Skip to main content
Erschienen in: Water Resources Management 7/2013

01.05.2013

Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey

verfasst von: Neslihan Seckin, Murat Cobaner, Recep Yurtal, Tefaruk Haktanir

Erschienen in: Water Resources Management | Ausgabe 7/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A regional flood frequency analysis based on the index flood method is applied using probability distributions commonly utilized for this purpose. The distribution parameters are calculated by the method of L-moments with the data of the annual flood peaks series recorded at gauging sections of 13 unregulated natural streams in the East Mediterranean River Basin in Turkey. The artificial neural networks (ANNs) models of (1) the multi-layer perceptrons (MLP) neural networks, (2) radial basis function based neural networks (RBNN), and (3) generalized regression neural networks (GRNN) are developed as alternatives to the L-moments method. Multiple-linear and multiple-nonlinear regression models (MLR and MNLR) are also used in the study. The L-moments analysis on these 13 annual flood peaks series indicates that the East Mediterranean River Basin is hydrologically homogeneous as a whole. Among the tried distributions which are the Generalized Logistic, Generalized Extreme Vaules, Generalized Normal, Pearson Type III, Wakeby, and Generalized Pareto, the Generalized Logistic and Generalized Extreme Values distributions pass the Z statistic goodness-of-fit test of the L-moments method for the East Mediterranean River Basin, the former performing yet better than the latter. Hence, as the outcome of the L-moments method applied by the Generalized Logistic distribution, two equations are developed to estimate flood peaks of any return periods for any un-gauged site in the study region. The ANNs, MLR and MNLR models are trained and tested using the data of these 13 gauged sites. The results show that the predicting performance of the MLP model is superior to the others. The application of the MLP model is performed by a special Matlab code, which yields logarithm of the flood peak, Ln(QT), versus a desired return period, T.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by L-moments. Water Resour Manag 24:2501–2526CrossRef Abolverdi J, Khalili D (2010) Development of regional rainfall annual maxima for Southwestern Iran by L-moments. Water Resour Manag 24:2501–2526CrossRef
Zurück zum Zitat Acreman MC, Sinclair CD (1986) Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland. J Hydrol 84:365–380CrossRef Acreman MC, Sinclair CD (1986) Classification of drainage basins according to their physical characteristics; an application for flood frequency analysis in Scotland. J Hydrol 84:365–380CrossRef
Zurück zum Zitat Atiem IA, Harmancioglu N (2006) Assessment of regional floods using L-moments approach: the case of the River Nile. Water Resour Manag 20:723–747CrossRef Atiem IA, Harmancioglu N (2006) Assessment of regional floods using L-moments approach: the case of the River Nile. Water Resour Manag 20:723–747CrossRef
Zurück zum Zitat Berthet HG (1994) Station-year approach: tool for estimation of design floods. J Water Resour Plan Manag ASCE 120(2):135–160CrossRef Berthet HG (1994) Station-year approach: tool for estimation of design floods. J Water Resour Plan Manag ASCE 120(2):135–160CrossRef
Zurück zum Zitat Bobee B, Rasmussen PF (1995) Recent advances in flood frequency analysis. U.S. National Report to International Union of Geodesy and Geophysics 1991–1994. Rev Geophys 33(supp):1111–1116 Bobee B, Rasmussen PF (1995) Recent advances in flood frequency analysis. U.S. National Report to International Union of Geodesy and Geophysics 1991–1994. Rev Geophys 33(supp):1111–1116
Zurück zum Zitat Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355 Broomhead D, Lowe D (1988) Multivariable functional interpolation and adaptive networks. Complex Syst 2:321–355
Zurück zum Zitat Burn DH (1990) Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour Res 26(10):2257–2265CrossRef Burn DH (1990) Evaluation of regional flood frequency analysis with a region of influence approach. Water Resour Res 26(10):2257–2265CrossRef
Zurück zum Zitat Chapra SC, Canale RP (2002) Numerical Methods for Engineers, 4th edn. McGraw-Hill, New York Chapra SC, Canale RP (2002) Numerical Methods for Engineers, 4th edn. McGraw-Hill, New York
Zurück zum Zitat Cigizoglu HK, Kisi O (2005) Flow prediction by three back-propagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36(1):49–64 Cigizoglu HK, Kisi O (2005) Flow prediction by three back-propagation techniques using k-fold partitioning of neural network training data. Nord Hydrol 36(1):49–64
Zurück zum Zitat Cressie N (1993) Statistics for spatial data, revised edition. Wiley Interscience, New York Cressie N (1993) Statistics for spatial data, revised edition. Wiley Interscience, New York
Zurück zum Zitat Cunnane C (1989) Distributions for Flood Frequency Analysis. WMO Operational Hydrology Report No.33. World Meteorological Organization, Geneva Cunnane C (1989) Distributions for Flood Frequency Analysis. WMO Operational Hydrology Report No.33. World Meteorological Organization, Geneva
Zurück zum Zitat Cybenco G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2:303–314CrossRef Cybenco G (1989) Approximation by superposition of a sigmoidal function. Math Control Signals Syst 2:303–314CrossRef
Zurück zum Zitat Dalrymple T (1960) Flood frequency analyses. US Geological Survey Water Supply Paper no. 1543-A:11–51 Dalrymple T (1960) Flood frequency analyses. US Geological Survey Water Supply Paper no. 1543-A:11–51
Zurück zum Zitat Dawson WC, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47–66CrossRef Dawson WC, Wilby R (1998) An artificial neural network approach to rainfall-runoff modelling. Hydrol Sci J 43(1):47–66CrossRef
Zurück zum Zitat Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood estimation at ungauged sites using artificial neural Networks. J Hydrol 319:391–409CrossRef Dawson CW, Abrahart RJ, Shamseldin AY, Wilby RL (2006) Flood estimation at ungauged sites using artificial neural Networks. J Hydrol 319:391–409CrossRef
Zurück zum Zitat Duch W, Jankovski N (1999) Survey of neural transfer functions. Neural Comput Surv 2:163–212 Duch W, Jankovski N (1999) Survey of neural transfer functions. Neural Comput Surv 2:163–212
Zurück zum Zitat El-Bakyr MY (2003) Feed forward neural networks modeling for K-P interactions. Chaos, Solitons Fractals 18(5):995–1000 El-Bakyr MY (2003) Feed forward neural networks modeling for K-P interactions. Chaos, Solitons Fractals 18(5):995–1000
Zurück zum Zitat Ellouze M, Abida H (2008) Regional flood frequency analysis in Tunisia: identification of regional distributions. Water Resour Manag 22(8):943–957CrossRef Ellouze M, Abida H (2008) Regional flood frequency analysis in Tunisia: identification of regional distributions. Water Resour Manag 22(8):943–957CrossRef
Zurück zum Zitat French MN, Krajewski WF, Cuykendall RR (1992) Rainfall Forecasting in space and time using neural network. J Hydrol 137:1–31CrossRef French MN, Krajewski WF, Cuykendall RR (1992) Rainfall Forecasting in space and time using neural network. J Hydrol 137:1–31CrossRef
Zurück zum Zitat Gahegan M, German G, West G (1999) Improving neural network performance on the classification of complex geographic datasets. Geogr Syst 1:3–22CrossRef Gahegan M, German G, West G (1999) Improving neural network performance on the classification of complex geographic datasets. Geogr Syst 1:3–22CrossRef
Zurück zum Zitat Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9(3):143–151 Goh ATC (1995) Back-propagation neural networks for modeling complex systems. Artif Intell Eng 9(3):143–151
Zurück zum Zitat Govindaraju RS, Rao AR (2000) Artificial Neural Networks in Hydrology. Kluwer Academy, Norwell, 329 pCrossRef Govindaraju RS, Rao AR (2000) Artificial Neural Networks in Hydrology. Kluwer Academy, Norwell, 329 pCrossRef
Zurück zum Zitat Greenwood JA, Landwehr JM et al (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5):1049–1054CrossRef Greenwood JA, Landwehr JM et al (1979) Probability weighted moments: definition and relation to parameters of several distributions expressible in inverse form. Water Resour Res 15(5):1049–1054CrossRef
Zurück zum Zitat Grehys G (1996) Presentation and review of some methods for regional flood frequency analysis. J Hydrol 186:63–84CrossRef Grehys G (1996) Presentation and review of some methods for regional flood frequency analysis. J Hydrol 186:63–84CrossRef
Zurück zum Zitat Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 6:861–867 Hagan MT, Menhaj MB (1994) Training feed forward networks with the Marquardt algorithm. IEEE Trans Neural Netw 6:861–867
Zurück zum Zitat Haykin S (1998) Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River, pp 26–32 Haykin S (1998) Neural Networks - A Comprehensive Foundation, 2nd edn. Prentice-Hall, Upper Saddle River, pp 26–32
Zurück zum Zitat Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366CrossRef Hornik K, Stinchcombe M, White H (1989) Multilayer feed forward networks are universal approximators. Neural Netw 2:359–366CrossRef
Zurück zum Zitat Hosking JRM (1986) The Theory of Probability Weighted Moments. Research Rep. RC 12210. IBM Research Division, Yorktown Heights, 160 pp Hosking JRM (1986) The Theory of Probability Weighted Moments. Research Rep. RC 12210. IBM Research Division, Yorktown Heights, 160 pp
Zurück zum Zitat Hosking JRM (1990) L-moments: analysis and estimation of distributions using lineer combinations of order statistics. J R Stat Soc 52(2):105–124 Hosking JRM (1990) L-moments: analysis and estimation of distributions using lineer combinations of order statistics. J R Stat Soc 52(2):105–124
Zurück zum Zitat Hosking JRM (1991) Approximations for use in Constructing L-moments Ratio Diagrams. Res Report, RC-16635, vol 3. IBM Res Division, New York Hosking JRM (1991) Approximations for use in Constructing L-moments Ratio Diagrams. Res Report, RC-16635, vol 3. IBM Res Division, New York
Zurück zum Zitat Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281CrossRef Hosking JRM, Wallis JR (1993) Some statistics useful in regional frequency analysis. Water Resour Res 29(2):271–281CrossRef
Zurück zum Zitat Hosking JRM, Wallis JR (1997) Regional Frequency Analysis - an Approach based on L-moments. Cambridge University Pres, New YorkCrossRef Hosking JRM, Wallis JR (1997) Regional Frequency Analysis - an Approach based on L-moments. Cambridge University Pres, New YorkCrossRef
Zurück zum Zitat Hussain Z, Pasha GR (2009) Regional flood frequency analysis of the seven sites of Punjab, Pakistan, using L-moments. Water Resour Manag 23:1917–1933CrossRef Hussain Z, Pasha GR (2009) Regional flood frequency analysis of the seven sites of Punjab, Pakistan, using L-moments. Water Resour Manag 23:1917–1933CrossRef
Zurück zum Zitat Jaiswal RK, Goel NK, Singh P, Thomas T (2003) L-moment based flood frequency modelling. Inst Eng (India) 84:6–10 Jaiswal RK, Goel NK, Singh P, Thomas T (2003) L-moment based flood frequency modelling. Inst Eng (India) 84:6–10
Zurück zum Zitat Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming River basin in China. J Hydrol 296:98–117CrossRef Jingyi Z, Hall MJ (2004) Regional flood frequency analysis for the Gan-Ming River basin in China. J Hydrol 296:98–117CrossRef
Zurück zum Zitat Kanellopoulos I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sens 18(4):711–725CrossRef Kanellopoulos I, Wilkinson GG (1997) Strategies and best practice for neural network image classification. Int J Remote Sens 18(4):711–725CrossRef
Zurück zum Zitat Karim MDA, Chowdhury JU (1995) A comparison of four distributions used in flood frequency analysis in Bangladesh. Hydrol Sci J 40(1):55–66CrossRef Karim MDA, Chowdhury JU (1995) A comparison of four distributions used in flood frequency analysis in Bangladesh. Hydrol Sci J 40(1):55–66CrossRef
Zurück zum Zitat Kavzoğlu T (2001) An investigation of the design and use of feed-forward artificial neural networks in the classification of remotely sensed images, Ph.D. dissertation, University of Nottingham, Nottingham, United Kingdom, 308 p Kavzoğlu T (2001) An investigation of the design and use of feed-forward artificial neural networks in the classification of remotely sensed images, Ph.D. dissertation, University of Nottingham, Nottingham, United Kingdom, 308 p
Zurück zum Zitat Kim B, Kim S, Kim K (2003) Modelling of plasma etching using a generalized regression neural network. Vacuum 71(4):497–503 Kim B, Kim S, Kim K (2003) Modelling of plasma etching using a generalized regression neural network. Vacuum 71(4):497–503
Zurück zum Zitat Kjeldsen TR, Smithers JC, Schulze RE (2002) Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method. J Hydrol 255:194–211CrossRef Kjeldsen TR, Smithers JC, Schulze RE (2002) Regional flood frequency analysis in the KwaZulu-Natal province, South Africa, using the index-flood method. J Hydrol 255:194–211CrossRef
Zurück zum Zitat Kumar R, Chatterjee C, Panigrihy N, Patwary BC, Singh RD (2003) Development of regional flood formulae using L-moments for gauged and ungauged catchments of North Brahmaputra River system. Inst Eng (India) 84:57–63 Kumar R, Chatterjee C, Panigrihy N, Patwary BC, Singh RD (2003) Development of regional flood formulae using L-moments for gauged and ungauged catchments of North Brahmaputra River system. Inst Eng (India) 84:57–63
Zurück zum Zitat Lee GC, Chang SH (2003) Radial basis function networks applied to DNBR calculation in digital core protection systems. Ann Nucl Energ 30:1561–1572CrossRef Lee GC, Chang SH (2003) Radial basis function networks applied to DNBR calculation in digital core protection systems. Ann Nucl Energ 30:1561–1572CrossRef
Zurück zum Zitat Madsen H, Pearson CP, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series mthods for modeling extreme hydrologic events 2. Regional modeling. Water Resour Res 33(4):759–769CrossRef Madsen H, Pearson CP, Rosbjerg D (1997) Comparison of annual maximum series and partial duration series mthods for modeling extreme hydrologic events 2. Regional modeling. Water Resour Res 33(4):759–769CrossRef
Zurück zum Zitat Maier HR (1995) A review of artificial neural networks. Research Report No. R131. School of Civil and Environmental Engineering, The University of Adelaide, South Australia Maier HR (1995) A review of artificial neural networks. Research Report No. R131. School of Civil and Environmental Engineering, The University of Adelaide, South Australia
Zurück zum Zitat Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting water resources variables: A review of modeling issues and applications. Environ Modell Softw 15:101–124 Maier HR, Dandy GC (2000) Neural networks for the prediction and forecasting water resources variables: A review of modeling issues and applications. Environ Modell Softw 15:101–124
Zurück zum Zitat Meigh JR, Farquharson FAK, Sutcliffe JV (1997) A worldwide comparison of regional flood estimation methods and climate. Hydrol Sci J 42(2):225–244CrossRef Meigh JR, Farquharson FAK, Sutcliffe JV (1997) A worldwide comparison of regional flood estimation methods and climate. Hydrol Sci J 42(2):225–244CrossRef
Zurück zum Zitat Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef Minns AW, Hall MJ (1996) Artificial neural networks as rainfall-runoff models. Hydrol Sci J 41(3):399–417CrossRef
Zurück zum Zitat Mkhandi S, Kachroo S (1997) Regional flood frequency analysis for Southern Africa, Southern African FRIEND, Technical documents in Hydrology No.15, Unesco, Paris Mkhandi S, Kachroo S (1997) Regional flood frequency analysis for Southern Africa, Southern African FRIEND, Technical documents in Hydrology No.15, Unesco, Paris
Zurück zum Zitat Noto LV, Loggia G (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resour Manag 23:2207–2229CrossRef Noto LV, Loggia G (2009) Use of L-moments approach for regional flood frequency analysis in Sicily, Italy. Water Resour Manag 23:2207–2229CrossRef
Zurück zum Zitat Ouarda TBMJ, Ba KM, Diaz-Delgado C, Carsteanu A, Chokmani K, Gingras H, Quentin E, Trujillo E, Bobee B (2008) Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. J Hydrol 348:40–58CrossRef Ouarda TBMJ, Ba KM, Diaz-Delgado C, Carsteanu A, Chokmani K, Gingras H, Quentin E, Trujillo E, Bobee B (2008) Intercomparison of regional flood frequency estimation methods at ungauged sites for a Mexican case study. J Hydrol 348:40–58CrossRef
Zurück zum Zitat Paola JD (1994) Neural network classification of multispectral imagery, MSc. dissertation, The University of Arizona, Tucson, Arizona, 169 p Paola JD (1994) Neural network classification of multispectral imagery, MSc. dissertation, The University of Arizona, Tucson, Arizona, 169 p
Zurück zum Zitat Parida BP, Kachroo RK, Shrestha DB (1998) Regional flood frequency analysis of Mahi-Sabarmati Basin (Subzone 3-a) using index flood procedure with L-moments. Water Resour Manag 12:1–12CrossRef Parida BP, Kachroo RK, Shrestha DB (1998) Regional flood frequency analysis of Mahi-Sabarmati Basin (Subzone 3-a) using index flood procedure with L-moments. Water Resour Manag 12:1–12CrossRef
Zurück zum Zitat Rao AR, Hamed KH (1997) Regional frequency analysis of Wabash River flood data by L-moments. J Hydrol Eng 2(4):169–179 Rao AR, Hamed KH (1997) Regional frequency analysis of Wabash River flood data by L-moments. J Hydrol Eng 2(4):169–179
Zurück zum Zitat Saf B (2009) Regional flood frequency analysis using L-moments for the West Mediterranean Region of Turkey. Water Resour Manag 23(3):531–551CrossRef Saf B (2009) Regional flood frequency analysis using L-moments for the West Mediterranean Region of Turkey. Water Resour Manag 23(3):531–551CrossRef
Zurück zum Zitat Sankarasubramanian A, Srinivasan K (1999) Investigation and comparison of sampling properties of L-moments and conventional moments. J Hydrol 218:13–34CrossRef Sankarasubramanian A, Srinivasan K (1999) Investigation and comparison of sampling properties of L-moments and conventional moments. J Hydrol 218:13–34CrossRef
Zurück zum Zitat Shu C, Ouarda TBMJ (2008) Regional flood frequency analysis at ungauged sites using tha adaptive neuro-fuzzy inference system. J Hydrol 349:31–43CrossRef Shu C, Ouarda TBMJ (2008) Regional flood frequency analysis at ungauged sites using tha adaptive neuro-fuzzy inference system. J Hydrol 349:31–43CrossRef
Zurück zum Zitat Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576CrossRef Specht DF (1991) A general regression neural network. IEEE Trans Neural Netw 2(6):568–576CrossRef
Zurück zum Zitat State Water Works, SWW (1994) The annual maximum flow of Turkish Rivers. The General Directorate of State Water Works Publication, Ankara, Turkey State Water Works, SWW (1994) The annual maximum flow of Turkish Rivers. The General Directorate of State Water Works Publication, Ankara, Turkey
Zurück zum Zitat Stedinger JR, Tasker GD (1985) Regional hydrologic analysis 1. Ordinary, weighted and generalized least squares compared. Water Resour Res 21(9):1421–1432CrossRef Stedinger JR, Tasker GD (1985) Regional hydrologic analysis 1. Ordinary, weighted and generalized least squares compared. Water Resour Res 21(9):1421–1432CrossRef
Zurück zum Zitat Stedinger JR, Vogel RM, Georgiou EF (1993) Frequency Analysis of Extreme Events, Chapter 18. In: Maidment DJ (ed) Handbook of Hydrology. McGraw-Hill, NewYork Stedinger JR, Vogel RM, Georgiou EF (1993) Frequency Analysis of Extreme Events, Chapter 18. In: Maidment DJ (ed) Handbook of Hydrology. McGraw-Hill, NewYork
Zurück zum Zitat Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley, NewYork Tsoukalas LH, Uhrig RE (1997) Fuzzy and neural approaches in engineering. Wiley, NewYork
Zurück zum Zitat Vogel RM, Fennesy MN (1993) L moment diagrams should replace product moment diagrams. Water Resour Res 29(6):1745–1752CrossRef Vogel RM, Fennesy MN (1993) L moment diagrams should replace product moment diagrams. Water Resour Res 29(6):1745–1752CrossRef
Zurück zum Zitat Vogel RM, McMahon TA, Chiew FHS (1993a) Floodflow frequency model selection in Australia. J Hydrol 146:421–449CrossRef Vogel RM, McMahon TA, Chiew FHS (1993a) Floodflow frequency model selection in Australia. J Hydrol 146:421–449CrossRef
Zurück zum Zitat Vogel RM, Wilbert OT Jr, McMahon TA (1993b) Flood-flow frequency model selection in Southwestern United States. J Water Resour Plan Manag ASCE 119(3):353–366CrossRef Vogel RM, Wilbert OT Jr, McMahon TA (1993b) Flood-flow frequency model selection in Southwestern United States. J Water Resour Plan Manag ASCE 119(3):353–366CrossRef
Zurück zum Zitat Wiltshire SW (1986) Identification of homogeneous regions for flood frequency analysis. J Hydrol 84:287–302CrossRef Wiltshire SW (1986) Identification of homogeneous regions for flood frequency analysis. J Hydrol 84:287–302CrossRef
Zurück zum Zitat Yue S, Wang CY (2004) Possible regional probability distribution type of Canadian annual streamflow by L-moments. Water Resour Manag 18:425–438CrossRef Yue S, Wang CY (2004) Possible regional probability distribution type of Canadian annual streamflow by L-moments. Water Resour Manag 18:425–438CrossRef
Zurück zum Zitat Zrinji Z, Burn DH (1994) Flood frequency analysis for ungauged sites using a region of influence approach. J Hydrol 153:1–21CrossRef Zrinji Z, Burn DH (1994) Flood frequency analysis for ungauged sites using a region of influence approach. J Hydrol 153:1–21CrossRef
Zurück zum Zitat Zrinji Z, Burn DH (1996) Regional flood frequency with hierarchical region of influence. J Water Resour Plan Manag ASCE 122(4):245–252CrossRef Zrinji Z, Burn DH (1996) Regional flood frequency with hierarchical region of influence. J Water Resour Plan Manag ASCE 122(4):245–252CrossRef
Metadaten
Titel
Comparison of Artificial Neural Network Methods with L-moments for Estimating Flood Flow at Ungauged Sites: the Case of East Mediterranean River Basin, Turkey
verfasst von
Neslihan Seckin
Murat Cobaner
Recep Yurtal
Tefaruk Haktanir
Publikationsdatum
01.05.2013
Verlag
Springer Netherlands
Erschienen in
Water Resources Management / Ausgabe 7/2013
Print ISSN: 0920-4741
Elektronische ISSN: 1573-1650
DOI
https://doi.org/10.1007/s11269-013-0278-3

Weitere Artikel der Ausgabe 7/2013

Water Resources Management 7/2013 Zur Ausgabe