Skip to main content
Erschienen in: International Journal of Intelligent Transportation Systems Research 1/2021

12.06.2020

Complex-Track Following in Real-Time Using Model-Based Predictive Control

verfasst von: Wael Farag

Erschienen in: International Journal of Intelligent Transportation Systems Research | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, a comprehensive Model-Predictive-Control (MPC) controller that enables effective complex track maneuvering for Self-Driving Cars (SDC) is proposed. The paper presents the full design details and the implementation stages of the proposed SDC-MPC. The controller receives several input signals such as an accurate car position measurement from the localization module of the SDC measured in global map coordinates, the instantaneous vehicle speed, as well as, the reference trajectory from the path planner of the SDC. Then, the SDC-MPC generates a steering (angle) command to the SDC in addition to a throttle (speed/brake) command. The proposed cost function of the SDC-MPC (which is one of the main contributions of this paper) is very comprehensive and is composed of several terms. Each term has its own sub-objective that contributes to the overall optimization problem. The main goal is to find a solution that can satisfy the purposes of these terms according to their weights (contribution) in the combined objective (cost) function. Extensive simulation studies in complex tracks with many sharp turns have been carried out to evaluate the performance of the proposed controller at different speeds. The analysis shows that the proposed controller with its tuning technique outperforms the other classical ones like PID. The usefulness and the shortcomings of the proposed controller are also discussed in details.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

ATZelectronics worldwide

ATZlectronics worldwide is up-to-speed on new trends and developments in automotive electronics on a scientific level with a high depth of information. 

Order your 30-days-trial for free and without any commitment.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Weitere Produktempfehlungen anzeigen
Literatur
1.
Zurück zum Zitat Farag, W.: Traffic signs classification by deep learning for advanced driving assistance systems. Intell Decis Technol IOS Press. 13(3), 215–231 (2019)MathSciNet Farag, W.: Traffic signs classification by deep learning for advanced driving assistance systems. Intell Decis Technol IOS Press. 13(3), 215–231 (2019)MathSciNet
2.
Zurück zum Zitat Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018) Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018)
3.
Zurück zum Zitat Farag, W.: Safe-driving cloning by deep learning for autonomous cars. Int J Adv Mechatronic Syst Inderscience Publishers. 7(6), 390–397 (2019)CrossRef Farag, W.: Safe-driving cloning by deep learning for autonomous cars. Int J Adv Mechatronic Syst Inderscience Publishers. 7(6), 390–397 (2019)CrossRef
4.
Zurück zum Zitat Farag, W., Saleh, Z.: An advanced vehicle detection and tracking scheme for self-driving cars. 2nd Smart Cities Symposium (SCS’19), IET Digital Library, Bahrain, 24–26 March (2019) Farag, W., Saleh, Z.: An advanced vehicle detection and tracking scheme for self-driving cars. 2nd Smart Cities Symposium (SCS’19), IET Digital Library, Bahrain, 24–26 March (2019)
5.
Zurück zum Zitat Farag, W., Saleh, Z.: Traffic signs identification by deep learning for autonomous driving. Smart Cities Symposium (SCS'18), Bahrain, 22–23 April (2018) Farag, W., Saleh, Z.: Traffic signs identification by deep learning for autonomous driving. Smart Cities Symposium (SCS'18), Bahrain, 22–23 April (2018)
6.
Zurück zum Zitat Farag, W.: CANTrack: enhancing automotive CAN bus security using intuitive encryption algorithms. 7th Inter. Conf. on Modeling, Simulation, and Applied Optimization (ICMSAO), UAE, March (2017) Farag, W.: CANTrack: enhancing automotive CAN bus security using intuitive encryption algorithms. 7th Inter. Conf. on Modeling, Simulation, and Applied Optimization (ICMSAO), UAE, March (2017)
7.
Zurück zum Zitat Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018) Farag, W., Saleh, Z.: Road lane-lines detection in real-time for advanced driving assistance systems. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018)
8.
Zurück zum Zitat Farag, W.: Recognition of traffic signs by convolutional neural nets for self-driving vehicles. Int. J. Knowl.-Based Intel. Eng. Syst., IOS Press. 22(3), 205–214 (2018) Farag, W.: Recognition of traffic signs by convolutional neural nets for self-driving vehicles. Int. J. Knowl.-Based Intel. Eng. Syst., IOS Press. 22(3), 205–214 (2018)
9.
Zurück zum Zitat Farag, W., Saleh, Z.: Behavior cloning for autonomous driving using convolutional neural networks. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018) Farag, W., Saleh, Z.: Behavior cloning for autonomous driving using convolutional neural networks. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018)
10.
Zurück zum Zitat Farag, W.: Cloning safe driving behavior for self-driving cars using convolutional neural networks. Recent Pat Comput Sci Bentham Science Publishers, The Netherlands. 12(2), 120–127(8) (2019)MathSciNetCrossRef Farag, W.: Cloning safe driving behavior for self-driving cars using convolutional neural networks. Recent Pat Comput Sci Bentham Science Publishers, The Netherlands. 12(2), 120–127(8) (2019)MathSciNetCrossRef
11.
Zurück zum Zitat Wang, N., Karimi, H.R.: Successive waypoints tracking of an underactuated surface vehicle. IEEE Trans. Industrial Informatics, June (2019) Wang, N., Karimi, H.R.: Successive waypoints tracking of an underactuated surface vehicle. IEEE Trans. Industrial Informatics, June (2019)
12.
Zurück zum Zitat Anavatti, S.G., Francis, S.L.X., Garratt, M.: Path-planning modules for autonomous vehicles: current status and challenges. Inter. Conf. on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 15–17 Oct. (2015) Anavatti, S.G., Francis, S.L.X., Garratt, M.: Path-planning modules for autonomous vehicles: current status and challenges. Inter. Conf. on Advanced Mechatronics, Intelligent Manufacture, and Industrial Automation (ICAMIMIA), Surabaya, Indonesia, 15–17 Oct. (2015)
13.
Zurück zum Zitat Farag, W., Saleh, Z.: Tuning of PID Track followers for autonomous driving. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018) Farag, W., Saleh, Z.: Tuning of PID Track followers for autonomous driving. Intern. Conf. on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT'18), Bahrain, 18–20 Nov. (2018)
14.
Zurück zum Zitat Farag, W.: Complex trajectory tracking using PID control for autonomous driving. Int. J. Intell. Transp. Syst. Res., Springer, Sept. (2019) Farag, W.: Complex trajectory tracking using PID control for autonomous driving. Int. J. Intell. Transp. Syst. Res., Springer, Sept. (2019)
16.
Zurück zum Zitat Attia, R., Orjuela, R., Bassent, M.: Longitudinal control for automated vehicle guidance. Workshop on Engine and Powertrain Control, Simulation and Modeling, IFAC, Rueil-Malmaison, France, October 23–25 (2012) Attia, R., Orjuela, R., Bassent, M.: Longitudinal control for automated vehicle guidance. Workshop on Engine and Powertrain Control, Simulation and Modeling, IFAC, Rueil-Malmaison, France, October 23–25 (2012)
17.
Zurück zum Zitat Filho, C., Wolf, D., Grassi, V. Jr, Os’orio, F.: Longitudinal and lateral control for autonomous ground vehicles. IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June (2014) Filho, C., Wolf, D., Grassi, V. Jr, Os’orio, F.: Longitudinal and lateral control for autonomous ground vehicles. IEEE Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June (2014)
18.
Zurück zum Zitat Le-Anh, T., De Koster, M.B.: A review of design and control of automated guided vehicle systems. Erasmus Research Institute of Management (ERIM), report series no. 2004–03-LIS (2004) Le-Anh, T., De Koster, M.B.: A review of design and control of automated guided vehicle systems. Erasmus Research Institute of Management (ERIM), report series no. 2004–03-LIS (2004)
19.
Zurück zum Zitat Cheein, F.A.A., Cruz, C., Bastos, T.F., Carelli, R.: SLAM-based cross-a-door solution approach for a robotic wheelchair. Int. J. Adv. Robot. Syst. 7(2), 155–164 (2010) Cheein, F.A.A., Cruz, C., Bastos, T.F., Carelli, R.: SLAM-based cross-a-door solution approach for a robotic wheelchair. Int. J. Adv. Robot. Syst. 7(2), 155–164 (2010)
20.
Zurück zum Zitat Silva, N.F., Dórea, C.E.T., Maitelli, A.L.: An iterative model predictive control algorithm for constrained nonlinear systems. Asian J. Control. 21(5), 1–15, Sept. (2019)MathSciNetCrossRef Silva, N.F., Dórea, C.E.T., Maitelli, A.L.: An iterative model predictive control algorithm for constrained nonlinear systems. Asian J. Control. 21(5), 1–15, Sept. (2019)MathSciNetCrossRef
21.
Zurück zum Zitat Byrne, R.H.: Design of a model reference adaptive controller for vehicle road following. Math. Comput. Model. 22(4-7), 343–354 (1995)CrossRef Byrne, R.H.: Design of a model reference adaptive controller for vehicle road following. Math. Comput. Model. 22(4-7), 343–354 (1995)CrossRef
22.
Zurück zum Zitat Li, Z., Chen, W., Liu, H.: Robust control of wheeled Mobile manipulators using hybrid joints. Int. J. Adv. Robot. Syst. 5(1), 83–90 (2008)CrossRef Li, Z., Chen, W., Liu, H.: Robust control of wheeled Mobile manipulators using hybrid joints. Int. J. Adv. Robot. Syst. 5(1), 83–90 (2008)CrossRef
23.
Zurück zum Zitat Hessburg, T.: Fuzzy logic control for lateral vehicle guidance. IEEE Contr. Syst. Mag. 14, 55–63 (1994)CrossRef Hessburg, T.: Fuzzy logic control for lateral vehicle guidance. IEEE Contr. Syst. Mag. 14, 55–63 (1994)CrossRef
24.
Zurück zum Zitat Choomuang, R., Afzulpurkar, N.: Hybrid Kalman filter/fuzzy logic based position control of autonomous Mobile robot. Int. J. Adv. Robot. Syst. 2(3), 197–208 (2005)CrossRef Choomuang, R., Afzulpurkar, N.: Hybrid Kalman filter/fuzzy logic based position control of autonomous Mobile robot. Int. J. Adv. Robot. Syst. 2(3), 197–208 (2005)CrossRef
25.
Zurück zum Zitat Farag, W.: Synthesis of intelligent hybrid systems for modeling and control. Ph.D. Thesis, Universty of Waterloo, Canada (1998) Farag, W.: Synthesis of intelligent hybrid systems for modeling and control. Ph.D. Thesis, Universty of Waterloo, Canada (1998)
26.
Zurück zum Zitat Wang, W., Kenzo, N., Yuta, O.: Model reference sliding mode control of small helicopter X.R.B based on vision. Int. J. Adv. Robot. Syst. 5(3), 233–242 (2006) Wang, W., Kenzo, N., Yuta, O.: Model reference sliding mode control of small helicopter X.R.B based on vision. Int. J. Adv. Robot. Syst. 5(3), 233–242 (2006)
27.
Zurück zum Zitat Shumeet, B.: Evolution of an artificial neural network based autonomous land vehicle controller. IEEE T. Syst. Man. Cy. 26(3), 450–463 (1996)CrossRef Shumeet, B.: Evolution of an artificial neural network based autonomous land vehicle controller. IEEE T. Syst. Man. Cy. 26(3), 450–463 (1996)CrossRef
28.
Zurück zum Zitat Farag, W.A., Quintana, V.H., Lambert-Torres, G.: Genetic algorithms and back-propagation: a comparative study. IEEE Canadian Conf. on Elec. and Comp. Eng. 1, 93–96, Waterloo, Ontario, Canada (1998)CrossRef Farag, W.A., Quintana, V.H., Lambert-Torres, G.: Genetic algorithms and back-propagation: a comparative study. IEEE Canadian Conf. on Elec. and Comp. Eng. 1, 93–96, Waterloo, Ontario, Canada (1998)CrossRef
29.
Zurück zum Zitat Lacey, G., Ji, Z.: Computing the solution path for the regularized support vector regression. Advances in Neural Information Processing Systems 18 NIPS (2005) Lacey, G., Ji, Z.: Computing the solution path for the regularized support vector regression. Advances in Neural Information Processing Systems 18 NIPS (2005)
30.
Zurück zum Zitat Zhuang, D.: The vehicle directional control based on fractional order PDμ controller. J. Shanghai Jiaotong. 41(2), 278–283 (2007) Zhuang, D.: The vehicle directional control based on fractional order PDμ controller. J. Shanghai Jiaotong. 41(2), 278–283 (2007)
31.
Zurück zum Zitat Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica. 36(6), 789–814 (2000)MathSciNetCrossRef Mayne, D., Rawlings, J., Rao, C., Scokaert, P.: Constrained model predictive control: stability and optimality. Automatica. 36(6), 789–814 (2000)MathSciNetCrossRef
32.
Zurück zum Zitat Beal, C., Gerdes, J.: Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans. Control Syst. Technol. 21(4), 1258–1269 (2013)CrossRef Beal, C., Gerdes, J.: Model predictive control for vehicle stabilization at the limits of handling. IEEE Trans. Control Syst. Technol. 21(4), 1258–1269 (2013)CrossRef
33.
Zurück zum Zitat Lima, P.F.: Predictive control for autonomous driving with experimental evaluation on a heavy-duty construction truck. Ph.D. Thesis, KTH Royal Insitute of Technology, Sweden (2016) Lima, P.F.: Predictive control for autonomous driving with experimental evaluation on a heavy-duty construction truck. Ph.D. Thesis, KTH Royal Insitute of Technology, Sweden (2016)
34.
Zurück zum Zitat Qian, X.: Model predictive control for autonomous and cooperative driving. Ph.D. Thesis, PSL Research University, France (2017) Qian, X.: Model predictive control for autonomous and cooperative driving. Ph.D. Thesis, PSL Research University, France (2017)
35.
Zurück zum Zitat Gao, Y.: Model predictive control for autonomous and semiautonomous vehicles. Ph.D. Thesis, University of California, Berkeley, USA (2014) Gao, Y.: Model predictive control for autonomous and semiautonomous vehicles. Ph.D. Thesis, University of California, Berkeley, USA (2014)
36.
Zurück zum Zitat Garcia, C., Prett, M.: Model predictive control: theory and practice. Automatica. 25(3), 335–348 (1989)CrossRef Garcia, C., Prett, M.: Model predictive control: theory and practice. Automatica. 25(3), 335–348 (1989)CrossRef
37.
Zurück zum Zitat Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving, in IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 28 June (2015) Kong, J., Pfeiffer, M., Schildbach, G., Borrelli, F.: Kinematic and dynamic vehicle models for autonomous driving, in IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 28 June (2015)
38.
Zurück zum Zitat Rahiman, W., Zainal, Z.: An overview of development GPS navigation for autonomous car. IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). Melbourne, VIC, Australia, 19–21 June (2013) Rahiman, W., Zainal, Z.: An overview of development GPS navigation for autonomous car. IEEE 8th Conference on Industrial Electronics and Applications (ICIEA). Melbourne, VIC, Australia, 19–21 June (2013)
39.
Zurück zum Zitat Gohring, D., Wang, M., Schnurmacher, M., Ganjineh, T.: Radar/lidar sensor fusion for car-following on highways. 5th Intern. Conf. on Automation, Robotics, and Applications, ICARA 2011. Wellington, New Zealand, December 6–8 (2011) Gohring, D., Wang, M., Schnurmacher, M., Ganjineh, T.: Radar/lidar sensor fusion for car-following on highways. 5th Intern. Conf. on Automation, Robotics, and Applications, ICARA 2011. Wellington, New Zealand, December 6–8 (2011)
40.
Zurück zum Zitat Speedometer. https://en.wikipedia.org/wiki/Speedometer. Wikipedia, accessed on 9th Feb (2019) Speedometer. https://​en.​wikipedia.​org/​wiki/​Speedometer.​ Wikipedia, accessed on 9th Feb (2019)
42.
Zurück zum Zitat Saputra, H.M., Abidin, Z., Rijanto, E.: IMU application in measurement of vehicle position and orientation for controlling a pan-tilt mechanism. Mechatron. Electr. Power Veh. Technol. 04(1), 41–50 (2013)CrossRef Saputra, H.M., Abidin, Z., Rijanto, E.: IMU application in measurement of vehicle position and orientation for controlling a pan-tilt mechanism. Mechatron. Electr. Power Veh. Technol. 04(1), 41–50 (2013)CrossRef
43.
Zurück zum Zitat Rotation and orientation in unity. https://docs.unity3d.com/Manual/QuaternionAndEulerRotationsInUnity.html, accessed on 9th Feb 2019 Rotation and orientation in unity. https://​docs.​unity3d.​com/​Manual/​QuaternionAndEul​erRotationsInUni​ty.​html, accessed on 9th Feb 2019
44.
Zurück zum Zitat Steering angle sensor basics. https://www.knowyourparts.com/technical-resources/electrical/steering-angle-sensor-basics/, accessed on 9th Feb 2019 Steering angle sensor basics. https://​www.​knowyourparts.​com/​technical-resources/​electrical/​steering-angle-sensor-basics/​, accessed on 9th Feb 2019
45.
Zurück zum Zitat GCC C++. https://gcc.gnu.org/, accessed on 11th Feb 2019 GCC C++. https://​gcc.​gnu.​org/​, accessed on 11th Feb 2019
46.
Zurück zum Zitat Ubuntu Linux: https://www.ubuntu.com/, accessed on 11th Feb 2019 Ubuntu Linux: https://​www.​ubuntu.​com/​, accessed on 11th Feb 2019
47.
Zurück zum Zitat A C++ algorithmic differentiation package. https://coin-or.github.io/CppAD/doc/cppad.htm, accessed on 11th Feb 2019 A C++ algorithmic differentiation package. https://​coin-or.​github.​io/​CppAD/​doc/​cppad.​htm, accessed on 11th Feb 2019
48.
Zurück zum Zitat IPOPT. https://en.wikipedia.org/wiki/IPOPT, accessed on 11th Feb 2019 IPOPT. https://​en.​wikipedia.​org/​wiki/​IPOPT, accessed on 11th Feb 2019
49.
Zurück zum Zitat Hoberock, L.L.: A Survey of Longitudinal Acceleration Comfort Studies in Ground Transportation Vehicles. Dept. of Transportation, Washington DC, USA (1976) Hoberock, L.L.: A Survey of Longitudinal Acceleration Comfort Studies in Ground Transportation Vehicles. Dept. of Transportation, Washington DC, USA (1976)
50.
Zurück zum Zitat Unity. https://unity.com/solutions/automotive-transportation?_ga=2.238996096.1822638216.1551163213-250725045.1549710749, accessed on 26th Feb 2019 Unity. https://​unity.​com/​solutions/​automotive-transportation?​_​ga=​2.​238996096.​1822638216.​1551163213-250725045.​1549710749, accessed on 26th Feb 2019
51.
Zurück zum Zitat Nagiub, M., Farag, W.: Automatic selection of compiler options using genetic techniques for embedded software design. IEEE 14th Inter. Symposium on Comp. Intelligence and Informatics (CINTI), Budapest, Hungary, Nov. 19 (2013) Nagiub, M., Farag, W.: Automatic selection of compiler options using genetic techniques for embedded software design. IEEE 14th Inter. Symposium on Comp. Intelligence and Informatics (CINTI), Budapest, Hungary, Nov. 19 (2013)
52.
Zurück zum Zitat μWebSocket. https://github.com/uNetworking/uWebSockets, accessed on 26th Feb 2019 μWebSocket. https://​github.​com/​uNetworking/​uWebSockets, accessed on 26th Feb 2019
Metadaten
Titel
Complex-Track Following in Real-Time Using Model-Based Predictive Control
verfasst von
Wael Farag
Publikationsdatum
12.06.2020
Verlag
Springer US
Erschienen in
International Journal of Intelligent Transportation Systems Research / Ausgabe 1/2021
Print ISSN: 1348-8503
Elektronische ISSN: 1868-8659
DOI
https://doi.org/10.1007/s13177-020-00226-1

Weitere Artikel der Ausgabe 1/2021

International Journal of Intelligent Transportation Systems Research 1/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.