.05MnO3+δ. J. Appl. Phys. 112, 103907 (2012)CrossRef K. De, S. Das, A. Roy, P. Dhak, M. Willinger, J.S. Amaral, V.S. Amaral, S. Giri, S. Majumder, C.J. Silva, M.J. Gomes, Enhanced ferromagnetism and glassy state in phase separated La0.95Sr0.05MnO3+δ. J. Appl. Phys. 112, 103907 (2012)CrossRef
7.
Zurück zum Zitat M.H. Ehsani, T. Raoufi, F.S. Razavi, Impact of Gd ion substitution on the magneto-caloric effect. J. Magn. Magn. Mater. 475, 484–492 (2019)CrossRef M.H. Ehsani, T. Raoufi, F.S. Razavi, Impact of Gd ion substitution on the magneto-caloric effect. J. Magn. Magn. Mater. 475, 484–492 (2019)CrossRef
8.
Zurück zum Zitat G. Akça, S.K. Çetin, A. Ekicibil, Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85 K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43, 15811–15820 (2017)CrossRef G. Akça, S.K. Çetin, A. Ekicibil, Structural, magnetic and magnetocaloric properties of (La1−xSmx)0.85 K0.15MnO3 (x = 0.0, 0.1, 0.2 and 0.3) perovskite manganites. Ceram. Int. 43, 15811–15820 (2017)CrossRef
9.
Zurück zum Zitat C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)CrossRef C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)CrossRef
10.
Zurück zum Zitat P.W. Anderson, H. Hasegawa, Considerations on double exchange. Phys. Rev. 100, 675–681 (1955)CrossRef P.W. Anderson, H. Hasegawa, Considerations on double exchange. Phys. Rev. 100, 675–681 (1955)CrossRef
11.
Zurück zum Zitat P.G. De Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)CrossRef P.G. De Gennes, Effects of double exchange in magnetic crystals. Phys. Rev. 118, 141 (1960)CrossRef
12.
Zurück zum Zitat G. Xiao, W. He, P. Chen, X. Wu, Effect of Nd-substitution on the structural, magnetic and magnetocaloric properties of La0.67-xNdxCa0.13Ba0.2MnO3 manganites. J. Phys. Condens. Matter. 564, 133–142 (2019) G. Xiao, W. He, P. Chen, X. Wu, Effect of Nd-substitution on the structural, magnetic and magnetocaloric properties of La0.67-xNdxCa0.13Ba0.2MnO3 manganites. J. Phys. Condens. Matter. 564, 133–142 (2019)
13.
Zurück zum Zitat H. Terashita, J.J. Neumeier, Possible role of phase segregation in the disagreement between the metal-insulator and ferromagnetic transition temperatures in some colossal magnetoresistance compounds. Phys. Rev. B 63, 174436 (2001)CrossRef H. Terashita, J.J. Neumeier, Possible role of phase segregation in the disagreement between the metal-insulator and ferromagnetic transition temperatures in some colossal magnetoresistance compounds. Phys. Rev. B 63, 174436 (2001)CrossRef
14.
Zurück zum Zitat S.C. Bhargava, H.P. Kunkel, S. Singh, S.K. Malik, D.D. Buddhikot, A.H. Morrish, Phase separations in La0.7–xDyxCa0.3Mn(Fe)O3. Phys. Rev. B 71, 104419 (2005)CrossRef S.C. Bhargava, H.P. Kunkel, S. Singh, S.K. Malik, D.D. Buddhikot, A.H. Morrish, Phase separations in La0.7–xDyxCa0.3Mn(Fe)O3. Phys. Rev. B 71, 104419 (2005)CrossRef
15.
Zurück zum Zitat P. Dey, T.K. Nath, A. Banerjee, Effect of disorder on magnetic ordering of La0.5Gd0.2Sr0.3MnO3 manganite. J. Phys. Condens. Matter 19, 376204 (2007)CrossRef P. Dey, T.K. Nath, A. Banerjee, Effect of disorder on magnetic ordering of La0.5Gd0.2Sr0.3MnO3 manganite. J. Phys. Condens. Matter 19, 376204 (2007)CrossRef
16.
Zurück zum Zitat Y. Sun, M.B. Salamon, W. Tong, Y. Zhang, Magnetism, electronic transport, and colossal magnetoresistance of (La0.7–xGdx)Sr0.3MnO3 (0 ≤ x ≤ 0.6). Phys. Rev. B 66, 094414 (2002)CrossRef Y. Sun, M.B. Salamon, W. Tong, Y. Zhang, Magnetism, electronic transport, and colossal magnetoresistance of (La0.7–xGdx)Sr0.3MnO3 (0 ≤ x ≤ 0.6). Phys. Rev. B 66, 094414 (2002)CrossRef
17.
Zurück zum Zitat G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Local structure, transport, and rare-earth magnetismin the ferrimagnetic perovskite Gd0.67Ca0.33MnO3. Phys. Rev. B 55, 6453 (1997)CrossRef G.J. Snyder, C.H. Booth, F. Bridges, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Local structure, transport, and rare-earth magnetismin the ferrimagnetic perovskite Gd0.67Ca0.33MnO3. Phys. Rev. B 55, 6453 (1997)CrossRef
18.
Zurück zum Zitat D. Singh, A. Mahajan, Investigation of structural, magnetic and electric transport properties of half-doped chromium manganites La0.3R0.2Sr0.5Mn0.5Cr0.5O3 (R = La, Nd, Sm, and Gd). Ceram. Int. 41, 11748–11755 (2015)CrossRef D. Singh, A. Mahajan, Investigation of structural, magnetic and electric transport properties of half-doped chromium manganites La0.3R0.2Sr0.5Mn0.5Cr0.5O3 (R = La, Nd, Sm, and Gd). Ceram. Int. 41, 11748–11755 (2015)CrossRef
19.
Zurück zum Zitat Y.H. Huang, F. Luo, Y. Li, Z.M. Wang, C.S. Liao, C.H. Yan, Abnormal lattice effect on magnetic/transport phase diagram in La0.7–xLuxSr0.3MnO3 perovskites. J. Appl. Phys. 91, 10218–10220 (2002)CrossRef Y.H. Huang, F. Luo, Y. Li, Z.M. Wang, C.S. Liao, C.H. Yan, Abnormal lattice effect on magnetic/transport phase diagram in La0.7–xLuxSr0.3MnO3 perovskites. J. Appl. Phys. 91, 10218–10220 (2002)CrossRef
20.
Zurück zum Zitat L. Ning, T. Wei, Z. Yu-Heng, Phase separation and abnormal transport behaviours in La0.7–xGdxSr0.3MnO3 system. Chin. Phys. 13, 958 (2004)CrossRef L. Ning, T. Wei, Z. Yu-Heng, Phase separation and abnormal transport behaviours in La0.7–xGdxSr0.3MnO3 system. Chin. Phys. 13, 958 (2004)CrossRef
21.
Zurück zum Zitat Y. Shlapa, M. Kulyk, V. Kalita, T. Polek, A. Tovstolytkin, J.M. Greneche, S. Solopan, A. Belous, Iron-doped (La, Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia. Nanoscale Res. Lett. 11, 24 (2016)CrossRef Y. Shlapa, M. Kulyk, V. Kalita, T. Polek, A. Tovstolytkin, J.M. Greneche, S. Solopan, A. Belous, Iron-doped (La, Sr)MnO3 manganites as promising mediators of self-controlled magnetic nanohyperthermia. Nanoscale Res. Lett. 11, 24 (2016)CrossRef
22.
Zurück zum Zitat D. Singh, A. Mahajan, Effect of A-site cation size on the structural, magnetic, and electrical properties of La1–xNdxMn05Cr05O3 perovskites. J. Alloys Compd. 644, 172–179 (2015)CrossRef D. Singh, A. Mahajan, Effect of A-site cation size on the structural, magnetic, and electrical properties of La1–xNdxMn05Cr05O3 perovskites. J. Alloys Compd. 644, 172–179 (2015)CrossRef
23.
Zurück zum Zitat P. Thamilmaran, M. Arunachalam, S. Sankarrajan, K. Sakthipandi, Impact of Ni doping on La0.7Sr0.3NixMn1−xO3 perovskite manganite materials. J. Magn. Magn. Mater. 396, 181–189 (2015)CrossRef P. Thamilmaran, M. Arunachalam, S. Sankarrajan, K. Sakthipandi, Impact of Ni doping on La0.7Sr0.3NixMn1−xO3 perovskite manganite materials. J. Magn. Magn. Mater. 396, 181–189 (2015)CrossRef
24.
Zurück zum Zitat S.Q. Li, L.Q. Wu, W.H. Qi, X.S. Ge, Z.Z. Li, G.D. Tang, W. Zhong, Unique magnetic properties of perovskite manganites La0.95T0.05CrxMn1−xO3 (T = Ca, Sr). J. Magn. Magn. Mater. 460, 501–508 (2018)CrossRef S.Q. Li, L.Q. Wu, W.H. Qi, X.S. Ge, Z.Z. Li, G.D. Tang, W. Zhong, Unique magnetic properties of perovskite manganites La0.95T0.05CrxMn1−xO3 (T = Ca, Sr). J. Magn. Magn. Mater. 460, 501–508 (2018)CrossRef
25.
Zurück zum Zitat J.A. Saleh, I.A. Sarsari, P. Kameli, H. Salamati, Influence of Al-doping on the structural, magnetic, and electrical properties of La08Ba02Mn1−x AlxO3 (0 ≤ x ≤ 025) manganites. J. Magn. Magn. Mater. 465, 339–347 (2018)CrossRef J.A. Saleh, I.A. Sarsari, P. Kameli, H. Salamati, Influence of Al-doping on the structural, magnetic, and electrical properties of La08Ba02Mn1−x AlxO3 (0 ≤ x ≤ 025) manganites. J. Magn. Magn. Mater. 465, 339–347 (2018)CrossRef
26.
Zurück zum Zitat D.C. Kundaliya, R. Vij, R.G. Kulkarni, A.A. Tulapurkar, R. Pinto, S.K. Malik, W.B. Yelon, Structural, magnetic and magnetotransport properties of the La0.67Ca0.33Mn0.9Fe01O3 perovskite. J. Magn. Magn. Mater. 264, 62–69 (2003)CrossRef D.C. Kundaliya, R. Vij, R.G. Kulkarni, A.A. Tulapurkar, R. Pinto, S.K. Malik, W.B. Yelon, Structural, magnetic and magnetotransport properties of the La0.67Ca0.33Mn0.9Fe01O3 perovskite. J. Magn. Magn. Mater. 264, 62–69 (2003)CrossRef
27.
Zurück zum Zitat A. Dhahri, E. Dhahri, E.K. Hlil, Structural and magnetotransport properties of the Si doped B-site in La0.6Gd0.1Sr0.3Mn1-xSixO3 (0 ≤ x ≤ 0.15) manganite. J. Alloys Compd. 700, 169–174 (2017)CrossRef A. Dhahri, E. Dhahri, E.K. Hlil, Structural and magnetotransport properties of the Si doped B-site in La0.6Gd0.1Sr0.3Mn1-xSixO3 (0 ≤ x ≤ 0.15) manganite. J. Alloys Compd. 700, 169–174 (2017)CrossRef
28.
Zurück zum Zitat K. Suzuki, H. Fujishiro, Y. Kashiwada, Y. Fujine, M. Ikebe, Magnetic, electrical and thermal properties of La0.80Sr0.20(MnyCo1–y)O3. Physica B 329, 922–923 (2003)CrossRef K. Suzuki, H. Fujishiro, Y. Kashiwada, Y. Fujine, M. Ikebe, Magnetic, electrical and thermal properties of La0.80Sr0.20(MnyCo1–y)O3. Physica B 329, 922–923 (2003)CrossRef
29.
Zurück zum Zitat Y. Sun, X. Xu, Y. Zhang, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower. Phys. Rev. B 63, 054404 (2000)CrossRef Y. Sun, X. Xu, Y. Zhang, Effects of Cr doping in La0.67Ca0.33MnO3: magnetization, resistivity, and thermopower. Phys. Rev. B 63, 054404 (2000)CrossRef
30.
Zurück zum Zitat R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr. Physica B: Condens. Matter 275, 308–315 (2000)CrossRef R. Ganguly, I.K. Gopalakrishnan, J.V. Yakhmi, Magnetic and electrical properties of La0.67Ca0.33MnO3 as influenced by substitution of Cr. Physica B: Condens. Matter 275, 308–315 (2000)CrossRef
31.
Zurück zum Zitat O. Cabeza, O. Barca, G. Francesconi, M.A. Bari, C. Severack, C.M. Muirhead, F. Miguelez, Magnetic and electrical properties of Cr-doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 196, 504–505 (1999)CrossRef O. Cabeza, O. Barca, G. Francesconi, M.A. Bari, C. Severack, C.M. Muirhead, F. Miguelez, Magnetic and electrical properties of Cr-doped La0.7Ca0.3MnO3. J. Magn. Magn. Mater. 196, 504–505 (1999)CrossRef
32.
Zurück zum Zitat O. Cabeza, M. Long, C. Severac, M.A. Bari, C.M. Muirhead, M.G. Francesconi, C. Greaves, Magnetization and resistivity in chromium doped manganites. J. Phys. 11, 2569 (1999) O. Cabeza, M. Long, C. Severac, M.A. Bari, C.M. Muirhead, M.G. Francesconi, C. Greaves, Magnetization and resistivity in chromium doped manganites. J. Phys. 11, 2569 (1999)
33.
Zurück zum Zitat K.S. Shankar, S. Kar, A.K. Raychaudhuri, G.N. Subbanna, Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3. Appl. Phys. Lett. 84, 993–995 (2004)CrossRef K.S. Shankar, S. Kar, A.K. Raychaudhuri, G.N. Subbanna, Fabrication of ordered array of nanowires of La0.67Ca0.33MnO3. Appl. Phys. Lett. 84, 993–995 (2004)CrossRef
34.
Zurück zum Zitat W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. Appl. Phys. 104, 113908 (2008)CrossRef W.J. Lu, X. Luo, C.Y. Hao, W.H. Song, Y.P. Sun, Magnetocaloric effect and Griffiths-like phase in La0.67Sr0.33MnO3 nanoparticles. J. Appl. Phys. 104, 113908 (2008)CrossRef
35.
Zurück zum Zitat R. Skomski, Nanomagnetics. J. Phys.: Condens. Matter 15, 841–896 (2003) R. Skomski, Nanomagnetics. J. Phys.: Condens. Matter 15, 841–896 (2003)
36.
Zurück zum Zitat S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D Appl. Phys. 42, 013001 (2008)CrossRef S. Bedanta, W. Kleemann, Supermagnetism. J. Phys. D Appl. Phys. 42, 013001 (2008)CrossRef
37.
Zurück zum Zitat G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRef G.F. Goya, T.S. Berquo, F.C. Fonseca, M.P. Morales, Static and dynamic magnetic properties of spherical magnetite nanoparticles. J. Appl. Phys. 94, 3520–3528 (2003)CrossRef
38.
Zurück zum Zitat J. Nogués, V. Skumryev, J. Sort, S. Stoyanov, D. Givord, Shell-driven magnetic stability in core-shell nanoparticles. Phys. Rev. Lett. 97, 157203 (2006)CrossRef J. Nogués, V. Skumryev, J. Sort, S. Stoyanov, D. Givord, Shell-driven magnetic stability in core-shell nanoparticles. Phys. Rev. Lett. 97, 157203 (2006)CrossRef
39.
Zurück zum Zitat W. Wenwei, C. Jinchao, W. Xuehang, L. Sen, W. Kaituo, T. Lin, Nanocrystalline LaMnO3 preparation and kinetics of crystallization process. Adv. Powder Technol. 24, 154–159 (2013)CrossRef W. Wenwei, C. Jinchao, W. Xuehang, L. Sen, W. Kaituo, T. Lin, Nanocrystalline LaMnO3 preparation and kinetics of crystallization process. Adv. Powder Technol. 24, 154–159 (2013)CrossRef
40.
Zurück zum Zitat Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003)CrossRef Q.A. Pankhurst, J. Connolly, S.K. Jones, J.J. Dobson, Applications of magnetic nanoparticles in biomedicine. J. Phys. D 36, 167–181 (2003)CrossRef
41.
Zurück zum Zitat T. Zhu, B.G. Shen, J.R. Sun, H.W. Zhao, W.S. Zhan, Surface spin-glass behavior in La2/3Sr1/3 MnO3 nanoparticles. Appl. Phys. Lett. 78, 3863–3865 (2001)CrossRef T. Zhu, B.G. Shen, J.R. Sun, H.W. Zhao, W.S. Zhan, Surface spin-glass behavior in La2/3Sr1/3 MnO3 nanoparticles. Appl. Phys. Lett. 78, 3863–3865 (2001)CrossRef
42.
Zurück zum Zitat P. Dey, T.K. Nath, P.K. Manna, S.M. Yusuf, Enhanced grain surface effect on magnetic properties of nanometric La07Ca03MnO3 manganite: evidence of surface spin freezing of manganite nanoparticles. J. Appl. Phys. 104, 103907 (2008)CrossRef P. Dey, T.K. Nath, P.K. Manna, S.M. Yusuf, Enhanced grain surface effect on magnetic properties of nanometric La07Ca03MnO3 manganite: evidence of surface spin freezing of manganite nanoparticles. J. Appl. Phys. 104, 103907 (2008)CrossRef
43.
Zurück zum Zitat P. Katiyar, D. Kumar, T.K. Nath, A.V. Kvit, J. Narayan, S. Chattopadhyay, W.M. Gilmore, S. Coleman, C.B. Lee, J. Sankar, R.K. Singh, Magnetic properties of self-assembled nanoscale La2/3Ca1/3MnO3 particles in an alumina matrix. Appl. Phys. Lett. 79, 1327–1329 (2001)CrossRef P. Katiyar, D. Kumar, T.K. Nath, A.V. Kvit, J. Narayan, S. Chattopadhyay, W.M. Gilmore, S. Coleman, C.B. Lee, J. Sankar, R.K. Singh, Magnetic properties of self-assembled nanoscale La2/3Ca1/3MnO3 particles in an alumina matrix. Appl. Phys. Lett. 79, 1327–1329 (2001)CrossRef
44.
Zurück zum Zitat M. Vasilakaki, K.N. Trohidou, Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology. Phys. Rev. B 79, 144402 (2009)CrossRef M. Vasilakaki, K.N. Trohidou, Numerical study of the exchange-bias effect in nanoparticles with ferromagnetic core/ferrimagnetic disordered shell morphology. Phys. Rev. B 79, 144402 (2009)CrossRef
45.
Zurück zum Zitat J.L. Dormann, D.I. Fiorani, E.L. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997) J.L. Dormann, D.I. Fiorani, E.L. Tronc, Magnetic relaxation in fine-particle systems. Adv. Chem. Phys. 98, 283–494 (1997)
46.
Zurück zum Zitat J.L. Dormann, D. Fiorani, E. Tronc, On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J. Magn. Magn. Mater. 202, 251–267 (1999)CrossRef J.L. Dormann, D. Fiorani, E. Tronc, On the models for interparticle interactions in nanoparticle assemblies: comparison with experimental results. J. Magn. Magn. Mater. 202, 251–267 (1999)CrossRef
47.
Zurück zum Zitat P.E. Jonsson, Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv. Chem. Phys. 128, 191–248 (2004) P.E. Jonsson, Superparamagnetism and spin glass dynamics of interacting magnetic nanoparticle systems. Adv. Chem. Phys. 128, 191–248 (2004)
48.
Zurück zum Zitat M. Suzuki, S.I. Fullem, I.S. Suzuki, L. Wang, C.J. Zhong, Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys. Rev. B 79, 024418 (2009)CrossRef M. Suzuki, S.I. Fullem, I.S. Suzuki, L. Wang, C.J. Zhong, Observation of superspin-glass behavior in Fe3O4 nanoparticles. Phys. Rev. B 79, 024418 (2009)CrossRef
49.
Zurück zum Zitat P.A. Yadav, A.V. Deshmukh, K.P. Adhi, B.B. Kale, N. Basavaih, S.I. Patil, Role of grain size on the magnetic properties of La0.7Sr0.3MnO3. J. Magn. Magn. Mater. 328, 86–90 (2013)CrossRef P.A. Yadav, A.V. Deshmukh, K.P. Adhi, B.B. Kale, N. Basavaih, S.I. Patil, Role of grain size on the magnetic properties of La0.7Sr0.3MnO3. J. Magn. Magn. Mater. 328, 86–90 (2013)CrossRef
50.
Zurück zum Zitat V.M. Andrade, R.C. Vivas, S.S. Pedro, J.C. Tedesco, A.L. Rossi, A.A. Coelho, D.L. Rocco, M.S. Reis, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater. 102, 49–55 (2016)CrossRef V.M. Andrade, R.C. Vivas, S.S. Pedro, J.C. Tedesco, A.L. Rossi, A.A. Coelho, D.L. Rocco, M.S. Reis, Magnetic and magnetocaloric properties of La0.6Ca0.4MnO3 tunable by particle size and dimensionality. Acta Mater. 102, 49–55 (2016)CrossRef
51.
Zurück zum Zitat S.W. Ng, K.P. Lim, S.A. Halim, H. Jumiah, Grain size effect on the electrical and magneto-transport properties of nanosized Pr0.67Sr0.33MnO3. Results in Physics 9, 1192–1200 (2018)CrossRef S.W. Ng, K.P. Lim, S.A. Halim, H. Jumiah, Grain size effect on the electrical and magneto-transport properties of nanosized Pr0.67Sr0.33MnO3. Results in Physics 9, 1192–1200 (2018)CrossRef
53.
Zurück zum Zitat D. Singh, A. Mahajan, Synthesis and characterization of Ruddlesden-Popper Oxides Nd1+xSr2–xMnCrO7 (x = 0.0, 0.2 and 0.4). Ceram. Int. 41, 15048–15056 (2015)CrossRef D. Singh, A. Mahajan, Synthesis and characterization of Ruddlesden-Popper Oxides Nd1+xSr2–xMnCrO7 (x = 0.0, 0.2 and 0.4). Ceram. Int. 41, 15048–15056 (2015)CrossRef
54.
Zurück zum Zitat M. Karppinen, A. Fukuoka, L. Niinistö, H. Yamauchi, Determination of oxygen content and metal valences in oxide superconductors by chemical methods. Supercond. Sci. Technol. 9, 121–135 (1996)CrossRef M. Karppinen, A. Fukuoka, L. Niinistö, H. Yamauchi, Determination of oxygen content and metal valences in oxide superconductors by chemical methods. Supercond. Sci. Technol. 9, 121–135 (1996)CrossRef
55.
Zurück zum Zitat A.C. Larson, R.B. Von Dreele, Generalized structure analysis system (GSAS). Los Alamos National Laboratory 86, 748 (1994) A.C. Larson, R.B. Von Dreele, Generalized structure analysis system (GSAS). Los Alamos National Laboratory 86, 748 (1994)
56.
Zurück zum Zitat H. Klug, L. Alexander, X-ray diffration procedures (Willey, New York, 1954) H. Klug, L. Alexander, X-ray diffration procedures (Willey, New York, 1954)
57.
Zurück zum Zitat M.M. Haque, M. Huq, M.A. Hakim, Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)CrossRef M.M. Haque, M. Huq, M.A. Hakim, Densification, magnetic and dielectric behaviour of Cu-substituted Mg–Zn ferrites. Mater. Chem. Phys. 112, 580–586 (2008)CrossRef
58.
Zurück zum Zitat V. Nica, H.M. Sauer, J. Embs, R. Hempelmann, Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion. J. Phys. 20, 204115 (2008) V. Nica, H.M. Sauer, J. Embs, R. Hempelmann, Calorimetric method for the determination of Curie temperatures of magnetic nanoparticles in dispersion. J. Phys. 20, 204115 (2008)
59.
Zurück zum Zitat R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sec. A 32, 751–767 (1976)CrossRef R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sec. A 32, 751–767 (1976)CrossRef
60.
Zurück zum Zitat H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914 (1995)CrossRef H.Y. Hwang, S.W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Lattice effects on the magnetoresistance in doped LaMnO3. Phys. Rev. Lett. 75, 914 (1995)CrossRef
61.
Zurück zum Zitat N.D. Sharma, A. Mahajan, N. Choudhary, M.K. Verma, S. Sharma, D. Singh, Effect of A-site disorder of heavier rare earth ion on structural, magnetic and transport properties of lanthanum based chromium manganite perovskite system. J. Mater. Sci.: Mater. Electron. 30, 98–107 (2019) N.D. Sharma, A. Mahajan, N. Choudhary, M.K. Verma, S. Sharma, D. Singh, Effect of A-site disorder of heavier rare earth ion on structural, magnetic and transport properties of lanthanum based chromium manganite perovskite system. J. Mater. Sci.: Mater. Electron. 30, 98–107 (2019)
62.
Zurück zum Zitat N.D. Sharma, A. Mahajan, M.K. Verma, N. Choudhary, S. Sharma, D. Singh, Influence of alkali substitution in La0.7Ca0.3Mn0.8Cr0.2O3 perovskite manganite on structural, magnetic, and transport properties. Ionics 25, 1271–1279 (2019)CrossRef N.D. Sharma, A. Mahajan, M.K. Verma, N. Choudhary, S. Sharma, D. Singh, Influence of alkali substitution in La0.7Ca0.3Mn0.8Cr0.2O3 perovskite manganite on structural, magnetic, and transport properties. Ionics 25, 1271–1279 (2019)CrossRef
63.
Zurück zum Zitat H.L. Ju, J. Gopalakrishnan, J.L. Peng, Q. Li, G.C. Xiong, T. Venkatesan, R.L. Greene, Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. Phys. Rev. B 51, 6143–6146 (1995)CrossRef H.L. Ju, J. Gopalakrishnan, J.L. Peng, Q. Li, G.C. Xiong, T. Venkatesan, R.L. Greene, Dependence of giant magnetoresistance on oxygen stoichiometry and magnetization in polycrystalline La0.67Ba0.33MnOz. Phys. Rev. B 51, 6143–6146 (1995)CrossRef
64.
Zurück zum Zitat S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering. Mater. Res. Bull. 99, 73–78 (2018)CrossRef S.B. Li, C.B. Wang, H.X. Liu, L. Li, Q. Shen, M.Z. Hu, L.M. Zhang, Effect of sintering temperature on structural, magnetic and electrical transport properties of La0.67Ca0.33MnO3 ceramics prepared by Plasma Activated Sintering. Mater. Res. Bull. 99, 73–78 (2018)CrossRef
65.
Zurück zum Zitat S.S. Rao, K.N. Anuradha, S. Sarangi, S.V. Bhat, Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005)CrossRef S.S. Rao, K.N. Anuradha, S. Sarangi, S.V. Bhat, Weakening of charge order and antiferromagnetic to ferromagnetic switch over in Pr0.5Ca0.5MnO3 nanowires. Appl. Phys. Lett. 87, 182503 (2005)CrossRef
66.
Zurück zum Zitat A. Biswas, I. Das, Experimental observation of charge ordering in nanocrystalline Pr0.65Ca0.35MnO3. Phys. Rev. B 74, 172405 (2006)CrossRef A. Biswas, I. Das, Experimental observation of charge ordering in nanocrystalline Pr0.65Ca0.35MnO3. Phys. Rev. B 74, 172405 (2006)CrossRef
67.
Zurück zum Zitat C.L. Lu, S. Dong, K.F. Wang, F. Gao, P.L. Li, L.Y. Lv, J.M. Liu, Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles. Appl. Phys. Lett. 91, 032502 (2007)CrossRef C.L. Lu, S. Dong, K.F. Wang, F. Gao, P.L. Li, L.Y. Lv, J.M. Liu, Charge-order breaking and ferromagnetism in La0.4Ca0.6MnO3 nanoparticles. Appl. Phys. Lett. 91, 032502 (2007)CrossRef
68.
Zurück zum Zitat E. Rozenberg, M. Auslender, A.I. Shames, D. Mogilyansky, I. Felner, E. Sominskii, A. Gedanken, Y.M. Mukovskii, Nanometer size effect on magnetic order in La0.4Ca0.6MnO3: predominant influence of doped electron localization. Phys. Rev. B 78, 052405 (2008)CrossRef E. Rozenberg, M. Auslender, A.I. Shames, D. Mogilyansky, I. Felner, E. Sominskii, A. Gedanken, Y.M. Mukovskii, Nanometer size effect on magnetic order in La0.4Ca0.6MnO3: predominant influence of doped electron localization. Phys. Rev. B 78, 052405 (2008)CrossRef
69.
Zurück zum Zitat T. Zhang, M. Dressel, Grain-size effects on the charge ordering and exchange bias in Pr0.5Ca0.5MnO3: the role of spin configuration. Phys. Rev. B 80, 01443 (2009) T. Zhang, M. Dressel, Grain-size effects on the charge ordering and exchange bias in Pr0.5Ca0.5MnO3: the role of spin configuration. Phys. Rev. B 80, 01443 (2009)
70.
Zurück zum Zitat D.J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K.R. Asmis, D.M. Neumark, Infrared spectroscopy of the microhydrated nitrate ions NO3 − (H2O)1–6. J. Phys. Chem. A 113, 7584–7592 (2009)CrossRef D.J. Goebbert, E. Garand, T. Wende, R. Bergmann, G. Meijer, K.R. Asmis, D.M. Neumark, Infrared spectroscopy of the microhydrated nitrate ions NO3 − (H2O)1–6. J. Phys. Chem. A 113, 7584–7592 (2009)CrossRef
71.
Zurück zum Zitat C. Kittel, P. McEuen, Introduction to solid state physics. New York: Wiley. 8, 323–324 (1996) C. Kittel, P. McEuen, Introduction to solid state physics. New York: Wiley. 8, 323–324 (1996)
72.
Zurück zum Zitat S. Singh, D. Singh, Structural, magnetic and electrical properties of Fe-doped perovskite manganites La0.8Ca0.15Na0.05Mn1–xFexO3 (x = 0, 0.05, 0.10 and 0.15). J. Alloys Compd. 702, 249–257 (2017)CrossRef S. Singh, D. Singh, Structural, magnetic and electrical properties of Fe-doped perovskite manganites La0.8Ca0.15Na0.05Mn1–xFexO3 (x = 0, 0.05, 0.10 and 0.15). J. Alloys Compd. 702, 249–257 (2017)CrossRef
73.
Zurück zum Zitat D. Singh, A. Mahajan, Synthesis, magnetic and electric transport properties of mixed-valence manganites. J. Solid State Chem. 207, 126–131 (2013)CrossRef D. Singh, A. Mahajan, Synthesis, magnetic and electric transport properties of mixed-valence manganites. J. Solid State Chem. 207, 126–131 (2013)CrossRef
Metadaten
Titel
Comparative study of La0.6R0.1Ca0.3Mn0.9Cr0.1O3 (R = La, Eu and Ho) nanoparticles: effect of A-cation size and sintering temperature
verfasst von
Mukesh Kumar Verma
Narayan Dutt Sharma
Nisha Choudhary
Suman Sharma
Devinder Singh
Publikationsdatum
04.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 13/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01591-8

Weitere Artikel der Ausgabe 13/2019

Journal of Materials Science: Materials in Electronics 13/2019 Zur Ausgabe

Neuer Inhalt