Skip to main content
Erschienen in: Journal of Iron and Steel Research International 11/2020

23.06.2020 | Original Paper

Comparison of contribution of sub-rapid cooling and shear deformation to refinement of Fe-rich phase in hypereutectic Al–Fe alloy during rheo-extrusion

verfasst von: Xiang Wang, Ren-guo Guan, Yuan-dong Li, Ti-jun Chen

Erschienen in: Journal of Iron and Steel Research International | Ausgabe 11/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A hypereutectic Al–3Fe (wt.%) alloy was subjected by rheo-extrusion, and the effect of sub-rapid cooling and shear deformation on the refinement of Fe-rich phase was investigated. The results showed that both the primary Fe-rich phase and eutectic Fe-rich phase in the solidified Al–Fe alloy were finer than the platelike Fe-rich phase in the as-cast Al–Fe alloy with the same content of Fe. The solidified Al–Fe alloy was subjected to three stages of shear deformation, and both the primary Fe-rich phase and eutectic Fe-rich phase were fractured and the average length was refined to 400 nm, while Fe-rich phase in the as-cast Al–3Fe (wt.%) alloy was platelike and its average length was 40 μm. The tensile strength and elongation of the hypereutectic Al–3Fe (wt.%) alloy containing nanosized Fe-rich phase were 162 MPa and 25.78% while those of the as-cast Al–3Fe (wt.%) alloy containing coarse platelike Fe-rich phase were 102 MPa and 16.84%, respectively. In the refinement of Fe-rich phase in hypereutectic Al–Fe alloy during rheo-extrusion, the three stages of shear deformation contributed more than sub-rapid cooling.
Literatur
[1]
Zurück zum Zitat J.A.S. Green, Aluminum recycling and processing for energy conservation and sustainability, Mbr Bookwatch, Ohio, USA, 2007. J.A.S. Green, Aluminum recycling and processing for energy conservation and sustainability, Mbr Bookwatch, Ohio, USA, 2007.
[2]
Zurück zum Zitat L.F. Zhang, J.W. Gao, L.N.W. Damoah, D.G. Robertson, Min. Proc. Ext. Metall. Rev. 33 (2012) 99–157.CrossRef L.F. Zhang, J.W. Gao, L.N.W. Damoah, D.G. Robertson, Min. Proc. Ext. Metall. Rev. 33 (2012) 99–157.CrossRef
[3]
Zurück zum Zitat Q. Zhao, Z. Qian, X. Cui, Y. Wu, X. Liu, J. Alloy. Compd. 650 (2015) 768–776.CrossRef Q. Zhao, Z. Qian, X. Cui, Y. Wu, X. Liu, J. Alloy. Compd. 650 (2015) 768–776.CrossRef
[4]
Zurück zum Zitat P. Kwakhong, A. Apichart, K. Chaiyaput, J. Iron Steel Res. Int. 22 (2015) 746–751.CrossRef P. Kwakhong, A. Apichart, K. Chaiyaput, J. Iron Steel Res. Int. 22 (2015) 746–751.CrossRef
[5]
Zurück zum Zitat T. Gao, Z.Q. Li, Y.X. Zhang, J.Y. Qin, X.F. Liu, Mater. Des. 134 (2017) 71–80.CrossRef T. Gao, Z.Q. Li, Y.X. Zhang, J.Y. Qin, X.F. Liu, Mater. Des. 134 (2017) 71–80.CrossRef
[6]
Zurück zum Zitat J.M. Cubero-Sesin, Z. Horita, Metall. Mater. Trans. A 43 (2012) 5182–5192.CrossRef J.M. Cubero-Sesin, Z. Horita, Metall. Mater. Trans. A 43 (2012) 5182–5192.CrossRef
[7]
Zurück zum Zitat J. Zhang, S.M. Jiang, Q.F. Zhang, C.S. Liu, J. Iron Steel Res. Int. 23 (2016) 270–275.CrossRef J. Zhang, S.M. Jiang, Q.F. Zhang, C.S. Liu, J. Iron Steel Res. Int. 23 (2016) 270–275.CrossRef
[8]
Zurück zum Zitat Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, Scripta Mater. 146 (2018) 321–326.CrossRef Y. Zhao, W. Du, B. Koe, T. Connolley, S. Irvine, P.K. Allan, C.M. Schlepütz, W. Zhang, F. Wang, D.G. Eskin, J. Mi, Scripta Mater. 146 (2018) 321–326.CrossRef
[9]
Zurück zum Zitat C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, P.D. Lee, Acta Mater. 79 (2014) 292–303.CrossRef C. Puncreobutr, A.B. Phillion, J.L. Fife, P. Rockett, A.P. Horsfield, P.D. Lee, Acta Mater. 79 (2014) 292–303.CrossRef
[10]
Zurück zum Zitat L. Lu, A.K. Dahle, Metall. Mater. Trans. A 36 (2005) 819–835. L. Lu, A.K. Dahle, Metall. Mater. Trans. A 36 (2005) 819–835.
[11]
Zurück zum Zitat C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phililion, Acta Mater. 68 (2014) 42–51.CrossRef C. Puncreobutr, P.D. Lee, K.M. Kareh, T. Connolley, J.L. Fife, A.B. Phililion, Acta Mater. 68 (2014) 42–51.CrossRef
[12]
Zurück zum Zitat F. Paray, B. Kulunk, J.E. Gruzleski, Int. J. Cast Met. Res. 13 (2000) 17–37.CrossRef F. Paray, B. Kulunk, J.E. Gruzleski, Int. J. Cast Met. Res. 13 (2000) 17–37.CrossRef
[13]
Zurück zum Zitat N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in aluminum alloys: impurity and alloying alement, Taylorand Francis, London, UK, 2002.CrossRef N.A. Belov, A.A. Aksenov, D.G. Eskin, Iron in aluminum alloys: impurity and alloying alement, Taylorand Francis, London, UK, 2002.CrossRef
[14]
Zurück zum Zitat J.M. Cubero-Sesin, Z.J. Horita, J. Mater. Sci. 48 (2013) 4713–4722.CrossRef J.M. Cubero-Sesin, Z.J. Horita, J. Mater. Sci. 48 (2013) 4713–4722.CrossRef
[15]
Zurück zum Zitat Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Mater. Sci. Eng. A 632 (2015) 62–71.CrossRef Z.M. Shi, K. Gao, Y.T. Shi, Y. Wang, Mater. Sci. Eng. A 632 (2015) 62–71.CrossRef
[16]
Zurück zum Zitat C. Bidmeshk, V. Abouei, H. Saghafian, S.G. Shabestari, M.T. Noghani, J. Mater. Res. Technol. 5 (2016) 250–258.CrossRef C. Bidmeshk, V. Abouei, H. Saghafian, S.G. Shabestari, M.T. Noghani, J. Mater. Res. Technol. 5 (2016) 250–258.CrossRef
[17]
Zurück zum Zitat S.G. Shabestari, S. Ghodrat, Mater. Sci. Eng. A 467 (2007) 150–158.CrossRef S.G. Shabestari, S. Ghodrat, Mater. Sci. Eng. A 467 (2007) 150–158.CrossRef
[18]
Zurück zum Zitat K.L. Sahoo, C.S. Sivaramakrishnan, J. Mater. Process. Technol. 15 (2003) 253–257.CrossRef K.L. Sahoo, C.S. Sivaramakrishnan, J. Mater. Process. Technol. 15 (2003) 253–257.CrossRef
[19]
Zurück zum Zitat L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Crystal Growth 339 (2012) 61–69.CrossRef L. Li, Y.D. Zhang, C. Esling, H.X. Jiang, Z.H. Zhao, Y.B. Zuo, J.Z. Cui, J. Crystal Growth 339 (2012) 61–69.CrossRef
[20]
Zurück zum Zitat C.Y. Ban, J.F. Zhang, P. Qian, X. Zhang, Y. Han, J.Z. Cui, China Foundry 8 (2011) 386–391. C.Y. Ban, J.F. Zhang, P. Qian, X. Zhang, Y. Han, J.Z. Cui, China Foundry 8 (2011) 386–391.
[21]
Zurück zum Zitat K.L. Sahoo, C.S. Sivaramakrishnan, A.K. Chakrabarti, Metall. Mater. Trans. A 31 (2000) 1599–1610.CrossRef K.L. Sahoo, C.S. Sivaramakrishnan, A.K. Chakrabarti, Metall. Mater. Trans. A 31 (2000) 1599–1610.CrossRef
[22]
Zurück zum Zitat K.L. Sahoo, B.N. Pathak, J. Mater. Process. Technol. 209 (2009) 798–804.CrossRef K.L. Sahoo, B.N. Pathak, J. Mater. Process. Technol. 209 (2009) 798–804.CrossRef
[23]
Zurück zum Zitat G.F. Mi, C.F. Dong, D.W. Zhao, Appl. Mech. Mater. 44–47 (2011) 2126–2130. G.F. Mi, C.F. Dong, D.W. Zhao, Appl. Mech. Mater. 44–47 (2011) 2126–2130.
[24]
Zurück zum Zitat C.M. Allen, K.A.Q. O’Reilly, B. Cantor, Acta Mater. 49 (2001) 1549–1563.CrossRef C.M. Allen, K.A.Q. O’Reilly, B. Cantor, Acta Mater. 49 (2001) 1549–1563.CrossRef
[25]
Zurück zum Zitat Y.H. Zhang, Y.C. Liu, Y.J. Han, C. Wei, Z.M. Gao, J. Alloy. Compd. 473 (2009) 442–445.CrossRef Y.H. Zhang, Y.C. Liu, Y.J. Han, C. Wei, Z.M. Gao, J. Alloy. Compd. 473 (2009) 442–445.CrossRef
[26]
Zurück zum Zitat V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Mater. Sci. Eng. A 357 (2003) 159–167.CrossRef V.V. Stolyarov, R. Lapovok, I.G. Brodova, P.F. Thomson, Mater. Sci. Eng. A 357 (2003) 159–167.CrossRef
[27]
Zurück zum Zitat J.M. Hu, J. Teng, X.K. Ji, X.X. Kong, F.L. Jiang, H. Zhang, J. Mater. Eng. Perform. 25 (2016) 4769–4775.CrossRef J.M. Hu, J. Teng, X.K. Ji, X.X. Kong, F.L. Jiang, H. Zhang, J. Mater. Eng. Perform. 25 (2016) 4769–4775.CrossRef
[28]
Zurück zum Zitat X.X. Kong, H. Zhang, X.K. Ji, Mater. Sci. Eng. A 612 (2014) 131–139.CrossRef X.X. Kong, H. Zhang, X.K. Ji, Mater. Sci. Eng. A 612 (2014) 131–139.CrossRef
[29]
Zurück zum Zitat X. Wang, R.G. Guan, Y. Wang, Metall. Mater. Trans. B 49 (2018) 2225–2231.CrossRef X. Wang, R.G. Guan, Y. Wang, Metall. Mater. Trans. B 49 (2018) 2225–2231.CrossRef
[30]
Zurück zum Zitat P. Moldovan, G. Popescu, F. Miculescu, J. Mater. Process. Technol. 153–154 (2004) 408–415.CrossRef P. Moldovan, G. Popescu, F. Miculescu, J. Mater. Process. Technol. 153–154 (2004) 408–415.CrossRef
[31]
Zurück zum Zitat X. Wang, R.G. Guan, R.D.K. Misra, Y. Wang, H.C. Li, Y.Q. Shang, Mater. Sci. Eng. A 724 (2018) 452–460.CrossRef X. Wang, R.G. Guan, R.D.K. Misra, Y. Wang, H.C. Li, Y.Q. Shang, Mater. Sci. Eng. A 724 (2018) 452–460.CrossRef
Metadaten
Titel
Comparison of contribution of sub-rapid cooling and shear deformation to refinement of Fe-rich phase in hypereutectic Al–Fe alloy during rheo-extrusion
verfasst von
Xiang Wang
Ren-guo Guan
Yuan-dong Li
Ti-jun Chen
Publikationsdatum
23.06.2020
Verlag
Springer Singapore
Erschienen in
Journal of Iron and Steel Research International / Ausgabe 11/2020
Print ISSN: 1006-706X
Elektronische ISSN: 2210-3988
DOI
https://doi.org/10.1007/s42243-020-00437-6

Weitere Artikel der Ausgabe 11/2020

Journal of Iron and Steel Research International 11/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.