Skip to main content
Erschienen in: Journal of Materials Science 5/2015

01.03.2015 | Original Paper

Comparisons of polycarbonate and polycarbonate/carbon nanotube nanocomposites and their microcellular foams prepared using supercritical carbon dioxide

verfasst von: Sun-Mou Lai, Ruey-Chi Hsu, Chi-Yuan Hsieh, Fang-Chyou Chiu

Erschienen in: Journal of Materials Science | Ausgabe 5/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polycarbonate (PC)/multi-walled carbon nanotube (CNT) nanocomposites were prepared using a Haake internal mixer. The neat PC and nanocomposites were further soaked under supercritical CO2 (scCO2) atmosphere for various periods to develop microcellular foams. Morphological results confirmed the fine dispersion of CNTs in the composites, resulting in superior thermal stability (44 °C increase at 5 wt% loss) and dynamic storage modulus (22 % increase at 75 °C) compared with the neat PC. The composites exhibited a rheological percolation threshold at 2 wt% CNT loading. The microcellular structure of foamed samples revealed that longer soaking periods (≤2 h) in scCO2 resulted in larger cell sizes, and higher CNT loadings caused higher cell densities at similar soaking periods. Foaming-induced PC crystals were verified through differential scanning calorimetry and X-ray diffraction. More crystals (up to 38 %) were developed with increasing soaking time. The added CNT facilitated the crystallization of PC and obtained crystals with higher stability. The two-melting phenomenon exhibited by the foams represented the melting of the originally less-stable crystals and heating-annealed crystals. The neat PC foams or low CNT-loaded composite foams demonstrated improved thermal stability compared with their unfoamed counterparts.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cardoso ECL, Scagliusi SR, Parra DF, Lugão AB (2013) Gamma-irradiated cross-linked LDPE foams: characteristics and properties. Radiat Phys Chem 84:170–175CrossRef Cardoso ECL, Scagliusi SR, Parra DF, Lugão AB (2013) Gamma-irradiated cross-linked LDPE foams: characteristics and properties. Radiat Phys Chem 84:170–175CrossRef
2.
Zurück zum Zitat Antunes M, Realinho V, Velasco JI (2010) Study of the influence of the pressure drop rate on the foaming behavior and dynamic-mechanical properties of CO2 dissolution microcellular polypropylene foams. J Cell Plast 46:551–571CrossRef Antunes M, Realinho V, Velasco JI (2010) Study of the influence of the pressure drop rate on the foaming behavior and dynamic-mechanical properties of CO2 dissolution microcellular polypropylene foams. J Cell Plast 46:551–571CrossRef
3.
Zurück zum Zitat Li D, Liu T, Zhao L, Yuan W (2012) Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J 58:2512–2523CrossRef Li D, Liu T, Zhao L, Yuan W (2012) Controlling sandwich-structure of PET microcellular foams using coupling of CO2 diffusion and induced crystallization. AIChE J 58:2512–2523CrossRef
4.
Zurück zum Zitat Chiu FC, Lai SM, Wong CM, Chang CH (2006) Properties of calcium carbonate filled and unfilled polystyrene foams prepared using supercritical carbon dioxide. J Appl Polym Sci 102:2276–2284CrossRef Chiu FC, Lai SM, Wong CM, Chang CH (2006) Properties of calcium carbonate filled and unfilled polystyrene foams prepared using supercritical carbon dioxide. J Appl Polym Sci 102:2276–2284CrossRef
5.
Zurück zum Zitat Yeh SK, Yang J, Chiou NR, Daniel T, Lee LJ (2010) Introducing water as a coblowing agent in the carbon dioxide extrusion foaming process for polystyrene thermal insulation foams. Polym Eng Sci 50:1577–1584CrossRef Yeh SK, Yang J, Chiou NR, Daniel T, Lee LJ (2010) Introducing water as a coblowing agent in the carbon dioxide extrusion foaming process for polystyrene thermal insulation foams. Polym Eng Sci 50:1577–1584CrossRef
6.
Zurück zum Zitat Zhang C, Zhu B, Li D, Lee LJ (2012) Extruded polystyrene foams with bimodal cell morphology. Polymer 53:2435–2442CrossRef Zhang C, Zhu B, Li D, Lee LJ (2012) Extruded polystyrene foams with bimodal cell morphology. Polymer 53:2435–2442CrossRef
7.
Zurück zum Zitat Rouholamin D, Smith PJ, Ghassemieh E (2013) Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming. J Mater Sci 48:3254–3263. doi:10.1007/s10853-012-7109-4 CrossRef Rouholamin D, Smith PJ, Ghassemieh E (2013) Control of morphological properties of porous biodegradable scaffolds processed by supercritical CO2 foaming. J Mater Sci 48:3254–3263. doi:10.​1007/​s10853-012-7109-4 CrossRef
8.
Zurück zum Zitat Wong A, Leung SN, GaYG Li, Park CB (2007) Role of processing temperature in polystyrene and polycarbonate foaming with carbon dioxide. Ind Eng Chem Res 46:7107–7116CrossRef Wong A, Leung SN, GaYG Li, Park CB (2007) Role of processing temperature in polystyrene and polycarbonate foaming with carbon dioxide. Ind Eng Chem Res 46:7107–7116CrossRef
10.
Zurück zum Zitat Ma Z, Zhang G, Yang Q, Shi X, Shi A (2014) Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J Cell Plast 50:55–79CrossRef Ma Z, Zhang G, Yang Q, Shi X, Shi A (2014) Fabrication of microcellular polycarbonate foams with unimodal or bimodal cell-size distributions using supercritical carbon dioxide as a blowing agent. J Cell Plast 50:55–79CrossRef
11.
Zurück zum Zitat Antunes M, Velasco JI (2014) Multifunctional polymer foams with carbon nanoparticles. Prog Polym Sci 39:486–509CrossRef Antunes M, Velasco JI (2014) Multifunctional polymer foams with carbon nanoparticles. Prog Polym Sci 39:486–509CrossRef
13.
Zurück zum Zitat Ito Y, Yamashita M, Okamoto M (2006) Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromol Mater Eng 291:773–783CrossRef Ito Y, Yamashita M, Okamoto M (2006) Foam processing and cellular structure of polycarbonate-based nanocomposites. Macromol Mater Eng 291:773–783CrossRef
14.
Zurück zum Zitat Hu X, Lesser AJ (2004) Enhanced crystallization of bisphenol-A polycarbonate by nano-scale clays in the presence of supercritical carbon dioxide. Polymer 45:2333–2340CrossRef Hu X, Lesser AJ (2004) Enhanced crystallization of bisphenol-A polycarbonate by nano-scale clays in the presence of supercritical carbon dioxide. Polymer 45:2333–2340CrossRef
15.
Zurück zum Zitat Zhai W, Yu J, Wu L, Ma W, He J (2006) Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer 47:7580–7589CrossRef Zhai W, Yu J, Wu L, Ma W, He J (2006) Heterogeneous nucleation uniformizing cell size distribution in microcellular nanocomposites foams. Polymer 47:7580–7589CrossRef
16.
Zurück zum Zitat Gedler G, Antunes M, Velasco JI (2013) Graphene-induced crystallinity of bisphenol A polycarbonate in the presence of supercritical carbon dioxide. Polymer 54:6389–6398CrossRef Gedler G, Antunes M, Velasco JI (2013) Graphene-induced crystallinity of bisphenol A polycarbonate in the presence of supercritical carbon dioxide. Polymer 54:6389–6398CrossRef
17.
Zurück zum Zitat Yu MF, Lourie O, Dyer MJ, Monoli KM, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef Yu MF, Lourie O, Dyer MJ, Monoli KM, Kelly TF, Ruoff RS (2000) Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load. Science 287:637–640CrossRef
18.
Zurück zum Zitat Wu TM, Chen EC, Lin YW, Chiang MF, Chang GY (2008) Preparation and characterization of melt-processed polycarbonate/multiwalled carbon nanotube composites. Polym Eng Sci 48:1369–1375CrossRef Wu TM, Chen EC, Lin YW, Chiang MF, Chang GY (2008) Preparation and characterization of melt-processed polycarbonate/multiwalled carbon nanotube composites. Polym Eng Sci 48:1369–1375CrossRef
19.
Zurück zum Zitat Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148CrossRef Potschke P, Bhattacharyya AR, Janke A (2004) Melt mixing of polycarbonate with multiwalled carbon nanotubes: microscopic studies on the state of dispersion. Eur Polym J 40:137–148CrossRef
20.
Zurück zum Zitat Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites. Express Polym Lett 7:505–516CrossRef Maiti S, Shrivastava NK, Suin S, Khatua BB (2013) Formation of interfacial network structure via photo-crosslinking in carbon fiber/epoxy composites. Express Polym Lett 7:505–516CrossRef
21.
Zurück zum Zitat Monnereau L, Urbanczyk L, Thomassin JM, Alexandre M, Jerome C, Huynen I, Bailly C, Detrembleur C (2014) Supercritical CO2 and polycarbonate based nanocomposites: a critical issue for foaming. Polymer 55:2422–2431CrossRef Monnereau L, Urbanczyk L, Thomassin JM, Alexandre M, Jerome C, Huynen I, Bailly C, Detrembleur C (2014) Supercritical CO2 and polycarbonate based nanocomposites: a critical issue for foaming. Polymer 55:2422–2431CrossRef
22.
Zurück zum Zitat Lee SH, Kim JH, Choi SH, Kim SY, Kim KW, Youn JR (2009) Effects of filler geometry on internal structure and physical properties of polycarbonate composites prepared with various carbon fillers. Polym Int 58:354–361CrossRef Lee SH, Kim JH, Choi SH, Kim SY, Kim KW, Youn JR (2009) Effects of filler geometry on internal structure and physical properties of polycarbonate composites prepared with various carbon fillers. Polym Int 58:354–361CrossRef
23.
Zurück zum Zitat Chiu FC, Li BH, Jiang JY (2012) Syndiotactic polystyrene/multi-walled carbon nanotube nanocomposites: polymorphism, thermal properties, electrical conductivity, and rheological properties. Compos A 43:2230–2240CrossRef Chiu FC, Li BH, Jiang JY (2012) Syndiotactic polystyrene/multi-walled carbon nanotube nanocomposites: polymorphism, thermal properties, electrical conductivity, and rheological properties. Compos A 43:2230–2240CrossRef
24.
Zurück zum Zitat Chiu FC (2014) Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Mater Chem Phys 143:681–692CrossRef Chiu FC (2014) Comparisons of phase morphology and physical properties of PVDF nanocomposites filled with organoclay and/or multi-walled carbon nanotubes. Mater Chem Phys 143:681–692CrossRef
25.
Zurück zum Zitat Potschke P, Abdel-Goad M, Pegel S, Jehnichen D, Mark JE, Zhou D, Heinrich G (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci 47:12–19CrossRef Potschke P, Abdel-Goad M, Pegel S, Jehnichen D, Mark JE, Zhou D, Heinrich G (2009) Comparisons among electrical and rheological properties of melt-mixed composites containing various carbon nanostructures. J Macromol Sci 47:12–19CrossRef
26.
Zurück zum Zitat Lin B, Sundararaj U, Potschke P (2006) Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromol Mater Eng 291:227–238CrossRef Lin B, Sundararaj U, Potschke P (2006) Melt mixing of polycarbonate with multi-walled carbon nanotubes in miniature mixers. Macromol Mater Eng 291:227–238CrossRef
27.
Zurück zum Zitat Gedler G, Antunes M, Realinho V, Velasco JI (2012) Thermal stability of polycarbonate-graphene nanocomposite foams. Polym Degrad Stab 97:1297–1304CrossRef Gedler G, Antunes M, Realinho V, Velasco JI (2012) Thermal stability of polycarbonate-graphene nanocomposite foams. Polym Degrad Stab 97:1297–1304CrossRef
28.
Zurück zum Zitat Fukasawa Y, Chen J, Saito H (2008) A novel nanoporous structure on the surface of bubbles in polycarbonate foams. J Polym Sci Part B: Polym Phys 46:843–846CrossRef Fukasawa Y, Chen J, Saito H (2008) A novel nanoporous structure on the surface of bubbles in polycarbonate foams. J Polym Sci Part B: Polym Phys 46:843–846CrossRef
29.
Zurück zum Zitat Chen L, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. Polymer 51:2368–2375CrossRef Chen L, Ozisik R, Schadler LS (2010) The influence of carbon nanotube aspect ratio on the foam morphology of MWNT/PMMA nanocomposite foams. Polymer 51:2368–2375CrossRef
30.
Zurück zum Zitat Fan Z, Shu C, Yu Y, Zaporojtchenko V, Faupel F (2006) Vapor-induced crystallization behavior of bisphenol-A polycarbonate. Polym Eng Sci 46:729–734CrossRef Fan Z, Shu C, Yu Y, Zaporojtchenko V, Faupel F (2006) Vapor-induced crystallization behavior of bisphenol-A polycarbonate. Polym Eng Sci 46:729–734CrossRef
31.
Zurück zum Zitat Sohn S, Alizadeh A, Marand H (2000) On the multiple melting behavior of bisphenol-A polycarbonate. Polymer 41:8879–8886CrossRef Sohn S, Alizadeh A, Marand H (2000) On the multiple melting behavior of bisphenol-A polycarbonate. Polymer 41:8879–8886CrossRef
32.
Zurück zum Zitat Chiu FC, Kao GF (2012) Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Compos A 43:208–218CrossRef Chiu FC, Kao GF (2012) Polyamide 46/multi-walled carbon nanotube nanocomposites with enhanced thermal, electrical, and mechanical properties. Compos A 43:208–218CrossRef
33.
Zurück zum Zitat Zhai W, Yu J, Ma W, He J (2007) Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym Eng Sci 47:1338–1343CrossRef Zhai W, Yu J, Ma W, He J (2007) Cosolvent effect of water in supercritical carbon dioxide facilitating induced crystallization of polycarbonate. Polym Eng Sci 47:1338–1343CrossRef
34.
Zurück zum Zitat Wunderlich B (1973) Macromolecular Physics, vol 1. Academic Press, New York Wunderlich B (1973) Macromolecular Physics, vol 1. Academic Press, New York
35.
Zurück zum Zitat Chiu FC, Fu SW, Chuang WT, Sheu HS (2008) Fabrication and characterization of polyamide 6, 6/organo-montmorillonite nanocomposites with and without a maleated polyolefin elastomer as a toughener. Polymer 49:1015–1026CrossRef Chiu FC, Fu SW, Chuang WT, Sheu HS (2008) Fabrication and characterization of polyamide 6, 6/organo-montmorillonite nanocomposites with and without a maleated polyolefin elastomer as a toughener. Polymer 49:1015–1026CrossRef
Metadaten
Titel
Comparisons of polycarbonate and polycarbonate/carbon nanotube nanocomposites and their microcellular foams prepared using supercritical carbon dioxide
verfasst von
Sun-Mou Lai
Ruey-Chi Hsu
Chi-Yuan Hsieh
Fang-Chyou Chiu
Publikationsdatum
01.03.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 5/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8790-2

Weitere Artikel der Ausgabe 5/2015

Journal of Materials Science 5/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.