Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

1. Complex Systems, Data and Inference

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The concepts of complexity and networks are recurrent in modern systems biology. They are intimately linked to the very nature of biological processes governed by mathematically complex laws and orchestrated by thousands of interactions among thousands of molecular components. In this chapter, we explain what it means that a system is complex, what are the mathematical tools and the abstract data structures that we can use to describe a complex system, and finally what challenges the scientific community must face today to deduce a mathematical or computational model from observations experimental.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The clipart objects of “Thinking man” are taken from the free images databases publicly available at free Clipart Library [5].
 
Literatur
1.
Zurück zum Zitat Ma’ayan A. Complex systems biology. J R Soc Interface. 2017;14(134):20170391.CrossRef Ma’ayan A. Complex systems biology. J R Soc Interface. 2017;14(134):20170391.CrossRef
2.
Zurück zum Zitat Galas DJ, Sakhanenko NA, Skupin A, Ignac T. Describing the complexity of systems: multivariable “set complexity” and the information basis of systems biology. J Comput Biol. 2014;21(2):118–40.MathSciNetCrossRef Galas DJ, Sakhanenko NA, Skupin A, Ignac T. Describing the complexity of systems: multivariable “set complexity” and the information basis of systems biology. J Comput Biol. 2014;21(2):118–40.MathSciNetCrossRef
4.
6.
Zurück zum Zitat Rahman A, Poirel CL, Badger DJ, Estep C, Murali TM. Reverse engineering molecular hypergraphs. IEEE/ACM Trans Comput Biol Bioinf. 2013;10(5):1113–24.CrossRef Rahman A, Poirel CL, Badger DJ, Estep C, Murali TM. Reverse engineering molecular hypergraphs. IEEE/ACM Trans Comput Biol Bioinf. 2013;10(5):1113–24.CrossRef
7.
Zurück zum Zitat Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur Ö, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung K-H, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD. The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–42.CrossRef Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’eustachio P, Schaefer C, Luciano J, Schacherer F, Martinez-Flores I, Hu Z, Jimenez-Jacinto V, Joshi-Tope G, Kandasamy K, Lopez-Fuentes AC, Mi H, Pichler E, Rodchenkov I, Splendiani A, Tkachev S, Zucker J, Gopinath G, Rajasimha H, Ramakrishnan R, Shah I, Syed M, Anwar N, Babur Ö, Blinov M, Brauner E, Corwin D, Donaldson S, Gibbons F, Goldberg R, Hornbeck P, Luna A, Murray-Rust P, Neumann E, Ruebenacker O, Samwald M, van Iersel M, Wimalaratne S, Allen K, Braun B, Whirl-Carrillo M, Cheung K-H, Dahlquist K, Finney A, Gillespie M, Glass E, Gong L, Haw R, Honig M, Hubaut O, Kane D, Krupa S, Kutmon M, Leonard J, Marks D, Merberg D, Petri V, Pico A, Ravenscroft D, Ren L, Shah N, Sunshine M, Tang R, Whaley R, Letovksy S, Buetow KH, Rzhetsky A, Schachter V, Sobral BS, Dogrusoz U, McWeeney S, Aladjem M, Birney E, Collado-Vides J, Goto S, Hucka M, Le Novère N, Maltsev N, Pandey A, Thomas P, Wingender E, Karp PD, Sander C, Bader GD. The BioPAX community standard for pathway data sharing. Nat Biotechnol. 2010;28(9):935–42.CrossRef
8.
Zurück zum Zitat Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the pathway interaction database. Nucleic Acids Res. 2008;37(suppl\(\_\)1):D674–9.CrossRef Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH. PID: the pathway interaction database. Nucleic Acids Res. 2008;37(suppl\(\_\)1):D674–9.CrossRef
11.
Zurück zum Zitat Temkin ON, Zeigarnik AV, Bonchev D. Chemical reaction networks: a graph-theoretical approach; 1996. Temkin ON, Zeigarnik AV, Bonchev D. Chemical reaction networks: a graph-theoretical approach; 1996.
13.
Zurück zum Zitat Stenesh J. The citric acid cycle. In: Biochemistry. Springer US; 1998. p. 273–91. Stenesh J. The citric acid cycle. In: Biochemistry. Springer US; 1998. p. 273–91.
17.
Zurück zum Zitat Estrada E, Rodríguez-Velázquez JA. Subgraph centrality and clustering in complex hyper-networks. Phys A: Stat Mech Appl. 2006;364:581–94.MathSciNetCrossRef Estrada E, Rodríguez-Velázquez JA. Subgraph centrality and clustering in complex hyper-networks. Phys A: Stat Mech Appl. 2006;364:581–94.MathSciNetCrossRef
18.
Zurück zum Zitat Lecca P, Re A, Ihekwaba AE, Mura I, Nguyen T-P. Computational systems biology: inference and modelling. Sawston: Woodhead Publishing; 2016.MATH Lecca P, Re A, Ihekwaba AE, Mura I, Nguyen T-P. Computational systems biology: inference and modelling. Sawston: Woodhead Publishing; 2016.MATH
19.
20.
Zurück zum Zitat Djordjevic D, Yang A, Zadoorian A, Rungrugeecharoen K, Ho JW. How difficult is inference of mammalian causal gene regulatory networks? PLoS ONE. 2014;9(11):e111661.CrossRef Djordjevic D, Yang A, Zadoorian A, Rungrugeecharoen K, Ho JW. How difficult is inference of mammalian causal gene regulatory networks? PLoS ONE. 2014;9(11):e111661.CrossRef
21.
Zurück zum Zitat Davidson EH. Emerging properties of animal gene regulatory networks. Nat. 2010;468:911–920.CrossRef Davidson EH. Emerging properties of animal gene regulatory networks. Nat. 2010;468:911–920.CrossRef
22.
Zurück zum Zitat Äijö T, Bonneau R. Biophysically motivated regulatory network inference: progress and prospects. Human Heredity. 2016;81(2):62–77.CrossRef Äijö T, Bonneau R. Biophysically motivated regulatory network inference: progress and prospects. Human Heredity. 2016;81(2):62–77.CrossRef
23.
Zurück zum Zitat Ghersi D, Singh M. Disentangling function from topology to infer the network properties of disease genes. BMC Syst Biol. 2013;7(1):5.CrossRef Ghersi D, Singh M. Disentangling function from topology to infer the network properties of disease genes. BMC Syst Biol. 2013;7(1):5.CrossRef
24.
Zurück zum Zitat Olsen C, Fleming K, Prendergast N, Rubio R, Emmert-Streib F, Bontempi G, Haibe-Kains B, Quackenbush J. Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics. 2014;103(5–6):329–36.CrossRef Olsen C, Fleming K, Prendergast N, Rubio R, Emmert-Streib F, Bontempi G, Haibe-Kains B, Quackenbush J. Inference and validation of predictive gene networks from biomedical literature and gene expression data. Genomics. 2014;103(5–6):329–36.CrossRef
25.
Zurück zum Zitat Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, Sander C. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol. 2013;9(12):e1003290.CrossRef Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP, Jing X, Kaushik P, He Q, Mills G, Solit DB, Pratilas CA, Weigt M, Braunstein A, Pagnani A, Zecchina R, Sander C. Perturbation biology: inferring signaling networks in cellular systems. PLoS Comput Biol. 2013;9(12):e1003290.CrossRef
26.
Zurück zum Zitat Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237–45.CrossRef Vaske CJ, Benz SC, Sanborn JZ, Earl D, Szeto C, Zhu J, Haussler D, Stuart JM. Inference of patient-specific pathway activities from multi-dimensional cancer genomics data using PARADIGM. Bioinformatics. 2010;26(12):i237–45.CrossRef
27.
Zurück zum Zitat Holger F, Özgür S, Dorit A, Christian B, Tim B. Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinf. 2009;10(1). Holger F, Özgür S, Dorit A, Christian B, Tim B. Deterministic effects propagation networks for reconstructing protein signaling networks from multiple interventions. BMC Bioinf. 2009;10(1).
28.
Zurück zum Zitat Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, Graim K, Bivol A, Wang H, Zhu F, Afsari B, Danilova LV, Favorov AV, Lee WS, Taylor D, Hu CW, Long BL, Noren DP, Bisberg AJ, Afsari B, Al-Ouran R, Anton B, Arodz T, Sichani OA, Bagheri N, Berlow N, Bisberg AJ, Bivol A, Bohler A, Bonet J, Bonneau R, Budak G, Bunescu R, Caglar M, Cai B, Cai C, Carlin DE, Carlon A, Chen L, Ciaccio MF, Cokelaer T, Cooper G, Creighton CJ, Daneshmand S-M-H, de la Fuente A, Di Camillo B, Danilova LV, Dutta-Moscato J, Emmett K, Evelo C, Fassia M-KH, Favorov AV, Fertig EJ, Finkle JD, Finotello F, Friend S, Gao X, Gao J, Garcia-Garcia J, Ghosh S, Giaretta A, Graim K, Gray JW, Großeholz R, Guan Y, Guinney J, Hafemeister C, Hahn O, Haider S, Hase T, Heiser LM, Hill SM, Hodgson J, Hoff B, Hsu CH, Hu CW, Hu Y, Huang X, Jalili M, Jiang X, Kacprowski T, Kaderali L, Kang M, Kannan V, Kellen M, Kikuchi K, Kim D-C, Kitano H, Knapp B, Komatsoulis G, Koeppl H, Krämer A, Kursa MB, Kutmon M, Lee WS, Li Y, Liang X, Liu Z, Liu Y, Long BL, Lu S, Lu X, Manfrini M, Matos MRA, Meerzaman D, Mills GB, Min W, Mukherjee S, Müller CL, Neapolitan RE, Nesser NK, Noren DP, Norman T, Oliva B, Opiyo SO, Pal R, Palinkas A, Paull EO, Planas-Iglesias J, Poglayen D, Qutub AA, Saez-Rodriguez J, Sambo F, Sanavia T, Sharifi-Zarchi A, Slawek J, Sokolov A, Song M, Spellman PT, Streck A, Stolovitzky G, Strunz S, Stuart JM, Taylor D, Tegnér J, Thobe K, Toffolo GM, Trifoglio E, Unger M, Wan Q, Wang H, Welch L, Wong CK, Wu JJ, Xue AY, Yamanaka R, Yan C, Zairis S, Zengerling M, Zenil H, Zhang S, Zhang Y, Zhu F, Zi Z, Mills GB, Gray JW, Kellen M, Norman T, Friend S, Qutub AA, Fertig EJ, Guan Y, Song M, Stuart JM, Spellman PT, Koeppl H, Stolovitzky G, Saez-Rodriguez J, Mukherjee S. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 2016;13(4):310–8.CrossRef Hill SM, Heiser LM, Cokelaer T, Unger M, Nesser NK, Carlin DE, Zhang Y, Sokolov A, Paull EO, Wong CK, Graim K, Bivol A, Wang H, Zhu F, Afsari B, Danilova LV, Favorov AV, Lee WS, Taylor D, Hu CW, Long BL, Noren DP, Bisberg AJ, Afsari B, Al-Ouran R, Anton B, Arodz T, Sichani OA, Bagheri N, Berlow N, Bisberg AJ, Bivol A, Bohler A, Bonet J, Bonneau R, Budak G, Bunescu R, Caglar M, Cai B, Cai C, Carlin DE, Carlon A, Chen L, Ciaccio MF, Cokelaer T, Cooper G, Creighton CJ, Daneshmand S-M-H, de la Fuente A, Di Camillo B, Danilova LV, Dutta-Moscato J, Emmett K, Evelo C, Fassia M-KH, Favorov AV, Fertig EJ, Finkle JD, Finotello F, Friend S, Gao X, Gao J, Garcia-Garcia J, Ghosh S, Giaretta A, Graim K, Gray JW, Großeholz R, Guan Y, Guinney J, Hafemeister C, Hahn O, Haider S, Hase T, Heiser LM, Hill SM, Hodgson J, Hoff B, Hsu CH, Hu CW, Hu Y, Huang X, Jalili M, Jiang X, Kacprowski T, Kaderali L, Kang M, Kannan V, Kellen M, Kikuchi K, Kim D-C, Kitano H, Knapp B, Komatsoulis G, Koeppl H, Krämer A, Kursa MB, Kutmon M, Lee WS, Li Y, Liang X, Liu Z, Liu Y, Long BL, Lu S, Lu X, Manfrini M, Matos MRA, Meerzaman D, Mills GB, Min W, Mukherjee S, Müller CL, Neapolitan RE, Nesser NK, Noren DP, Norman T, Oliva B, Opiyo SO, Pal R, Palinkas A, Paull EO, Planas-Iglesias J, Poglayen D, Qutub AA, Saez-Rodriguez J, Sambo F, Sanavia T, Sharifi-Zarchi A, Slawek J, Sokolov A, Song M, Spellman PT, Streck A, Stolovitzky G, Strunz S, Stuart JM, Taylor D, Tegnér J, Thobe K, Toffolo GM, Trifoglio E, Unger M, Wan Q, Wang H, Welch L, Wong CK, Wu JJ, Xue AY, Yamanaka R, Yan C, Zairis S, Zengerling M, Zenil H, Zhang S, Zhang Y, Zhu F, Zi Z, Mills GB, Gray JW, Kellen M, Norman T, Friend S, Qutub AA, Fertig EJ, Guan Y, Song M, Stuart JM, Spellman PT, Koeppl H, Stolovitzky G, Saez-Rodriguez J, Mukherjee S. Inferring causal molecular networks: empirical assessment through a community-based effort. Nat Methods. 2016;13(4):310–8.CrossRef
29.
Zurück zum Zitat Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011;27(16):2263–70.CrossRef Schaffter T, Marbach D, Floreano D. GeneNetWeaver: in silico benchmark generation and performance profiling of network inference methods. Bioinformatics. 2011;27(16):2263–70.CrossRef
30.
Zurück zum Zitat Kishan KC, Li R, Cui F, Yu Q, Haake AR. GNE: a deep learning framework for gene network inference by aggregating biological information. BMC Syst Biol. 2019;13(S2). Kishan KC, Li R, Cui F, Yu Q, Haake AR. GNE: a deep learning framework for gene network inference by aggregating biological information. BMC Syst Biol. 2019;13(S2).
31.
Zurück zum Zitat Frank A, Kirly T, Király Z. On the orientation of graphs and hypergraphs. Discret Appl Math. 2003;131(2):385–400. Submodularity.MathSciNetCrossRef Frank A, Kirly T, Király Z. On the orientation of graphs and hypergraphs. Discret Appl Math. 2003;131(2):385–400. Submodularity.MathSciNetCrossRef
Metadaten
Titel
Complex Systems, Data and Inference
verfasst von
Paola Lecca
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-41255-5_1