Skip to main content

2018 | OriginalPaper | Buchkapitel

Complexity Dichotomies for the Minimum \(\mathcal {F}\)-Overlay Problem

verfasst von : Nathann Cohen, Frédéric Havet, Dorian Mazauric, Ignasi Sau, Rémi Watrigant

Erschienen in: Combinatorial Algorithms

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

For a (possibly infinite) fixed family of graphs \(\mathcal {F}\), we say that a graph G overlays \(\mathcal {F}\) on a hypergraph H if V(H) is equal to V(G) and the subgraph of G induced by every hyperedge of H contains some member of \(\mathcal {F}\) as a spanning subgraph. While it is easy to see that the complete graph on |V(H)| overlays \(\mathcal {F}\) on a hypergraph H whenever the problem admits a solution, the Minimum \(\mathcal {F}\)-Overlay problem asks for such a graph with the minimum number of edges. This problem allows to generalize some natural problems which may arise in practice. For instance, if the family \(\mathcal {F}\) contains all connected graphs, then Minimum \(\mathcal {F}\)-Overlay corresponds to the Minimum Connectivity Inference problem (also known as Subset Interconnection Design problem) introduced for the low-resolution reconstruction of macro-molecular assembly in structural biology, or for the design of networks.
Our main contribution is a strong dichotomy result regarding the polynomial vs. NP-hard status with respect to the considered family \(\mathcal {F}\). Roughly speaking, we show that the easy cases one can think of (e.g. when edgeless graphs of the right sizes are in \(\mathcal {F}\), or if \(\mathcal {F}\) contains only cliques) are the only families giving rise to a polynomial problem: all others are NP-complete. We then investigate the parameterized complexity of the problem and give similar sufficient conditions on \(\mathcal {F}\) that give rise to \(\mathsf{W} [1]\)-hard, \(\mathsf{W} [2]\)-hard or \(\mathsf{FPT} \) problems when the parameter is the size of the solution. This yields an FPT/\(\mathsf{W} [1]\)-hard dichotomy for a relaxed problem, where every hyperedge of H must contain some member of \(\mathcal {F}\) as a (non necessarily spanning) subgraph.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
The \(\mathcal {F}\)-Recognition problem asks, given a graph F, whether \(F \in \mathcal {F}\).
 
2
Roughly speaking, each element of the universe represents a vertex of the graph, and for each vertex, create a set with the elements corresponding to its closed neighborhood.
 
Literatur
1.
Zurück zum Zitat Agarwal, D., Caillouet, C., Coudert, D., Cazals, F.: Unveiling contacts within macro-molecular assemblies by solving minimum weight connectivity inference problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)CrossRef Agarwal, D., Caillouet, C., Coudert, D., Cazals, F.: Unveiling contacts within macro-molecular assemblies by solving minimum weight connectivity inference problems. Mol. Cell. Proteomics 14, 2274–2284 (2015)CrossRef
4.
Zurück zum Zitat Chen, Y., Lin, B.: The constant inapproximability of the parameterized dominating set problem. FOCS 2016, 505–514 (2016)MathSciNet Chen, Y., Lin, B.: The constant inapproximability of the parameterized dominating set problem. FOCS 2016, 505–514 (2016)MathSciNet
5.
Zurück zum Zitat Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-sub with many topics. In: PODC 2007, pp. 109–118. ACM (2007) Chockler, G., Melamed, R., Tock, Y., Vitenberg, R.: Constructing scalable overlays for pub-sub with many topics. In: PODC 2007, pp. 109–118. ACM (2007)
6.
Zurück zum Zitat Cohen, N., Mazauric, D., Sau, I., Watrigant, R.: Complexity dichotomies for the minimum F-overlay problem. CoRR, abs/1703.05156 (2017) Cohen, N., Mazauric, D., Sau, I., Watrigant, R.: Complexity dichotomies for the minimum F-overlay problem. CoRR, abs/1703.05156 (2017)
7.
Zurück zum Zitat Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item graphs. In: AAAI 2004, pp. 212–218 (2004) Conitzer, V., Derryberry, J., Sandholm, T.: Combinatorial auctions with structured item graphs. In: AAAI 2004, pp. 212–218 (2004)
10.
Zurück zum Zitat Du, D.Z., Kelly, D.F.: On complexity of subset interconnection designs. J. Global Optim. 6(2), 193–205 (1995)MathSciNetCrossRef Du, D.Z., Kelly, D.F.: On complexity of subset interconnection designs. J. Global Optim. 6(2), 193–205 (1995)MathSciNetCrossRef
11.
Zurück zum Zitat Ding-Zhu, D., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)MathSciNetCrossRef Ding-Zhu, D., Miller, Z.: Matroids and subset interconnection design. SIAM J. Discrete Math. 1(4), 416–424 (1988)MathSciNetCrossRef
13.
Zurück zum Zitat Fan, H., Wu, Y.-L.: Interconnection graph problem. In: FCS 2008, pp. 51–55 (2008) Fan, H., Wu, Y.-L.: Interconnection graph problem. In: FCS 2008, pp. 51–55 (2008)
14.
Zurück zum Zitat Hosoda, J., Hromkovic, J., Izumi, T., Ono, H., Steinov, M., Wada, K.: On the approximability and hardness of minimum topic connected overlay and its special instances. Theoret. Comput. Sci. 429, 144–154 (2012)MathSciNetCrossRef Hosoda, J., Hromkovic, J., Izumi, T., Ono, H., Steinov, M., Wada, K.: On the approximability and hardness of minimum topic connected overlay and its special instances. Theoret. Comput. Sci. 429, 144–154 (2012)MathSciNetCrossRef
15.
Zurück zum Zitat Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)MathSciNetCrossRef Johnson, D.S., Pollak, H.O.: Hypergraph planarity and the complexity of drawing Venn diagrams. J. Graph Theory 11(3), 309–325 (1987)MathSciNetCrossRef
17.
Zurück zum Zitat Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1), 385–414 (2003)MathSciNetCrossRef Korach, E., Stern, M.: The clustering matroid and the optimal clustering tree. Math. Program. 98(1), 385–414 (2003)MathSciNetCrossRef
18.
Zurück zum Zitat Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans. Netw. 19(5), 1331–1343 (2011)CrossRef Onus, M., Richa, A.W.: Minimum maximum-degree publish-subscribe overlay network design. IEEE/ACM Trans. Netw. 19(5), 1331–1343 (2011)CrossRef
Metadaten
Titel
Complexity Dichotomies for the Minimum -Overlay Problem
verfasst von
Nathann Cohen
Frédéric Havet
Dorian Mazauric
Ignasi Sau
Rémi Watrigant
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-78825-8_10

Premium Partner