Skip to main content
Erschienen in: Experiments in Fluids 11/2014

01.11.2014 | Research Article

Comparison of magnetic resonance concentration measurements in water to temperature measurements in compressible air flows

verfasst von: Sayuri D. Yapa, John L. D’Atri, John M. Schoech, Christopher J. Elkins, John K. Eaton

Erschienen in: Experiments in Fluids | Ausgabe 11/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Magnetic resonance imaging (MRI) measurements in liquid flows provide highly detailed 3D mean velocity and concentration data in complex turbulent mixing flow applications. The scalar transport analogy is applied to infer the mean temperature distribution in high speed gas flows directly from the MRI concentration measurements in liquid. Compressibility effects on turbulent mixing are known to be weak for simple flows at high subsonic Mach number, and it was not known if this would hold in more complex flows characteristic of practical applications. Furthermore, the MRI measurements are often done at lower Reynolds number than the compressible application, although both are generally done in fully turbulent flows. The hypothesis is that the conclusions from MRI measurements performed in water are transferable to high subsonic Mach number applications. The present experiment is designed to compare stagnation temperature measurements in high speed airflow (M = 0.7) to concentration measurements in an identical water flow apparatus. The flow configuration was a low aspect ratio wall jet with a thick splitter plate producing a 3D complex downstream flow mixing the wall-jet fluid with the mainstream flow. The three-dimensional velocity field is documented using magnetic resonance velocimetry in the water experiment, and the mixing is quantified by measuring the mean concentration distribution of wall-jet fluid marked with dissolved copper sulfate. The airflow experiments are operated with a temperature difference between the main stream and the wall jet. Profiles of the stagnation temperature are measured with a shielded thermocouple probe. The results show excellent agreement between normalized temperature and concentration profiles after correction of the temperature measurements for the effects of energy separation. The agreement is within 1 % near the edges of the mixing layer, which suggests that the mixing characteristics of the large scale turbulence structures are the same in the two flows.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
At a low but still turbulent Reynolds number, there might be a weak effect of the molecular Schmidt number on turbulent diffusivity. This effect is insignificant in fully turbulent flows.
 
Literatur
Zurück zum Zitat Benson MJ, Elkins CJ, Mobley PD, Alley MT, Eaton JK (2010) Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exp Fluids 49:43–55CrossRef Benson MJ, Elkins CJ, Mobley PD, Alley MT, Eaton JK (2010) Three-dimensional concentration field measurements in a mixing layer using magnetic resonance imaging. Exp Fluids 49:43–55CrossRef
Zurück zum Zitat Benson MJ (2011) 3D velocity and scalar field diagnostics using magnetic resonance imaging with application in film-cooling. PhD Thesis, Stanford University, Stanford Benson MJ (2011) 3D velocity and scalar field diagnostics using magnetic resonance imaging with application in film-cooling. PhD Thesis, Stanford University, Stanford
Zurück zum Zitat Benson MJ, Elkins CJ, Yapa SD, Ling JB, Eaton JK (2012) Effects of varying Reynolds number, blowing ratio, and internal geometry on trailing edge cutback film cooling. Exp Fluids 52:1415–1430CrossRef Benson MJ, Elkins CJ, Yapa SD, Ling JB, Eaton JK (2012) Effects of varying Reynolds number, blowing ratio, and internal geometry on trailing edge cutback film cooling. Exp Fluids 52:1415–1430CrossRef
Zurück zum Zitat Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64(4):775–816CrossRef Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64(4):775–816CrossRef
Zurück zum Zitat Cherry E, Elkins CJ, Eaton JK (2008) Geometric sensitivity of three-dimensional separated flows. Int J Heat Fluid Flow 29(3):803–811CrossRef Cherry E, Elkins CJ, Eaton JK (2008) Geometric sensitivity of three-dimensional separated flows. Int J Heat Fluid Flow 29(3):803–811CrossRef
Zurück zum Zitat Coletti F, Muramatsu K, Elkins CJ, Eaton JK (2014) Fluid flow and scalar transport through porous fins. Phys FluidsPlease provide volume number and page range for the reference Coletti et al. (2014). Coletti F, Muramatsu K, Elkins CJ, Eaton JK (2014) Fluid flow and scalar transport through porous fins. Phys FluidsPlease provide volume number and page range for the reference Coletti et al. (2014).
Zurück zum Zitat Coletti F, Benson MJ, Ling J, Elkins CJ, Eaton JK (2013) Turbulent transport in an inclined jet in crossflow. Int J Heat Fluid Flow 43:149–160CrossRef Coletti F, Benson MJ, Ling J, Elkins CJ, Eaton JK (2013) Turbulent transport in an inclined jet in crossflow. Int J Heat Fluid Flow 43:149–160CrossRef
Zurück zum Zitat Conturo T, Smith G (1990) Signal-to-noise in phase angle reconstruction: dynamic range extension using phase reference offsets. Magn Reson Med 15(3):420–437CrossRef Conturo T, Smith G (1990) Signal-to-noise in phase angle reconstruction: dynamic range extension using phase reference offsets. Magn Reson Med 15(3):420–437CrossRef
Zurück zum Zitat Dellimore KH, Marshall AW, Cadou CP (2010) Influence of compressibility on film-cooling performance. J Thermophys Heat Transf 24(3):506–515CrossRef Dellimore KH, Marshall AW, Cadou CP (2010) Influence of compressibility on film-cooling performance. J Thermophys Heat Transf 24(3):506–515CrossRef
Zurück zum Zitat Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858CrossRef Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858CrossRef
Zurück zum Zitat Elkins CJ, Markl M, Pelc N, Eaton JK (2003) 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp Fluids 34(4):494–503CrossRef Elkins CJ, Markl M, Pelc N, Eaton JK (2003) 4D Magnetic resonance velocimetry for mean velocity measurements in complex turbulent flows. Exp Fluids 34(4):494–503CrossRef
Zurück zum Zitat Elkins CJ, Alley MT, Saetran L, Eaton JK (2009) Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow. Exp Fluids 46:285–296CrossRef Elkins CJ, Alley MT, Saetran L, Eaton JK (2009) Three-dimensional magnetic resonance velocimetry measurements of turbulence quantities in complex flow. Exp Fluids 46:285–296CrossRef
Zurück zum Zitat Fukushima E (1999) Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech 31:95–123CrossRef Fukushima E (1999) Nuclear magnetic resonance as a tool to study flow. Annu Rev Fluid Mech 31:95–123CrossRef
Zurück zum Zitat Gatenby JC, Gore JC (1994) Characterization of turbulent flows by NMR measurements with pulsed gradients. J Magn Reson A 110:26–32CrossRef Gatenby JC, Gore JC (1994) Characterization of turbulent flows by NMR measurements with pulsed gradients. J Magn Reson A 110:26–32CrossRef
Zurück zum Zitat Goldstein RJ, Spores RA (1988) Turbulent transport on the endwall in the region between adjacent turbine blades. J Heat Transf 110(4a):862–869CrossRef Goldstein RJ, Spores RA (1988) Turbulent transport on the endwall in the region between adjacent turbine blades. J Heat Transf 110(4a):862–869CrossRef
Zurück zum Zitat Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63CrossRef Grundmann S, Wassermann F, Lorenz R, Jung B, Tropea C (2012) Experimental investigation of helical structures in swirling flows. Int J Heat Fluid Flow 37:51–63CrossRef
Zurück zum Zitat Iaccarino G, Elkins CJ (2006) Towards rapid analysis of turbulent flows in complex internal passages. Flow Turbul Combust 77(1):2739 Iaccarino G, Elkins CJ (2006) Towards rapid analysis of turbulent flows in complex internal passages. Flow Turbul Combust 77(1):2739
Zurück zum Zitat Issakhanian E, Elkins CJ, Eaton JK (2012) In-hole and mainflow velocity measurements of low-meomentum jets in crossflow emanating from short holes. Exp Fluids 53:1765–1778CrossRef Issakhanian E, Elkins CJ, Eaton JK (2012) In-hole and mainflow velocity measurements of low-meomentum jets in crossflow emanating from short holes. Exp Fluids 53:1765–1778CrossRef
Zurück zum Zitat Kaufman L, Kramer D, Crooks L, Ortendahl D (1989) Measuring signal-to-noise ratios in MR imaging. Radiology 173(1):265–267CrossRef Kaufman L, Kramer D, Crooks L, Ortendahl D (1989) Measuring signal-to-noise ratios in MR imaging. Radiology 173(1):265–267CrossRef
Zurück zum Zitat Kurosaka M, Gertz JB, Graham JE, Goodman JR, Sundaram P, Riner WC, Kuroda H, Hankey WL (1987) Energy separation in a vortex street. J Fluid Mech 178:1–29CrossRef Kurosaka M, Gertz JB, Graham JE, Goodman JR, Sundaram P, Riner WC, Kuroda H, Hankey WL (1987) Energy separation in a vortex street. J Fluid Mech 178:1–29CrossRef
Zurück zum Zitat Ladenburg RW (ed) (1954) Physical measurements in gas dynamics and combustion, part 1. Princeton University Press, Princeton Ladenburg RW (ed) (1954) Physical measurements in gas dynamics and combustion, part 1. Princeton University Press, Princeton
Zurück zum Zitat Ling JB, Yapa SD, Benson MJ, Elkins CJ, Eaton JK (2013) Three-dimensional velocity and scalar field measurements of an airfoil trailing edge with slot film cooling: the effect of an internal structure in the slot. J Turbomach 135:031018-1–031018-8 Ling JB, Yapa SD, Benson MJ, Elkins CJ, Eaton JK (2013) Three-dimensional velocity and scalar field measurements of an airfoil trailing edge with slot film cooling: the effect of an internal structure in the slot. J Turbomach 135:031018-1–031018-8
Zurück zum Zitat Lo KP, Elkins CJ, Eaton JK (2012) Separation control in a conical diffuser with an annular inlet: center body wake separation. Exp Fluids 53:1317–1326CrossRef Lo KP, Elkins CJ, Eaton JK (2012) Separation control in a conical diffuser with an annular inlet: center body wake separation. Exp Fluids 53:1317–1326CrossRef
Zurück zum Zitat Ohlsson J, Schlatter P, Fischer PF, Hennington DS (2010) Direct numerical simulation of separated flow in a three-dimensional diffuser. J Fluid Mech 650:307–318CrossRefMATH Ohlsson J, Schlatter P, Fischer PF, Hennington DS (2010) Direct numerical simulation of separated flow in a three-dimensional diffuser. J Fluid Mech 650:307–318CrossRefMATH
Zurück zum Zitat Pelc N, Sommer F, Li K, Brosnan T, Herfkens R, Enzmann D (1994) Quantitative magnetic resonance flow imaging. Magn Reson Quart 10(3):125–147 Pelc N, Sommer F, Li K, Brosnan T, Herfkens R, Enzmann D (1994) Quantitative magnetic resonance flow imaging. Magn Reson Quart 10(3):125–147
Zurück zum Zitat Repukhov VM (1970) Effects of compressibility and non-isothermal conditions on the performance of film cooling. J Eng Phys Thermophys 19(5):1401–1408CrossRef Repukhov VM (1970) Effects of compressibility and non-isothermal conditions on the performance of film cooling. J Eng Phys Thermophys 19(5):1401–1408CrossRef
Zurück zum Zitat Schneider H, von Terzi D, Bauer H, Rodi W (2010) Reliable and accurate prediction of three-dimensional separation in asymmetric diffusers using large-eddy simulation. J Fluids Eng 132:031101-1–031101-7CrossRef Schneider H, von Terzi D, Bauer H, Rodi W (2010) Reliable and accurate prediction of three-dimensional separation in asymmetric diffusers using large-eddy simulation. J Fluids Eng 132:031101-1–031101-7CrossRef
Zurück zum Zitat Suryan G (1951) Nuclear resonance in flowing liquids. Proc Indian Acad Sci Sect A 33:107–111 Suryan G (1951) Nuclear resonance in flowing liquids. Proc Indian Acad Sci Sect A 33:107–111
Zurück zum Zitat Yapa SD, Elkins CJ, Eaton JK (2014) Endwall vortex effects on turbulent dispersion of film coolant in a turbine vane cascade. In: Proceedings of ASME turbo expo 2014 (accepted) Yapa SD, Elkins CJ, Eaton JK (2014) Endwall vortex effects on turbulent dispersion of film coolant in a turbine vane cascade. In: Proceedings of ASME turbo expo 2014 (accepted)
Metadaten
Titel
Comparison of magnetic resonance concentration measurements in water to temperature measurements in compressible air flows
verfasst von
Sayuri D. Yapa
John L. D’Atri
John M. Schoech
Christopher J. Elkins
John K. Eaton
Publikationsdatum
01.11.2014
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 11/2014
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-014-1834-1

Weitere Artikel der Ausgabe 11/2014

Experiments in Fluids 11/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.