Skip to main content

2024 | OriginalPaper | Buchkapitel

6. Composite Based Additive Manufacturing

verfasst von : Sk Md Alimuzzaman, Muhammad P. Jahan

Erschienen in: Practical Implementations of Additive Manufacturing Technologies

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Additive manufacturing (AM) has become an extremely popular manufacturing process due to the immense potential it holds for the development of new products and applications across a wide range of industries. Due to its capacity to produce complicated geometries with little to no waste, it is frequently employed in fast prototyping processes. The growing popularity of polymer composite-based additive manufacturing is due to its versatility for printing with various reinforcements at a relatively lower overall melting temperature, as well as its extrudability and adhesive properties in 3D printed parts. This chapter has briefly covered a variety of 3D printing methods for polymer-based additive manufacturing by discussing the working principles of each AM process. With the input of some recent papers on polymer composite based AM, several reinforcing strategies have been presented along with their improvement on mechanical properties of AM polymer composites. The effects of 3D printing parameters on the composite mechanical properties and the selection methods of printing parameters for improved product performance of AM Polymer composites have been discussed. The internal porosity contributing to the poor strength, and poor dimensional accuracy and surface roughness of 3D printed parts are found to be the two major drawbacks of AM polymer composites. Therefore, the effectiveness of several frequently used post-processing methods on the defect reduction and properties enhancement of AM polymer composites have been reviewed. Finally, a brief discussion on future research scope on the area of AM polymer composites has been added in the chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Park S-J, Seo M-K (2011) Types of composites. In: Interface science and technology, vol 18. Elsevier, pp 501–629 Park S-J, Seo M-K (2011) Types of composites. In: Interface science and technology, vol 18. Elsevier, pp 501–629
2.
Zurück zum Zitat Adapa SK (2023) Prospects of natural fiber-reinforced polymer composites for additive manufacturing applications: a review. JOM, 1–21 Adapa SK (2023) Prospects of natural fiber-reinforced polymer composites for additive manufacturing applications: a review. JOM, 1–21
4.
Zurück zum Zitat Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1):389–405CrossRef Bikas H, Stavropoulos P, Chryssolouris G (2016) Additive manufacturing methods and modelling approaches: a critical review. Int J Adv Manuf Technol 83(1):389–405CrossRef
5.
Zurück zum Zitat Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920CrossRef Butscher A, Bohner M, Hofmann S, Gauckler L, Müller R (2011) Structural and material approaches to bone tissue engineering in powder-based three-dimensional printing. Acta Biomater 7(3):907–920CrossRef
6.
Zurück zum Zitat Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices Wong KV, Hernandez A (2012) A review of additive manufacturing. International scholarly research notices
7.
Zurück zum Zitat Kazmer D (2017) Three-dimensional printing of plastics. In: Applied plastics engineering handbook. William Andrew Publishing, pp 617–634 Kazmer D (2017) Three-dimensional printing of plastics. In: Applied plastics engineering handbook. William Andrew Publishing, pp 617–634
8.
Zurück zum Zitat Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Materials 13(17):3895. https://doi.org/10.3390/ma13173895 Razavykia A, Brusa E, Delprete C, Yavari R (2020) An overview of additive manufacturing technologies—a review to technical synthesis in numerical study of selective laser melting. Materials 13(17):3895. https://​doi.​org/​10.​3390/​ma13173895
9.
Zurück zum Zitat Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12(1):47–59CrossRef Mohan N, Senthil P, Vinodh S, Jayanth N (2017) A review on composite materials and process parameters optimisation for the fused deposition modelling process. Virtual Phys Prototyp 12(1):47–59CrossRef
10.
Zurück zum Zitat Wang Y, Zhou Y, Lin L, Corker J, Fan M (2020) Overview of 3D additive manufacturing (AM) and corresponding AM composites. Compos A Appl Sci Manuf 139:106114CrossRef Wang Y, Zhou Y, Lin L, Corker J, Fan M (2020) Overview of 3D additive manufacturing (AM) and corresponding AM composites. Compos A Appl Sci Manuf 139:106114CrossRef
11.
Zurück zum Zitat Guessasma S, Abouzaid K, Belhabib S, Bassir D, Nouri H (2022) Interfacial behaviour in polymer composites processed using droplet-based additive manufacturing. Polymers 14(5):1013CrossRef Guessasma S, Abouzaid K, Belhabib S, Bassir D, Nouri H (2022) Interfacial behaviour in polymer composites processed using droplet-based additive manufacturing. Polymers 14(5):1013CrossRef
12.
Zurück zum Zitat Kamrani AK, Nasr EA (2010) Engineering design and rapid prototyping. Springer Science & Business Media Kamrani AK, Nasr EA (2010) Engineering design and rapid prototyping. Springer Science & Business Media
13.
Zurück zum Zitat Mekonnen BG, Bright G, Walker A (2016) A study on state of the art technology of laminated object manufacturing (LOM). In: CAD/CAM, robotics and factories of the future. Springer, New Delhi, pp 207–216 Mekonnen BG, Bright G, Walker A (2016) A study on state of the art technology of laminated object manufacturing (LOM). In: CAD/CAM, robotics and factories of the future. Springer, New Delhi, pp 207–216
14.
Zurück zum Zitat Cosmi F, Dal Maso A (2020) A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Mater Today: Proc 32:194–201CrossRef Cosmi F, Dal Maso A (2020) A mechanical characterization of SLA 3D-printed specimens for low-budget applications. Mater Today: Proc 32:194–201CrossRef
15.
Zurück zum Zitat Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 11:442–458CrossRef Wang X, Jiang M, Zhou Z, Gou J, Hui D (2017) 3D printing of polymer matrix composites: a review and prospective. Compos B Eng 11:442–458CrossRef
17.
Zurück zum Zitat Wang Q, Liu X, Qiang Z, Hu Z, Cui X, Wei H, ... , Chen Y (2022) Cellulose nanocrystal enhanced, high dielectric 3D printing composite resin for energy applications. Compos Sci Technol 227:109601 Wang Q, Liu X, Qiang Z, Hu Z, Cui X, Wei H, ... , Chen Y (2022) Cellulose nanocrystal enhanced, high dielectric 3D printing composite resin for energy applications. Compos Sci Technol 227:109601
18.
Zurück zum Zitat Tang HH, Chiu ML, Yen HC (2011) Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc 31(8):1383–1388CrossRef Tang HH, Chiu ML, Yen HC (2011) Slurry-based selective laser sintering of polymer-coated ceramic powders to fabricate high strength alumina parts. J Eur Ceram Soc 31(8):1383–1388CrossRef
20.
Zurück zum Zitat Hu Y, Ning F, Cong W, Li Y, Wang X, Wang H (2018) Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties. Ceram Int 44(3):2752–2760CrossRef Hu Y, Ning F, Cong W, Li Y, Wang X, Wang H (2018) Ultrasonic vibration-assisted laser engineering net shaping of ZrO2-Al2O3 bulk parts: Effects on crack suppression, microstructure, and mechanical properties. Ceram Int 44(3):2752–2760CrossRef
21.
Zurück zum Zitat Impens D, Urbanic RJ (2015) Assessing the impact of post-processing variables on tensile and compression characteristics for 3D printed components. IFAC-PapersOnLine 48(3):652–657CrossRef Impens D, Urbanic RJ (2015) Assessing the impact of post-processing variables on tensile and compression characteristics for 3D printed components. IFAC-PapersOnLine 48(3):652–657CrossRef
22.
Zurück zum Zitat Chung H, Das S (2006) Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater Sci Eng, A 437(2):226–234CrossRef Chung H, Das S (2006) Processing and properties of glass bead particulate-filled functionally graded Nylon-11 composites produced by selective laser sintering. Mater Sci Eng, A 437(2):226–234CrossRef
23.
Zurück zum Zitat Boparai KS, Singh R, Fabbrocino F, Fraternali F (2016) Thermal characterization of recycled polymer for additive manufacturing applications. Compos B Eng 106:42–47CrossRef Boparai KS, Singh R, Fabbrocino F, Fraternali F (2016) Thermal characterization of recycled polymer for additive manufacturing applications. Compos B Eng 106:42–47CrossRef
24.
Zurück zum Zitat Bakhshi R, Mohammadi-Zerankeshi M, Mehrabi-Dehdezi M, Alizadeh R, Labbaf S, Abachi P (2023) Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. J Mech Behav Biomed Mater, 105655 Bakhshi R, Mohammadi-Zerankeshi M, Mehrabi-Dehdezi M, Alizadeh R, Labbaf S, Abachi P (2023) Additive manufacturing of PLA-Mg composite scaffolds for hard tissue engineering applications. J Mech Behav Biomed Mater, 105655
25.
26.
Zurück zum Zitat Wang D, Huang X, Li J, He B, Liu Q, Hu L, Jiang G (2018) 3D printing of graphene-doped target for “matrix-free” laser desorption/ionization mass spectrometry. Chem Commun 54(22):2723–2726CrossRef Wang D, Huang X, Li J, He B, Liu Q, Hu L, Jiang G (2018) 3D printing of graphene-doped target for “matrix-free” laser desorption/ionization mass spectrometry. Chem Commun 54(22):2723–2726CrossRef
27.
Zurück zum Zitat Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32(6):3448–3456CrossRef Nikzad M, Masood SH, Sbarski I (2011) Thermo-mechanical properties of a highly filled polymeric composites for fused deposition modeling. Mater Des 32(6):3448–3456CrossRef
28.
Zurück zum Zitat Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRef Hwang S, Reyes EI, Moon KS, Rumpf RC, Kim NS (2015) Thermo-mechanical characterization of metal/polymer composite filaments and printing parameter study for fused deposition modeling in the 3D printing process. J Electron Mater 44(3):771–777CrossRef
29.
Zurück zum Zitat Torrado Perez AR, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14(3):343–353CrossRef Torrado Perez AR, Roberson DA, Wicker RB (2014) Fracture surface analysis of 3D-printed tensile specimens of novel ABS-based materials. J Fail Anal Prev 14(3):343–353CrossRef
30.
Zurück zum Zitat Cholleti ER, Gibson I (2018, December). ABS nano composite materials in additive manufacturing. In: IOP conference series: materials science and engineering, vol 455, no 1. IOP Publishing, p 012038 Cholleti ER, Gibson I (2018, December). ABS nano composite materials in additive manufacturing. In: IOP conference series: materials science and engineering, vol 455, no 1. IOP Publishing, p 012038
31.
Zurück zum Zitat Skorski MR, Esenther JM, Ahmed Z, Miller AE, Hartings MR (2016) The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci Technol Adv Mater 17(1):89–97CrossRef Skorski MR, Esenther JM, Ahmed Z, Miller AE, Hartings MR (2016) The chemical, mechanical, and physical properties of 3D printed materials composed of TiO2-ABS nanocomposites. Sci Technol Adv Mater 17(1):89–97CrossRef
32.
Zurück zum Zitat Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Siengchin S (2021) Influence of nanofillers on biodegradable composites: a comprehensive review. Polym Compos 42(11):5691–5711 Jagadeesh P, Puttegowda M, Mavinkere Rangappa S, Siengchin S (2021) Influence of nanofillers on biodegradable composites: a comprehensive review. Polym Compos 42(11):5691–5711
33.
Zurück zum Zitat Zhang Q, Lei H, Cai H, Han X, Lin X, Qian M, ..., Mateo W (2020) Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J Clean Prod 252:119898 Zhang Q, Lei H, Cai H, Han X, Lin X, Qian M, ..., Mateo W (2020) Improvement on the properties of microcrystalline cellulose/polylactic acid composites by using activated biochar. J Clean Prod 252:119898
34.
Zurück zum Zitat Petrovskaya TS, Toropkov NE, Mironov EG, Azarmi F (2018) 3D printed biocompatible polylactide-hydroxyapatite based material for bone implants. Mater Manuf Processes 33(16):1899–1904CrossRef Petrovskaya TS, Toropkov NE, Mironov EG, Azarmi F (2018) 3D printed biocompatible polylactide-hydroxyapatite based material for bone implants. Mater Manuf Processes 33(16):1899–1904CrossRef
35.
Zurück zum Zitat Wu D, Spanou A, Diez-Escudero A, Persson C (2020) 3D-printed PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling. J Mech Behav Biomed Mater 103:103608CrossRef Wu D, Spanou A, Diez-Escudero A, Persson C (2020) 3D-printed PLA/HA composite structures as synthetic trabecular bone: a feasibility study using fused deposition modeling. J Mech Behav Biomed Mater 103:103608CrossRef
36.
Zurück zum Zitat Bai J, Goodridge RD, Hague RJ, Song M, Okamoto M (2014) Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym Testing 36:95–100CrossRef Bai J, Goodridge RD, Hague RJ, Song M, Okamoto M (2014) Influence of carbon nanotubes on the rheology and dynamic mechanical properties of polyamide-12 for laser sintering. Polym Testing 36:95–100CrossRef
37.
Zurück zum Zitat Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L (2017) Layered silicate reinforced polylactic acid filaments for 3D printing of polymer nanocomposites. In: 2017 IEEE 3rd international forum on research and technologies for society and industry (RTSI), Modena, Italy. pp 1–4. https://doi.org/10.1109/RTSI.2017.8065892 Coppola B, Cappetti N, Di Maio L, Scarfato P, Incarnato L (2017) Layered silicate reinforced polylactic acid filaments for 3D printing of polymer nanocomposites. In: 2017 IEEE 3rd international forum on research and technologies for society and industry (RTSI), Modena, Italy. pp 1–4. https://​doi.​org/​10.​1109/​RTSI.​2017.​8065892
38.
Zurück zum Zitat Plymill A, Minneci R, Greeley DA, Gritton J (2016) Graphene and carbon nanotube PLA composite feedstock development for fused deposition modeling Plymill A, Minneci R, Greeley DA, Gritton J (2016) Graphene and carbon nanotube PLA composite feedstock development for fused deposition modeling
39.
Zurück zum Zitat Lin D, Jin S, Zhang F, Wang C, Wang Y, Zhou C, Cheng GJ (2015) 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43):434003CrossRef Lin D, Jin S, Zhang F, Wang C, Wang Y, Zhou C, Cheng GJ (2015) 3D stereolithography printing of graphene oxide reinforced complex architectures. Nanotechnology 26(43):434003CrossRef
40.
Zurück zum Zitat Al Rashid A, Khan SA, Al-Ghamdi SG, Koc M (2021) Additive manufacturing of polymer nanocomposites: needs and challenges in materials, processes, and applications. J Market Res 14:910–941 Al Rashid A, Khan SA, Al-Ghamdi SG, Koc M (2021) Additive manufacturing of polymer nanocomposites: needs and challenges in materials, processes, and applications. J Market Res 14:910–941
41.
Zurück zum Zitat Chunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A nanosilica/nylon-12 composite powder for selective laser sintering. J Reinf Plast Compos 28(23):2889–2902CrossRef Chunze Y, Yusheng S, Jinsong Y, Jinhui L (2009) A nanosilica/nylon-12 composite powder for selective laser sintering. J Reinf Plast Compos 28(23):2889–2902CrossRef
42.
Zurück zum Zitat Momenzadeh N, Miyanaji H, Berfield TA (2019) Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process. Int J Adv Manuf Technol 103:4713–4720CrossRef Momenzadeh N, Miyanaji H, Berfield TA (2019) Influences of zirconium tungstate additives on characteristics of polyvinylidene fluoride (PVDF) components fabricated via material extrusion additive manufacturing process. Int J Adv Manuf Technol 103:4713–4720CrossRef
43.
Zurück zum Zitat Blok LG, Longana ML, Yu H, Woods BK (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186 Blok LG, Longana ML, Yu H, Woods BK (2018) An investigation into 3D printing of fibre reinforced thermoplastic composites. Addit Manuf 22:176–186
44.
Zurück zum Zitat Mishra V, Negi S, Kar S (2023). FDM-based additive manufacturing of recycled thermoplastics and associated composites. J Mater Cycles Waste Manag, 1–27 Mishra V, Negi S, Kar S (2023). FDM-based additive manufacturing of recycled thermoplastics and associated composites. J Mater Cycles Waste Manag, 1–27
45.
Zurück zum Zitat Wickramasinghe S, Do T, Tran P (2020) FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers 12(7):1529CrossRef Wickramasinghe S, Do T, Tran P (2020) FDM-based 3D printing of polymer and associated composite: A review on mechanical properties, defects and treatments. Polymers 12(7):1529CrossRef
46.
Zurück zum Zitat Tian X, Todoroki A, Liu T, Wu L, Hou Z, Ueda M, ..., Lu B (2022) 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chin J Mech Eng: Addit Manuf Front, 100016 Tian X, Todoroki A, Liu T, Wu L, Hou Z, Ueda M, ..., Lu B (2022) 3D printing of continuous fiber reinforced polymer composites: development, application, and prospective. Chin J Mech Eng: Addit Manuf Front, 100016
47.
Zurück zum Zitat Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Advanced Materials Technologies 4(1):1800271CrossRef Goh GD, Yap YL, Agarwala S, Yeong WY (2019) Recent progress in additive manufacturing of fiber reinforced polymer composite. Advanced Materials Technologies 4(1):1800271CrossRef
48.
Zurück zum Zitat Peng C, Tran P, Mouritz AP (2022) Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Compos Struct 300:116167CrossRef Peng C, Tran P, Mouritz AP (2022) Compression and buckling analysis of 3D printed carbon fibre-reinforced polymer cellular composite structures. Compos Struct 300:116167CrossRef
49.
Zurück zum Zitat Li W, Guo S, Giannopoulos IK, Lin M, Xiong Y, Liu Y, Shen Z (2022) 3D-printed thermoplastic composite fasteners for single lap joint reinforcement. Compos Struct 282:115085CrossRef Li W, Guo S, Giannopoulos IK, Lin M, Xiong Y, Liu Y, Shen Z (2022) 3D-printed thermoplastic composite fasteners for single lap joint reinforcement. Compos Struct 282:115085CrossRef
50.
Zurück zum Zitat Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, ..., Asrofi M (2021) Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers 13(8):1326 Ilyas RA, Sapuan SM, Harussani MM, Hakimi MYAY, Haziq MZM, Atikah MSN, ..., Asrofi M (2021) Polylactic acid (PLA) biocomposite: processing, additive manufacturing and advanced applications. Polymers 13(8):1326
52.
Zurück zum Zitat Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef Ning F, Cong W, Qiu J, Wei J, Wang S (2015) Additive manufacturing of carbon fiber reinforced thermoplastic composites using fused deposition modeling. Compos B Eng 80:369–378CrossRef
53.
Zurück zum Zitat Cui Y, Li C, Guo Y, Liu X, Zhu F, Liu Z, ... , Yang F (2022) Rheological & 3D printing properties of potato starch composite gels. J Food Eng 313:110756 Cui Y, Li C, Guo Y, Liu X, Zhu F, Liu Z, ... , Yang F (2022) Rheological & 3D printing properties of potato starch composite gels. J Food Eng 313:110756
54.
Zurück zum Zitat Bakhtiari H, Aamir M, Tolouei-Rad M (2023) Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Appl Sci 13(2):904CrossRef Bakhtiari H, Aamir M, Tolouei-Rad M (2023) Effect of 3D printing parameters on the fatigue properties of parts manufactured by fused filament fabrication: a review. Appl Sci 13(2):904CrossRef
55.
Zurück zum Zitat Kovan V, Tezel T, Camurlu HE, Topal ES (2018) Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre composites. Mater Science Non-Equilib Phase Transform 4(4):126–128 Kovan V, Tezel T, Camurlu HE, Topal ES (2018) Effect of printing parameters on mechanical properties of 3D printed PLA/carbon fibre composites. Mater Science Non-Equilib Phase Transform 4(4):126–128
56.
Zurück zum Zitat Peng WANG, Bin ZOU, Shouling DING, Lei LI, Huang C (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin J Aeronaut 34(9):236–246CrossRef Peng WANG, Bin ZOU, Shouling DING, Lei LI, Huang C (2021) Effects of FDM-3D printing parameters on mechanical properties and microstructure of CF/PEEK and GF/PEEK. Chin J Aeronaut 34(9):236–246CrossRef
57.
Zurück zum Zitat Hambali RH, Cheong KM, Azizan N (2017, June) Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. In: IOP conference series: materials science and engineering, vol 210, no 1. IOP Publishing, p 012063 Hambali RH, Cheong KM, Azizan N (2017, June) Analysis of the influence of chemical treatment to the strength and surface roughness of FDM. In: IOP conference series: materials science and engineering, vol 210, no 1. IOP Publishing, p 012063
58.
Zurück zum Zitat Taufik M, Jain PK (2017) Laser assisted finishing process for improved surface finish of fused deposition modelled parts. J Manuf Process 30:161–177CrossRef Taufik M, Jain PK (2017) Laser assisted finishing process for improved surface finish of fused deposition modelled parts. J Manuf Process 30:161–177CrossRef
59.
Zurück zum Zitat What is polymer directed energy deposition (DED) for 3D printing and how can it benefit you? (designworldonline.com) by Leslie Langnau; July 26, 2019 What is polymer directed energy deposition (DED) for 3D printing and how can it benefit you? (designworldonline.com) by Leslie Langnau; July 26, 2019
60.
Zurück zum Zitat Chen L, Zhang X (2019) Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl Surf Sci 492:765–775CrossRef Chen L, Zhang X (2019) Modification the surface quality and mechanical properties by laser polishing of Al/PLA part manufactured by fused deposition modeling. Appl Surf Sci 492:765–775CrossRef
61.
Zurück zum Zitat Guduru KK, Srinivasu G (2020) Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. Mater Today: Proc 33:5403–5407CrossRef Guduru KK, Srinivasu G (2020) Effect of post treatment on tensile properties of carbon reinforced PLA composite by 3D printing. Mater Today: Proc 33:5403–5407CrossRef
62.
Zurück zum Zitat Maidin S, Muhamad MK, Pei E (2015) Feasibility study of ultrasonic frequency application on fdm to improve parts surface finish. Jurnal Teknologi 77(32) Maidin S, Muhamad MK, Pei E (2015) Feasibility study of ultrasonic frequency application on fdm to improve parts surface finish. Jurnal Teknologi 77(32)
63.
Zurück zum Zitat Cococcetta NM, Jahan MP, Schoop J, Ma J, Pearl D, Hassan M (2021) Post-processing of 3D printed thermoplastic CFRP composites using cryogenic machining. J Manuf Process 68:332–346CrossRef Cococcetta NM, Jahan MP, Schoop J, Ma J, Pearl D, Hassan M (2021) Post-processing of 3D printed thermoplastic CFRP composites using cryogenic machining. J Manuf Process 68:332–346CrossRef
64.
Zurück zum Zitat Cococcetta NM, Pearl D, Jahan MP, Ma J (2020) Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. J Manuf Process 56, Part B:1304–1316 Cococcetta NM, Pearl D, Jahan MP, Ma J (2020) Investigating surface finish, burr formation, and tool wear during machining of 3D printed carbon fiber reinforced polymer composite. J Manuf Process 56, Part B:1304–1316
65.
Zurück zum Zitat Hassan M, Ma J, Jahan MP (2022) Numerical modeling and simulation of machining of 3D printed CFRP composite. Manuf Lett 33:415–427 Hassan M, Ma J, Jahan MP (2022) Numerical modeling and simulation of machining of 3D printed CFRP composite. Manuf Lett 33:415–427
66.
Zurück zum Zitat Hassan M, Alimuzzaman Sk Md, Ma J, Jahan MP (2022) A comparative Numerical investigation on machining of laminated and 3D printed CFRP composites. In: Proceedings of the ASME 2022 international mechanical engineering congress & exposition (IMECE2022), Oct 30–Nov 03, 2022, Columbus, Ohio, USA. https://doi.org/10.1115/IMECE2022-95257 Hassan M, Alimuzzaman Sk Md, Ma J, Jahan MP (2022) A comparative Numerical investigation on machining of laminated and 3D printed CFRP composites. In: Proceedings of the ASME 2022 international mechanical engineering congress & exposition (IMECE2022), Oct 30–Nov 03, 2022, Columbus, Ohio, USA. https://​doi.​org/​10.​1115/​IMECE2022-95257
67.
Zurück zum Zitat Hassan M, Ma J, Jahan MP (2021) numerical investigation into the cutting forces, chip formation mechanism, and burr formation during slot milling of laminated CFRP composites, IMECE2021-73310. In: Proceedings of the ASME 2021 international mechanical engineering congress & exposition IMECE 2021, November 1–5, 2021, Virtual Conference. https://doi.org/10.1115/IMECE2021-73310 Hassan M, Ma J, Jahan MP (2021) numerical investigation into the cutting forces, chip formation mechanism, and burr formation during slot milling of laminated CFRP composites, IMECE2021-73310. In: Proceedings of the ASME 2021 international mechanical engineering congress & exposition IMECE 2021, November 1–5, 2021, Virtual Conference. https://​doi.​org/​10.​1115/​IMECE2021-73310
68.
Zurück zum Zitat Rao GS, Paul R, Singh S, Debnath K (2022) Influence of conventionally drilled and additively fabricated hole on tensile properties of 3D-printed ONYX/CGF composites. J Mater Eng Perform, 1–13 Rao GS, Paul R, Singh S, Debnath K (2022) Influence of conventionally drilled and additively fabricated hole on tensile properties of 3D-printed ONYX/CGF composites. J Mater Eng Perform, 1–13
69.
Zurück zum Zitat Das A, Rao GS, Debnath K, Mahapatra RN (2021) Parametric investigation on drilling behavior of 3D printed CFRP composites. In: Processing and characterization of materials. Springer, Singapore, pp 223–233 Das A, Rao GS, Debnath K, Mahapatra RN (2021) Parametric investigation on drilling behavior of 3D printed CFRP composites. In: Processing and characterization of materials. Springer, Singapore, pp 223–233
70.
Zurück zum Zitat Beauson J, Schillani G, Van der Schueren L, Goutianos S (2022) The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Compos A Appl Sci Manuf 152:106668CrossRef Beauson J, Schillani G, Van der Schueren L, Goutianos S (2022) The effect of processing conditions and polymer crystallinity on the mechanical properties of unidirectional self-reinforced PLA composites. Compos A Appl Sci Manuf 152:106668CrossRef
71.
Zurück zum Zitat Iyer SSG, Keles O (2022) Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. Composites Communications 32:101163CrossRef Iyer SSG, Keles O (2022) Effect of raster angle on mechanical properties of 3D printed short carbon fiber reinforced acrylonitrile butadiene styrene. Composites Communications 32:101163CrossRef
72.
Zurück zum Zitat Zhao Y, Chen Y, Zhou Y (2019) Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses. Mater Des 181:108089CrossRef Zhao Y, Chen Y, Zhou Y (2019) Novel mechanical models of tensile strength and elastic property of FDM AM PLA materials: experimental and theoretical analyses. Mater Des 181:108089CrossRef
73.
Zurück zum Zitat Rimašauskas M, Jasiūnienė E, Kuncius T, Rimašauskienė R, Cicėnas V (2022) Investigation of influence of printing parameters on the quality of 3D printed composite structures. Compos Struct 281:115061CrossRef Rimašauskas M, Jasiūnienė E, Kuncius T, Rimašauskienė R, Cicėnas V (2022) Investigation of influence of printing parameters on the quality of 3D printed composite structures. Compos Struct 281:115061CrossRef
74.
Zurück zum Zitat Raj Mohan R, Venkatraman R, Raghuraman S, Kumar PM, Rinawa ML, Subbiah R, ..., Rajkumar S (2022) Processing of aluminium-silicon alloy with metal carbide as reinforcement through powder-based additive manufacturing: a critical study. Scanning Raj Mohan R, Venkatraman R, Raghuraman S, Kumar PM, Rinawa ML, Subbiah R, ..., Rajkumar S (2022) Processing of aluminium-silicon alloy with metal carbide as reinforcement through powder-based additive manufacturing: a critical study. Scanning
75.
Zurück zum Zitat Almuallim B, Harun WSW, Al Rikabi IJ, Mohammed HA (2022) Thermally conductive polymer nanocomposites for filament-based additive manufacturing. J Mater Sci, 1–27 Almuallim B, Harun WSW, Al Rikabi IJ, Mohammed HA (2022) Thermally conductive polymer nanocomposites for filament-based additive manufacturing. J Mater Sci, 1–27
76.
Zurück zum Zitat Luyt AS, Molefi JA, Krump H (2006) Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym Degrad Stab 91(7):1629–1636CrossRef Luyt AS, Molefi JA, Krump H (2006) Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym Degrad Stab 91(7):1629–1636CrossRef
77.
Zurück zum Zitat Shi SQ, Gardner DJ (2006) Hygroscopic thickness swelling rate of compression molded wood fiberboard and wood fiber/polymer composites. Compos A Appl Sci Manuf 37(9):1276–1285CrossRef Shi SQ, Gardner DJ (2006) Hygroscopic thickness swelling rate of compression molded wood fiberboard and wood fiber/polymer composites. Compos A Appl Sci Manuf 37(9):1276–1285CrossRef
78.
Zurück zum Zitat Rusu M, Sofian N, Rusu D (2001) Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polym Testing 20(4):409–417CrossRef Rusu M, Sofian N, Rusu D (2001) Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polym Testing 20(4):409–417CrossRef
79.
Zurück zum Zitat Chen J, Shi YY, Yang JH, Zhang N, Huang T, Chen C, ..., Zhou ZW (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22(42):22398–22404 Chen J, Shi YY, Yang JH, Zhang N, Huang T, Chen C, ..., Zhou ZW (2012) A simple strategy to achieve very low percolation threshold via the selective distribution of carbon nanotubes at the interface of polymer blends. J Mater Chem 22(42):22398–22404
80.
Zurück zum Zitat Ha SM, Lee HL, Lee SG, Kim BG, Kim YS, Won JC, ..., Yoo Y (2013) Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions. Compos Sci Technol 88:113–119 Ha SM, Lee HL, Lee SG, Kim BG, Kim YS, Won JC, ..., Yoo Y (2013) Thermal conductivity of graphite filled liquid crystal polymer composites and theoretical predictions. Compos Sci Technol 88:113–119
81.
Zurück zum Zitat Nguyen HT, Crittenden K, Weiss L, Bardaweel H (2022) Recycle of waste tire rubber in a 3D printed composite with enhanced damping properties. J Clean Prod 368:133085CrossRef Nguyen HT, Crittenden K, Weiss L, Bardaweel H (2022) Recycle of waste tire rubber in a 3D printed composite with enhanced damping properties. J Clean Prod 368:133085CrossRef
82.
Zurück zum Zitat Sun J, Yu S, Wade-Zhu J, Chen X, Binner J, Bai J (2022) 3D printing of layered ceramic/carbon fiber composite with improved toughness. Addit Manuf 50:102543 Sun J, Yu S, Wade-Zhu J, Chen X, Binner J, Bai J (2022) 3D printing of layered ceramic/carbon fiber composite with improved toughness. Addit Manuf 50:102543
83.
Zurück zum Zitat de Kergariou C, Saidani-Scott H, Perriman A, Scarpa F, Le Duigou A (2022) The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly (lactic acid) composites de Kergariou C, Saidani-Scott H, Perriman A, Scarpa F, Le Duigou A (2022) The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly (lactic acid) composites
84.
Zurück zum Zitat Wu C, Xu F, Wang H, Liu H, Yan F, Ma C (2023) Manufacturing technologies of polymer composites—a review. Polymers 15(3):712CrossRef Wu C, Xu F, Wang H, Liu H, Yan F, Ma C (2023) Manufacturing technologies of polymer composites—a review. Polymers 15(3):712CrossRef
Metadaten
Titel
Composite Based Additive Manufacturing
verfasst von
Sk Md Alimuzzaman
Muhammad P. Jahan
Copyright-Jahr
2024
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-99-5949-5_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.