Skip to main content
Erschienen in: Journal of Nanoparticle Research 8/2014

01.08.2014 | Research Paper

Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons

verfasst von: Serhan Yamacli

Erschienen in: Journal of Nanoparticle Research | Ausgabe 8/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Carbon-based materials such as carbon nanotubes and graphene nanoribbons are investigated extensively for the near future nanoelectronics technology. Considering the expertise on the processing of silicon, various implementations of silicon counterparts of these nanoscale components such as silicon nanotubes and silicene nanoribbons have also been reported recently. In this work, electronic transport properties of metallic graphene and silicene nanoribbons (GNRs and SiNRs) are compared. Ab initio simulations based on density functional theory combined with non-equilibrium Green’s function formalism are used to obtain the voltage-dependent transmission spectra, resistance–voltage variations and the potential profiles of realistic metallic GNR and SiNR samples. The investigation of the variations of the transmission characteristics of the GNRs and SiNRs exposes that both nano structures show voltage-dependent resistances due to elastic potential scattering compliant with Büttiker formalism. However, the variation of the transmission spectra of GNRs by the applied voltage is lower than that of SiNRs indicating that metallic GNRs seem to be better candidates compared to their silicon counterparts for use as metallic interconnects.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abadir GB, Walus K, Pulfrey DL (2009) Basis set choice for DFT/NEGF simulations of carbon nanotubes. J Comp Electron 8:1–9 Abadir GB, Walus K, Pulfrey DL (2009) Basis set choice for DFT/NEGF simulations of carbon nanotubes. J Comp Electron 8:1–9
Zurück zum Zitat ATK® Manual (2013) Quantumwise AS, Denmark ATK® Manual (2013) Quantumwise AS, Denmark
Zurück zum Zitat Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102 Aufray B, Kara A, Vizzini S, Oughaddou H, Leandri C, Le Lay G (2010) Graphene-like silicon nanoribbons on Ag(110): a possible formation of silicene. Appl Phys Lett 96:183102
Zurück zum Zitat Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mat Sci Eng 70:341–353 Bai J, Huang Y (2010) Fabrication and electrical properties of graphene nanoribbons. Mat Sci Eng 70:341–353
Zurück zum Zitat Berahman M, Sanaee M, Ghayour R (2014) A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75:411–419 Berahman M, Sanaee M, Ghayour R (2014) A theoretical investigation on the transport properties of overlapped graphene nanoribbons. Carbon 75:411–419
Zurück zum Zitat Brandbyge M, Mozos J-L, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401 Brandbyge M, Mozos J-L, Ordejon P, Taylor J, Stokbro K (2002) Density-functional method for nonequilibrium electron transport. Phys Rev B 65:165401
Zurück zum Zitat Büttiker M, Pretre A, Thomas H (1993) Dynamic conductance and the scattering matrix of small conductors. Phys Rev Lett 70:4144 Büttiker M, Pretre A, Thomas H (1993) Dynamic conductance and the scattering matrix of small conductors. Phys Rev Lett 70:4144
Zurück zum Zitat Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804 Cahangirov S, Topsakal M, Akturk E, Sahin H, Ciraci S (2009) Two- and one-dimensional honeycomb structures of silicon and germanium. Phys Rev Lett 102:236804
Zurück zum Zitat Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Mouth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473 Cai J, Ruffieux P, Jaafar R, Bieri M, Braun T, Blankenburg S, Mouth M, Seitsonen AP, Saleh M, Feng X, Müllen K, Fasel R (2010) Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 466:470–473
Zurück zum Zitat Cao C, Chen L, Huang W, Xu H (2012) Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open Chem Phys J 4:1–7 Cao C, Chen L, Huang W, Xu H (2012) Electronic transport of zigzag graphene nanoribbons with edge hydrogenation and oxidation. Open Chem Phys J 4:1–7
Zurück zum Zitat Chauan SS, Srivastava P, Shirvastava AK (2014) Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach. Appl Nanosci 4:461–467 Chauan SS, Srivastava P, Shirvastava AK (2014) Electronic and transport properties of boron and nitrogen doped graphene nanoribbons: an ab initio approach. Appl Nanosci 4:461–467
Zurück zum Zitat Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, UK Datta S (2005) Quantum transport: atom to transistor. Cambridge University Press, UK
Zurück zum Zitat de Padova P, Quaresima C, Olivieri B, Perfetti P, Le Lay G (2011) Sp2-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl Phys Lett 98:081909 de Padova P, Quaresima C, Olivieri B, Perfetti P, Le Lay G (2011) Sp2-like hybridization of silicon valence orbitals in silicene nanoribbons. Appl Phys Lett 98:081909
Zurück zum Zitat Deng X, Zhang Z, Tang G, Fan Z, Zhu H, Yang C (2014) Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation. Sci Rep 4:4038 Deng X, Zhang Z, Tang G, Fan Z, Zhu H, Yang C (2014) Edge contact dependent spin transport for n-type doping zigzag-graphene with asymmetric edge hydrogenation. Sci Rep 4:4038
Zurück zum Zitat Drummond ND, Zolyomi V, Falko VI (2012) Electrically tunable band gap in silicene. Phys Rev B 85:075423 Drummond ND, Zolyomi V, Falko VI (2012) Electrically tunable band gap in silicene. Phys Rev B 85:075423
Zurück zum Zitat Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12:3507–3511 Feng B, Ding Z, Meng S, Yao Y, He X, Cheng P, Chen L, Wu K (2012) Evidence of silicene in honeycomb structures of silicon on Ag(111). Nano Lett 12:3507–3511
Zurück zum Zitat Frégonèse S, Maneux C, Zimmer T (2009) Technological dispersion in CNTFET: impact of the presence of metallic carbon nanotubes in logic circuits. Solid State Electron 53:1103–1106 Frégonèse S, Maneux C, Zimmer T (2009) Technological dispersion in CNTFET: impact of the presence of metallic carbon nanotubes in logic circuits. Solid State Electron 53:1103–1106
Zurück zum Zitat Geerlings P, de Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874 Geerlings P, de Proft F, Langenaeker W (2003) Conceptual density functional theory. Chem Rev 103:1793–1874
Zurück zum Zitat Hohenberg PC, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864 Hohenberg PC, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:864
Zurück zum Zitat Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880 Jiao L, Zhang L, Wang X, Diankov G, Dai H (2009) Narrow graphene nanoribbons from carbon nanotubes. Nature 458:877–880
Zurück zum Zitat Jiao L, Wang X, Diankov G, Wang H, Dai H (2010a) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotech 5:321–325 Jiao L, Wang X, Diankov G, Wang H, Dai H (2010a) Facile synthesis of high-quality graphene nanoribbons. Nat Nanotech 5:321–325
Zurück zum Zitat Jiao L, Zhang L, Ding L, Liu J, Dai H (2010b) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394 Jiao L, Zhang L, Ding L, Liu J, Dai H (2010b) Aligned graphene nanoribbons and crossbars from unzipped carbon nanotubes. Nano Res 3:387–394
Zurück zum Zitat Kaltsas D, Tsetseris L, Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl Surf Sci 291:93–97 Kaltsas D, Tsetseris L, Dimoulas A (2014) Silicene on metal substrates: a first-principles study on the emergence of a hierarchy of honeycomb structures. Appl Surf Sci 291:93–97
Zurück zum Zitat Kang J, Wu F, Li J (2012) Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons. Appl Phys Lett 100:233122 Kang J, Wu F, Li J (2012) Symmetry-dependent transport properties and magnetoresistance in zigzag silicene nanoribbons. Appl Phys Lett 100:233122
Zurück zum Zitat Kawahara K, Shirasawa T, Arafune R, Lin C-L, Takahashi T, Kawai M, Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf Sci 623:25–28 Kawahara K, Shirasawa T, Arafune R, Lin C-L, Takahashi T, Kawai M, Takagi N (2014) Determination of atomic positions in silicene on Ag(111) by low-energy electron diffraction. Surf Sci 623:25–28
Zurück zum Zitat Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408 Kreupl F, Graham AP, Duesberg GS, Steinhögl W, Liebau M, Unger E, Hönlein W (2002) Carbon nanotubes in interconnect applications. Microelectron Eng 64:399–408
Zurück zum Zitat Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109 Lalmi B, Oughaddou H, Enriquez H, Kara A, Vizzini S, Ealet B, Aufray B (2010) Epitaxial growth of a silicene sheet. Appl Phys Lett 97:223109
Zurück zum Zitat Lebon A, Carrete J, Longo RC, Vega A, Gallego LJ (2013) Molecular hydrogen uptake by zigzag graphene nanoribbons doped with early 3d transition-metal atoms. Int J Hydrog Energy 38:8872–8880 Lebon A, Carrete J, Longo RC, Vega A, Gallego LJ (2013) Molecular hydrogen uptake by zigzag graphene nanoribbons doped with early 3d transition-metal atoms. Int J Hydrog Energy 38:8872–8880
Zurück zum Zitat Li X, Wang X, Zhang L, Lee S, Dai H (2008a) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232 Li X, Wang X, Zhang L, Lee S, Dai H (2008a) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232
Zurück zum Zitat Li Z, Qian H, Wu J, Gu B-L, Duan W (2008b) Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys Rev Lett 100:206802 Li Z, Qian H, Wu J, Gu B-L, Duan W (2008b) Role of symmetry in the transport properties of graphene nanoribbons under bias. Phys Rev Lett 100:206802
Zurück zum Zitat Li H, Li H, Zheng Y, Niu J (2011) Electron transport of step-shaped graphene nanoribbon. Phys B 8:1385–1388 Li H, Li H, Zheng Y, Niu J (2011) Electron transport of step-shaped graphene nanoribbon. Phys B 8:1385–1388
Zurück zum Zitat Ouyang F, Huang B, Li Z, Xiao J, Wang H, Xu H (2008) Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects. J Phys Chem 112:12003–12007 Ouyang F, Huang B, Li Z, Xiao J, Wang H, Xu H (2008) Chemical functionalization of graphene nanoribbons by carboxyl groups on stone-wales defects. J Phys Chem 112:12003–12007
Zurück zum Zitat Park J-Y, Rosenblatt S, Yaish Y, Sazanova V, Ustunel H, Braig S, Arias TA, Brouwer PW, McEuen P (2004) Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4:517–529 Park J-Y, Rosenblatt S, Yaish Y, Sazanova V, Ustunel H, Braig S, Arias TA, Brouwer PW, McEuen P (2004) Electron–phonon scattering in metallic single-walled carbon nanotubes. Nano Lett 4:517–529
Zurück zum Zitat Ragnauth M, Brenner K, Yinxiao Y, Beck T, Meindl JD (2009) Resistivity of graphene nanoribbon interconnects. IEEE Electon Dev Lett 30:611–613 Ragnauth M, Brenner K, Yinxiao Y, Beck T, Meindl JD (2009) Resistivity of graphene nanoribbon interconnects. IEEE Electon Dev Lett 30:611–613
Zurück zum Zitat Rosales R, Orellana P, Barticevic Z, Pacheco M (2008) Transport properties of graphene nanoribbon heterostructures. Microelectron J 39:537–540 Rosales R, Orellana P, Barticevic Z, Pacheco M (2008) Transport properties of graphene nanoribbon heterostructures. Microelectron J 39:537–540
Zurück zum Zitat Shmilovitz D (2005) On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans Power Deliv 20:526–528 Shmilovitz D (2005) On the definition of total harmonic distortion and its effect on measurement interpretation. IEEE Trans Power Deliv 20:526–528
Zurück zum Zitat Srivastava A, Tyagi N, Ahuija R (2013) First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sci 23:35–41 Srivastava A, Tyagi N, Ahuija R (2013) First-principles study of structural and electronic properties of gallium based nanowires. Solid State Sci 23:35–41
Zurück zum Zitat Takeda K, Shirashi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916 Takeda K, Shirashi K (1994) Theoretical possibility of stage corrugation in Si and Ge analogs of graphite. Phys Rev B 50:14916
Zurück zum Zitat Talla JA (2012) Ab initio simulations of doped single-walled carbon nanotube sensors. Chem Phys 392:71–77 Talla JA (2012) Ab initio simulations of doped single-walled carbon nanotube sensors. Chem Phys 392:71–77
Zurück zum Zitat Tchalala MR, Enriques H, Mayne AJ, Kara A, Roth S, Silly MG, Bendounan A, Sirrotti F, Greber T, Aufray B, Dujardin G, Ali MA, Oughaddou H (2013) Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1). App Phys Lett 102:083107 Tchalala MR, Enriques H, Mayne AJ, Kara A, Roth S, Silly MG, Bendounan A, Sirrotti F, Greber T, Aufray B, Dujardin G, Ali MA, Oughaddou H (2013) Formation of one-dimensional self-assembled silicon nanoribbons on Au(110)-(2 × 1). App Phys Lett 102:083107
Zurück zum Zitat Wang X, Ouyang Y, Li X, Wang H, Gou J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803 Wang X, Ouyang Y, Li X, Wang H, Gou J, Dai H (2008) Room-temperature all-semiconducting sub-10-nm graphene nanoribbon field-effect transistors. Phys Rev Lett 100:206803
Zurück zum Zitat Wong H-SP, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, UK Wong H-SP, Akinwande D (2011) Carbon nanotube and graphene device physics. Cambridge University Press, UK
Zurück zum Zitat Xiao HP, Yu Z, Hu ML, Peng XY, Sun LZ, Zhong J (2012) Zigzag graphene nanoribbons: flexible and robust transparent conductors. Solid State Sci 4:711–714 Xiao HP, Yu Z, Hu ML, Peng XY, Sun LZ, Zhong J (2012) Zigzag graphene nanoribbons: flexible and robust transparent conductors. Solid State Sci 4:711–714
Zurück zum Zitat Xiong JY, Kong X-L (2010) Conduction suppression in graphene nanoribbons with a vacancy. Phys B 405:1690–1694 Xiong JY, Kong X-L (2010) Conduction suppression in graphene nanoribbons with a vacancy. Phys B 405:1690–1694
Zurück zum Zitat Zeng H, Zhao J, Wei J, Xu D, Leburton J-P (2012) Modulation of electric behavior by position-dependent substitutional impurity in zigzag-edged graphene nanoribbon. Comput Mat Sci 60:234–238 Zeng H, Zhao J, Wei J, Xu D, Leburton J-P (2012) Modulation of electric behavior by position-dependent substitutional impurity in zigzag-edged graphene nanoribbon. Comput Mat Sci 60:234–238
Zurück zum Zitat Zhang GP, Qin ZJ (2010) Crossover of the conductivity of zigzag graphene nanoribbon connected by normal metal contacts. Phys Lett A 374:4140–4143 Zhang GP, Qin ZJ (2010) Crossover of the conductivity of zigzag graphene nanoribbon connected by normal metal contacts. Phys Lett A 374:4140–4143
Metadaten
Titel
Comparison of the electronic transport properties of metallic graphene and silicene nanoribbons
verfasst von
Serhan Yamacli
Publikationsdatum
01.08.2014
Verlag
Springer Netherlands
Erschienen in
Journal of Nanoparticle Research / Ausgabe 8/2014
Print ISSN: 1388-0764
Elektronische ISSN: 1572-896X
DOI
https://doi.org/10.1007/s11051-014-2576-y

Weitere Artikel der Ausgabe 8/2014

Journal of Nanoparticle Research 8/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.