Skip to main content

2019 | OriginalPaper | Buchkapitel

12. Composites and Nanocomposites

verfasst von : Shah Mohammed Reduwan Billah

Erschienen in: Functional Polymers

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In general, a composite is usually made up of two or more materials having two or more phases with heterogeneous characters, where at least one is in a microscopic scale. In addition, a composite can be classified as a nanocomposite when at least one of the reinforcement dimensions is in the nanometer range (from 10 to 200 nm). Both composites and nanocomposites have many promising mechanical, thermal, electrical, optical, and other interesting properties that make them a field of current active research interest both in academia and industry. This chapter selectively covers both fundamental and applied research involved mostly with polymer-based composites and nanocomposites along with a brief discussion on the future research directions for further improvements on high-performance composites and nanocomposites for a variety of conventional and high-tech applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, 1996), pp. 2–92 D. Hull, T.W. Clyne, An Introduction to Composite Materials (Cambridge University Press, 1996), pp. 2–92
2.
Zurück zum Zitat (a) J. Luo, I.M. Danmiel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2004); (b) P. Meneghetti, S. Qutubuddin, Synthesis, thermal properties and application of polymer-clay nanocomposites. Thermoch. Act. 442, 74–77 (2006); (c) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003); M. Bhattacharya, Polymer Nanocomposites – A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers by Materials, 9(4), 262 (2016); https://doi.org/10.3390/ma9040262; http://creativecommons.org/licenses/by/4.0/PubMedCentralCrossRef (a) J. Luo, I.M. Danmiel, Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos. Sci. Technol. 63, 1607–1616 (2004); (b) P. Meneghetti, S. Qutubuddin, Synthesis, thermal properties and application of polymer-clay nanocomposites. Thermoch. Act. 442, 74–77 (2006); (c) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28, 1539–1641 (2003); M. Bhattacharya, Polymer Nanocomposites – A Comparison between Carbon Nanotubes, Graphene, and Clay as Nanofillers by Materials, 9(4), 262 (2016); https://​doi.​org/​10.​3390/​ma9040262; http://​creativecommons.​org/​licenses/​by/​4.​0/​PubMedCentralCrossRef
3.
Zurück zum Zitat P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 1–117CrossRef P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 1–117CrossRef
4.
Zurück zum Zitat C. Zeng, L.J. Lee, Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 34, 4098–4103 (2001)CrossRef C. Zeng, L.J. Lee, Poly(methyl methacrylate) and polystyrene/clay nanocomposites prepared by in-situ polymerization. Macromolecules 34, 4098–4103 (2001)CrossRef
5.
Zurück zum Zitat R.S. Fertig, M.R. Garnich, Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite. Compos. Sci. Technol. 64, 2577–2258 (2004)CrossRef R.S. Fertig, M.R. Garnich, Influence of constituent properties and microstructural parameters on the tensile modulus of a polymer/clay nanocomposite. Compos. Sci. Technol. 64, 2577–2258 (2004)CrossRef
6.
Zurück zum Zitat W.E. Teo, S. Ramakrishna, Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos. Sci. Technol. 69, 1804–1817 (2009)CrossRef W.E. Teo, S. Ramakrishna, Electrospun nanofibers as a platform for multifunctional, hierarchically organized nanocomposite. Compos. Sci. Technol. 69, 1804–1817 (2009)CrossRef
7.
Zurück zum Zitat Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)CrossRef Z.M. Huang, Y.Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223–2253 (2003)CrossRef
8.
Zurück zum Zitat C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36, 333–368 (2006)CrossRef C. Burger, B.S. Hsiao, B. Chu, Nanofibrous materials and their applications. Annu. Rev. Mater. Res. 36, 333–368 (2006)CrossRef
9.
Zurück zum Zitat K.M. Sawicka, P. Gouma, Electrospun composite nanofibers for functional applications. J. Nanopart. Res. 8, 769–781 (2006)CrossRef K.M. Sawicka, P. Gouma, Electrospun composite nanofibers for functional applications. J. Nanopart. Res. 8, 769–781 (2006)CrossRef
10.
Zurück zum Zitat J.H. He, Y.Q. Wan, J.Y. Yu, Application of vibration technology to polymer electrospinning. Int. J. Nonlinear Sci. Numer. Simul. 5, 253–262 (2004) J.H. He, Y.Q. Wan, J.Y. Yu, Application of vibration technology to polymer electrospinning. Int. J. Nonlinear Sci. Numer. Simul. 5, 253–262 (2004)
11.
Zurück zum Zitat S. Homaeigohar, M. Elbahri, Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. J. Colloid Interface Sci. 372, 6–15 (2012)PubMedCrossRef S. Homaeigohar, M. Elbahri, Novel compaction resistant and ductile nanocomposite nanofibrous microfiltration membranes. J. Colloid Interface Sci. 372, 6–15 (2012)PubMedCrossRef
12.
Zurück zum Zitat P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin – Nanotube composite. Science 265(5176), 1212–1214 (1994)PubMedCrossRef P.M. Ajayan, O. Stephan, C. Colliex, D. Trauth, Aligned carbon nanotube arrays formed by cutting a polymer resin – Nanotube composite. Science 265(5176), 1212–1214 (1994)PubMedCrossRef
13.
Zurück zum Zitat Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef
14.
Zurück zum Zitat G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749–4757 (2004)PubMedCrossRef G. Wei, P.X. Ma, Structure and properties of nano-hydroxyapatite/polymer composite scaffolds for bone tissue engineering. Biomaterials 25(19), 4749–4757 (2004)PubMedCrossRef
15.
Zurück zum Zitat J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835 (2000)CrossRef J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835 (2000)CrossRef
16.
Zurück zum Zitat P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)CrossRef P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)CrossRef
17.
Zurück zum Zitat P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 11–121CrossRef P.M. Ajayan, L.S. Schadler, P.V. Braun, Nanocomposite Science and Technology (Wiley, New York, 2003), pp. 11–121CrossRef
18.
Zurück zum Zitat J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)CrossRef J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)CrossRef
19.
Zurück zum Zitat M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRef M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRef
20.
Zurück zum Zitat (a) J. Cho, M. Joshi, C. Sun, Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66(13), 1941–1952 (2006); (b) C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005) (a) J. Cho, M. Joshi, C. Sun, Effect of inclusion size on mechanical properties of polymeric composites with micro and nano particles. Compos. Sci. Technol. 66(13), 1941–1952 (2006); (b) C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)
21.
Zurück zum Zitat (a) R. Singh, M. Zhang, D. Chan, Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37(4), 781–788 (2002); (b) P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc, New York, 1997), pp. 6–10 (a) R. Singh, M. Zhang, D. Chan, Toughening of a brittle thermosetting polymer: Effects of reinforcement particle size and volume fraction. J. Mater. Sci. 37(4), 781–788 (2002); (b) P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc, New York, 1997), pp. 6–10
22.
Zurück zum Zitat (a) L. Lopez, B. Song, H. Hahn, The effect of particle size in alumina nanocomposites, in Proceedings of the 14th International Conference on Composite Materials (ICCM-14), July 14–18, (San Diego, 2003); (b) C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992) (a) L. Lopez, B. Song, H. Hahn, The effect of particle size in alumina nanocomposites, in Proceedings of the 14th International Conference on Composite Materials (ICCM-14), July 14–18, (San Diego, 2003); (b) C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992)
23.
Zurück zum Zitat (a) H. Zhang, L.C. Tang, Z. Zhang, K. Friedrich, S. Sprenger, Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49(17), 3816–3825 (2008); (b) A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008) (a) H. Zhang, L.C. Tang, Z. Zhang, K. Friedrich, S. Sprenger, Fracture behaviours of in situ silica nanoparticle-filled epoxy at different temperatures. Polymer 49(17), 3816–3825 (2008); (b) A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008)
24.
Zurück zum Zitat (a) C. Cho, C. Sun, A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput. Mater. Sci. 41(1), 54–62 (2007); (b) M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005) (a) C. Cho, C. Sun, A molecular dynamics simulation study of inclusion size effect on polymeric nanocomposites. Comput. Mater. Sci. 41(1), 54–62 (2007); (b) M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005)
25.
Zurück zum Zitat (a) A. Adnan, C. Sun, H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos. Sci. Technol. 67(3), 348–356 (2007); (b) J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001) (a) A. Adnan, C. Sun, H. Mahfuz, A molecular dynamics simulation study to investigate the effect of filler size on elastic properties of polymer nanocomposites. Compos. Sci. Technol. 67(3), 348–356 (2007); (b) J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)
26.
Zurück zum Zitat (a) D.P.N. Vlasveld, H.E.N. Bersee, S.J. Picken, Nanocomposite matrix for increased fibre composite strength. Polymer 46(23), 0269–10278 (2005); (b) J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003) (a) D.P.N. Vlasveld, H.E.N. Bersee, S.J. Picken, Nanocomposite matrix for increased fibre composite strength. Polymer 46(23), 0269–10278 (2005); (b) J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)
27.
Zurück zum Zitat (a) M.F. Uddin, C. Sun, Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008); (b) T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005) (a) M.F. Uddin, C. Sun, Strength of unidirectional glass/epoxy composite with silica nanoparticle-enhanced matrix. Compos. Sci. Technol. 68(7), 1637–1643 (2008); (b) T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005)
28.
Zurück zum Zitat (a) T. Naganuma, Y. Kagawa, Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos. Sci. Technol. 62(9), 1187–1189 (2002); (b) E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004) (a) T. Naganuma, Y. Kagawa, Effect of particle size on the optically transparent nano meter-order glass particle-dispersed epoxy matrix composites. Compos. Sci. Technol. 62(9), 1187–1189 (2002); (b) E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004)
29.
Zurück zum Zitat (a) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003); (b) Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004) (a) S.S. Ray, M. Okamoto, Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci. 28(11), 1539–1641 (2003); (b) Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004)
30.
Zurück zum Zitat (a) F. Gao, Clay/polymer composites: The story. Mater. Today 7(11), 50–55 (2004); (b) S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater. 14(1), 44–51 (2002) (a) F. Gao, Clay/polymer composites: The story. Mater. Today 7(11), 50–55 (2004); (b) S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater. 14(1), 44–51 (2002)
31.
Zurück zum Zitat (a) M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R. Rep. 28(1), 1–63 (2000); (b) M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci. 44(7), 1205–1211 (2004) (a) M. Alexandre, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mat. Sci. Eng. R. Rep. 28(1), 1–63 (2000); (b) M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci. 44(7), 1205–1211 (2004)
32.
Zurück zum Zitat (a) A. Okada, A. Usuki, The chemistry of polymer-clay hybrids. Mat. Sci. Eng. C. 3(2), 109–115 (1995); (b) T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001) (a) A. Okada, A. Usuki, The chemistry of polymer-clay hybrids. Mat. Sci. Eng. C. 3(2), 109–115 (1995); (b) T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001)
33.
Zurück zum Zitat (a) J.L. Tsai, M.D. Wu, Organoclay effect on mechanical responses of glass/epoxy nanocomposites. J. Compos. Mater. 42(6), 553–568 (2008); (b) E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001) (a) J.L. Tsai, M.D. Wu, Organoclay effect on mechanical responses of glass/epoxy nanocomposites. J. Compos. Mater. 42(6), 553–568 (2008); (b) E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)
34.
Zurück zum Zitat (a) D. Gong, C. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, et. al. Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16(12):3331–3334 (2001); (b) P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000) (a) D. Gong, C. Grimes, O. K. Varghese, W. Hu, R. Singh, Z. Chen, et. al. Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res. 16(12):3331–3334 (2001); (b) P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)
35.
Zurück zum Zitat (a) Z. Wang, R.P. Gao, J. Gole, J. Stout, Silica nanotubes and nanofiber arrays. Adv. Mater. 12(24), 1938–1940 (2001); (b) M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004) (a) Z. Wang, R.P. Gao, J. Gole, J. Stout, Silica nanotubes and nanofiber arrays. Adv. Mater. 12(24), 1938–1940 (2001); (b) M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004)
36.
Zurück zum Zitat T. Taguchi, N. Igawa, H. Yamamoto, S. Jitsukawa, Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88(2), 459–461 (2005)CrossRef T. Taguchi, N. Igawa, H. Yamamoto, S. Jitsukawa, Synthesis of silicon carbide nanotubes. J. Am. Ceram. Soc. 88(2), 459–461 (2005)CrossRef
37.
Zurück zum Zitat (a) S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001) (a) S. Iijima, Helical microtubules of graphitic carbon. Nature 354(6348), 56–58 (1991); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)
38.
Zurück zum Zitat (a) H. Rajoria, N. Jalili, Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos. Sci. Technol. 65(14), 2079–2093 (2005); (b) M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000) (a) H. Rajoria, N. Jalili, Passive vibration damping enhancement using carbon nanotube-epoxy reinforced composites. Compos. Sci. Technol. 65(14), 2079–2093 (2005); (b) M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000)
39.
Zurück zum Zitat (a) N. Tai, M. Yeh, J. Liu, Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the Reiforcement. Carbon 42, 2735–2737 (2004); (b) E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999) (a) N. Tai, M. Yeh, J. Liu, Enhancement of the mechanical properties of carbon nanotube/phenolic composites using a carbon nanotube network as the Reiforcement. Carbon 42, 2735–2737 (2004); (b) E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)
40.
Zurück zum Zitat (a) F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005); (b) P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999) (a) F.H. Gojny, M.H.G. Wichmann, B. Fiedler, K. Schulte, Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Compos. Sci. Technol. 65(15), 2300–2313 (2005); (b) P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999)
41.
Zurück zum Zitat (a) S.M. Reduwan Billah, Synthesis of photochromic dye doped cellulose composite based electrospun Nanofibres for high-tech applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 425–442. ISBN: 978-1-63483-885-6; (b) E. Thostenson, W. Li, D. Wang, Z. Ren, T. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002); (c) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mater. Sci. Eng. 88, 60–61 (2003) (a) S.M. Reduwan Billah, Synthesis of photochromic dye doped cellulose composite based electrospun Nanofibres for high-tech applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 425–442. ISBN: 978-1-63483-885-6; (b) E. Thostenson, W. Li, D. Wang, Z. Ren, T. Chou, Carbon nanotube/carbon fiber hybrid multiscale composites. J. Appl. Phys. 91(9), 6034–6037 (2002); (c) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mater. Sci. Eng. 88, 60–61 (2003)
42.
Zurück zum Zitat (a) S.M. Reduwan Billah, Synthesis of quantum dot doped electrospun cellulose and other polymer based-nanocomposites and their applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 387–424. ISBN: 978-1-63483-885-6; (b) R. Sager, P. Klein, D. Lagoudas, Q. Zhang, J. Liu, L. Dai, et al., Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69(7), 898–904 (2009); (c) R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rapid. Commun. 25, 1359 (2004) (a) S.M. Reduwan Billah, Synthesis of quantum dot doped electrospun cellulose and other polymer based-nanocomposites and their applications, in Nanocellulose, Cellulose Nanofibers and Cellulose Nanocomposites: Synthesis and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 387–424. ISBN: 978-1-63483-885-6; (b) R. Sager, P. Klein, D. Lagoudas, Q. Zhang, J. Liu, L. Dai, et al., Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix. Compos. Sci. Technol. 69(7), 898–904 (2009); (c) R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rapid. Commun. 25, 1359 (2004)
43.
Zurück zum Zitat (a) K.H. Hung, W.S. Kuo, T.H. Ko, S.S. Tzeng, C.F. Yan, Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. A: Appl. Sci. Manuf. 40(8), 1299–1304 (2009); (b) C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002); (c) S.M. Reduwan Billah, Environmental stimuli-responsive electrospun nanofibres and scaffolds for advanced textile applications, in Conference Proceeding of 2nd NED International Textile Conference, 17th–18th February, (Karachi, 2016), pp. 1–9 (a) K.H. Hung, W.S. Kuo, T.H. Ko, S.S. Tzeng, C.F. Yan, Processing and tensile characterization of composites composed of carbon nanotube-grown carbon fibers. Compos. A: Appl. Sci. Manuf. 40(8), 1299–1304 (2009); (b) C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002); (c) S.M. Reduwan Billah, Environmental stimuli-responsive electrospun nanofibres and scaffolds for advanced textile applications, in Conference Proceeding of 2nd NED International Textile Conference, 17th–18th February, (Karachi, 2016), pp. 1–9
44.
Zurück zum Zitat (a) S.M. Reduwan Billah, Chapter 8. Environmentally responsive smart cellulose composites, in Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 211–242, ISBN: 9781634831277 (hardback), 978-1-63483-150-5 (e-book); (b) V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, et al., Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5(6), 457–462 (2006); (c) P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003) (a) S.M. Reduwan Billah, Chapter 8. Environmentally responsive smart cellulose composites, in Cellulose and Cellulose Derivatives: Synthesis, Modification and Applications, ed. by M. I. H. Mondal, (Nova Science Publishers, New York, 2015), pp. 211–242, ISBN: 9781634831277 (hardback), 978-1-63483-150-5 (e-book); (b) V.P. Veedu, A. Cao, X. Li, K. Ma, C. Soldano, S. Kar, et al., Multifunctional composites using reinforced laminae with carbon-nanotube forests. Nat. Mater. 5(6), 457–462 (2006); (c) P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003)
45.
Zurück zum Zitat (a) E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39(6), 1065–1070 (2008); (b) R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opinion. Solid State Mater. Sci. 8, 31–37 (2004) (a) E.J. Garcia, B.L. Wardle, A.J. Hart, Joining prepreg composite interfaces with aligned carbon nanotubes. Compos. A: Appl. Sci. Manuf. 39(6), 1065–1070 (2008); (b) R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opinion. Solid State Mater. Sci. 8, 31–37 (2004)
46.
Zurück zum Zitat (a) F. Lange, The interaction of a crack front with a second-phase dispersion. Phil. Mag. 22(179), 983–992 (1970); (b) E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998) (a) F. Lange, The interaction of a crack front with a second-phase dispersion. Phil. Mag. 22(179), 983–992 (1970); (b) E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998)
47.
Zurück zum Zitat (a) A. Kinloch, B. Johnsen, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms in novel nano-silica epoxy polymers, in Proceedings of the 5th Australasian Congress on Applied Mechanics: Engineers, (Australia), p. 441; (b) E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000) (a) A. Kinloch, B. Johnsen, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms in novel nano-silica epoxy polymers, in Proceedings of the 5th Australasian Congress on Applied Mechanics: Engineers, (Australia), p. 441; (b) E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000)
48.
Zurück zum Zitat (a) F.F. Lange, K.C. Radford, Fracture energy of an epoxy composite system. J. Mater. Sci. 6(9), 1197–1203 (1971); (b) D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822 (a) F.F. Lange, K.C. Radford, Fracture energy of an epoxy composite system. J. Mater. Sci. 6(9), 1197–1203 (1971); (b) D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822
49.
Zurück zum Zitat (a) K.T. Faber, A.G. Evans, Crack deflection processes – I. Theory. Acta Metall. 31(4), 565–576 (1983); (b) P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009) (a) K.T. Faber, A.G. Evans, Crack deflection processes – I. Theory. Acta Metall. 31(4), 565–576 (1983); (b) P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)
50.
Zurück zum Zitat (a) H. Zhang, Z. Zhang, K. Friedrich, C. Eger, Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54(7), 1833–1842 (2006); (b) P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009) (a) H. Zhang, Z. Zhang, K. Friedrich, C. Eger, Property improvements of in situ epoxy nanocomposites with reduced interparticle distance at high nanosilica content. Acta Mater. 54(7), 1833–1842 (2006); (b) P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)
51.
Zurück zum Zitat (a) B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530–541 (2007); (b) G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009) (a) B. Johnsen, A. Kinloch, R. Mohammed, A. Taylor, S. Sprenger, Toughening mechanisms of nanoparticle-modified epoxy polymers. Polymer 48(2), 530–541 (2007); (b) G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)
52.
Zurück zum Zitat M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)CrossRef M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)CrossRef
53.
Zurück zum Zitat N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)PubMedCrossRef N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)PubMedCrossRef
54.
Zurück zum Zitat S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)CrossRef S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)CrossRef
55.
Zurück zum Zitat R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)CrossRef R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)CrossRef
56.
Zurück zum Zitat J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)CrossRef J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)CrossRef
57.
Zurück zum Zitat L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)CrossRef L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)CrossRef
58.
Zurück zum Zitat Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef
59.
Zurück zum Zitat W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)CrossRef W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)CrossRef
60.
Zurück zum Zitat H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)CrossRef H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)CrossRef
61.
Zurück zum Zitat (a) E.A. Stefanescu, C. Daranga, C. Stefanescu, Insight into the broad field of polymer Nanocomposites: From carbon nanotubes to clay Nanoplatelets, via metal nanoparticles. Material 2, 2095–2153 (2009); (b) E. Loizou, P. Butler, L. Porcar, E. Kesselman, Y. Talmon, A. Dundigalla, G. Schmidt, Large scale structures in nanocomposite hydrogels. Macromolecules 38, 2047–2049 (2005) (a) E.A. Stefanescu, C. Daranga, C. Stefanescu, Insight into the broad field of polymer Nanocomposites: From carbon nanotubes to clay Nanoplatelets, via metal nanoparticles. Material 2, 2095–2153 (2009); (b) E. Loizou, P. Butler, L. Porcar, E. Kesselman, Y. Talmon, A. Dundigalla, G. Schmidt, Large scale structures in nanocomposite hydrogels. Macromolecules 38, 2047–2049 (2005)
62.
Zurück zum Zitat E. Loizou, P. Butler, L. Porcar, G. Schmidt, Dynamic responses in nanocomposite hydrogels. Macromolecules 39, 1614–1619 (2006)CrossRef E. Loizou, P. Butler, L. Porcar, G. Schmidt, Dynamic responses in nanocomposite hydrogels. Macromolecules 39, 1614–1619 (2006)CrossRef
63.
Zurück zum Zitat G. Schmidt, A.I. Nakatani, P.D. Butler, A. Karim, C.C. Han, Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33, 7219–7222 (2000)CrossRef G. Schmidt, A.I. Nakatani, P.D. Butler, A. Karim, C.C. Han, Shear orientation of viscoelastic polymer-clay solutions probed by flow birefringence and SANS. Macromolecules 33, 7219–7222 (2000)CrossRef
64.
Zurück zum Zitat G. Schmidt, A.I. Nakatani, C.C. Han, Rheology and flow-birefringence from viscoelastic polymer-clay solutions. Rheol. Acta 41, 45–54 (2002)CrossRef G. Schmidt, A.I. Nakatani, C.C. Han, Rheology and flow-birefringence from viscoelastic polymer-clay solutions. Rheol. Acta 41, 45–54 (2002)CrossRef
65.
Zurück zum Zitat E.A. Stefanescu, A. Dundigalla, V. Ferreiro, E. Loizou, L. Porcar, I. Negulescu, J. Garno, G. Schmidt, Supramolecular structures in nanocomposite multilayered films. Phys. Chem. Chem. Phys. 8, 1739–1746 (2006)PubMedCrossRef E.A. Stefanescu, A. Dundigalla, V. Ferreiro, E. Loizou, L. Porcar, I. Negulescu, J. Garno, G. Schmidt, Supramolecular structures in nanocomposite multilayered films. Phys. Chem. Chem. Phys. 8, 1739–1746 (2006)PubMedCrossRef
66.
Zurück zum Zitat E.A. Stefanescu, W.H. Daly, I.I. Negulescu, Hybrid polymer/clay nanocomposites: Effect of clay size on the structure of multilayered films. Macromol. Mater. Eng. 293, 651–656 (2008)CrossRef E.A. Stefanescu, W.H. Daly, I.I. Negulescu, Hybrid polymer/clay nanocomposites: Effect of clay size on the structure of multilayered films. Macromol. Mater. Eng. 293, 651–656 (2008)CrossRef
67.
Zurück zum Zitat X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 37, 5615–5623 (2004)CrossRef X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane nanocomposites. Macromolecules 37, 5615–5623 (2004)CrossRef
68.
Zurück zum Zitat T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Hierarchical polymer-nanotube composites. Adv. Mater. 19, 3850–3853 (2007)CrossRef T. Chatterjee, C.A. Mitchell, V.G. Hadjiev, R. Krishnamoorti, Hierarchical polymer-nanotube composites. Adv. Mater. 19, 3850–3853 (2007)CrossRef
69.
Zurück zum Zitat H. Jiang, K. Moon, Y. Li, C.P. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18, 2969–2973 (2006)CrossRef H. Jiang, K. Moon, Y. Li, C.P. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites. Chem. Mater. 18, 2969–2973 (2006)CrossRef
70.
Zurück zum Zitat P.Y. Keng, I. Shim, B.D. Korth, J.F. Douglas, J. Pyun, Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. ACS Nano 1, 279–292 (2007)PubMedCrossRef P.Y. Keng, I. Shim, B.D. Korth, J.F. Douglas, J. Pyun, Synthesis and self-assembly of polymer-coated ferromagnetic nanoparticles. ACS Nano 1, 279–292 (2007)PubMedCrossRef
71.
Zurück zum Zitat H.Y. Kwong, Y.W. Wong, K.H. Wong, Temperature dependence of magnetoresistivity of cobalt-polytetrafluoroethylene granular composite films. J. Appl. Phys. 102, 114303 (2007)CrossRef H.Y. Kwong, Y.W. Wong, K.H. Wong, Temperature dependence of magnetoresistivity of cobalt-polytetrafluoroethylene granular composite films. J. Appl. Phys. 102, 114303 (2007)CrossRef
72.
Zurück zum Zitat K. Pirkkalainen, K. Leppänen, U. Vainio, M.A. Webb, T. Elbra, T. Kohout, A. Nykänen, J. Ruokolainen, N. Kotelnikova, R. Serimaa, Nanocomposites of magnetic cobalt nanoparticles and cellulose. Eur. Phys. J. D. 49, 333–342 (2008)CrossRef K. Pirkkalainen, K. Leppänen, U. Vainio, M.A. Webb, T. Elbra, T. Kohout, A. Nykänen, J. Ruokolainen, N. Kotelnikova, R. Serimaa, Nanocomposites of magnetic cobalt nanoparticles and cellulose. Eur. Phys. J. D. 49, 333–342 (2008)CrossRef
73.
Zurück zum Zitat G.T. Mohanraj, P.K. Dey, T.K. Chaki, A. Chakraborty, D. Khastgir, Effect of temperature, pressure, and composition on DC resistivity and AC conductivity of conductive styrenebutadiene rubber-particulate metal alloy nanocomposites. Polym. Compos. 28, 696–704 (2007)CrossRef G.T. Mohanraj, P.K. Dey, T.K. Chaki, A. Chakraborty, D. Khastgir, Effect of temperature, pressure, and composition on DC resistivity and AC conductivity of conductive styrenebutadiene rubber-particulate metal alloy nanocomposites. Polym. Compos. 28, 696–704 (2007)CrossRef
74.
Zurück zum Zitat M. Panda, V. Srinivas, A.K. Thakur, Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites. Appl. Phys. Lett. 93, 242908 (2008)CrossRef M. Panda, V. Srinivas, A.K. Thakur, Surface and interfacial effect of filler particle on electrical properties of polyvinyledene fluoride/nickel composites. Appl. Phys. Lett. 93, 242908 (2008)CrossRef
75.
Zurück zum Zitat O.P. Valmikanathan, O. Ostroverkhova, I.S. Mulla, K. Vijayamohanan, S.V. Atre, The effect of synthesis procedure on the structure and properties of palladium/polycarbonate nanocomposites. Polymer 49, 3413–3418 (2008)CrossRef O.P. Valmikanathan, O. Ostroverkhova, I.S. Mulla, K. Vijayamohanan, S.V. Atre, The effect of synthesis procedure on the structure and properties of palladium/polycarbonate nanocomposites. Polymer 49, 3413–3418 (2008)CrossRef
76.
Zurück zum Zitat Z.Y. Tang, N.A. Kotov, One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)CrossRef Z.Y. Tang, N.A. Kotov, One-dimensional assemblies of nanoparticles: Preparation, properties, and promise. Adv. Mater. 17, 951–962 (2005)CrossRef
77.
Zurück zum Zitat S.L. Tripp, R.E. Dunin-Borkowski, A. Wei, Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. Int. Ed. 42, 5591–5593 (2003)CrossRef S.L. Tripp, R.E. Dunin-Borkowski, A. Wei, Flux closure in self-assembled cobalt nanoparticle rings. Angew. Chem. Int. Ed. 42, 5591–5593 (2003)CrossRef
78.
Zurück zum Zitat D. Farrell, Y. Ding, S.A. Majetich, C. Sanchez-Hanke, C.C. Kao, Structural ordering effects in Fe nanoparticle two- and three-dimensional arrays. J. Appl. Phys. 95, 6636–6638 (2004)CrossRef D. Farrell, Y. Ding, S.A. Majetich, C. Sanchez-Hanke, C.C. Kao, Structural ordering effects in Fe nanoparticle two- and three-dimensional arrays. J. Appl. Phys. 95, 6636–6638 (2004)CrossRef
79.
Zurück zum Zitat M. Hilgendorff, B. Tesche, M. Giersig, Creation of 3-D crystals from single cobalt nanoparticles in external magnetic fields. Aust. J. Chem. 54, 497–501 (2001)CrossRef M. Hilgendorff, B. Tesche, M. Giersig, Creation of 3-D crystals from single cobalt nanoparticles in external magnetic fields. Aust. J. Chem. 54, 497–501 (2001)CrossRef
80.
Zurück zum Zitat G. Carotenuto, B. Martorana, P. Perlo, L. Nicolais, A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J. Mater. Chem. 13, 2927–2930 (2003)CrossRef G. Carotenuto, B. Martorana, P. Perlo, L. Nicolais, A universal method for the synthesis of metal and metal sulfide clusters embedded in polymer matrices. J. Mater. Chem. 13, 2927–2930 (2003)CrossRef
81.
Zurück zum Zitat M.V. Jose, B.W. Steinert, V. Thomas, D.R. Dean, M.R. Abdalla, G. Price, G.M. Janowski, Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48, 1096–1104 (2007)CrossRef M.V. Jose, B.W. Steinert, V. Thomas, D.R. Dean, M.R. Abdalla, G. Price, G.M. Janowski, Morphology and mechanical properties of Nylon 6/MWNT nanofibers. Polymer 48, 1096–1104 (2007)CrossRef
82.
Zurück zum Zitat K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(E-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)CrossRef K. Chrissafis, G. Antoniadis, K.M. Paraskevopoulos, A. Vassiliou, D.N. Bikiaris, Comparative study of the effect of different nanoparticles on the mechanical properties and thermal degradation mechanism of in situ prepared poly(E-caprolactone) nanocomposites. Compos. Sci. Technol. 67, 2165–2174 (2007)CrossRef
83.
Zurück zum Zitat J.M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J. Phys. Chem. C 111, 11186–11192 (2007)CrossRef J.M. Thomassin, X. Lou, C. Pagnoulle, A. Saib, L. Bednarz, I. Huynen, R. Jerome, C. Detrembleur, Multiwalled carbon nanotube/poly(epsilon-caprolactone) nanocomposites with exceptional electromagnetic interference shielding properties. J. Phys. Chem. C 111, 11186–11192 (2007)CrossRef
84.
Zurück zum Zitat T.N. Abraham, R. Debdatta, S. Siengchin, J. Karger-Kocsis, Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 110, 2094–2101 (2008)CrossRef T.N. Abraham, R. Debdatta, S. Siengchin, J. Karger-Kocsis, Rheological and thermal properties of poly(ethylene oxide)/multiwall carbon nanotube composites. J. Appl. Polym. Sci. 110, 2094–2101 (2008)CrossRef
85.
Zurück zum Zitat A.K. Narh, L. Jallo, K.Y. Rhee, The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym. Compos. 29, 809–817 (2008)CrossRef A.K. Narh, L. Jallo, K.Y. Rhee, The effect of carbon nanotube agglomeration on the thermal and mechanical properties of polyethylene oxide. Polym. Compos. 29, 809–817 (2008)CrossRef
86.
Zurück zum Zitat Y.S. Song, Effect of surface treatment for carbon nanotubes on morphological and rheological properties of poly(ethylene oxide) nanocomposites. Polym. Eng. Sci. 46, 1350–1357 (2006)CrossRef Y.S. Song, Effect of surface treatment for carbon nanotubes on morphological and rheological properties of poly(ethylene oxide) nanocomposites. Polym. Eng. Sci. 46, 1350–1357 (2006)CrossRef
87.
Zurück zum Zitat R.D. Averett, M.L. Realff, K.I. Jacob, The effects of fatigue and residual strain on the mechanical behavior of poly(ethylene terephthalate) unreinforced and nanocomposite fibers. Compos. A: Appl. Sci. Manuf. 40, 709–723 (2009)CrossRef R.D. Averett, M.L. Realff, K.I. Jacob, The effects of fatigue and residual strain on the mechanical behavior of poly(ethylene terephthalate) unreinforced and nanocomposite fibers. Compos. A: Appl. Sci. Manuf. 40, 709–723 (2009)CrossRef
88.
Zurück zum Zitat B.W. Steinert, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009)CrossRef B.W. Steinert, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009)CrossRef
89.
Zurück zum Zitat A.C. Brosse, S. Tence-Girault, P.M. Piccione, L. Leibler, Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 49, 4680–4686 (2008)CrossRef A.C. Brosse, S. Tence-Girault, P.M. Piccione, L. Leibler, Effect of multi-walled carbon nanotubes on the lamellae morphology of polyamide-6. Polymer 49, 4680–4686 (2008)CrossRef
90.
Zurück zum Zitat Y. Li, H. Shimizu, Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromolecules 41, 5339–5344 (2008)CrossRef Y. Li, H. Shimizu, Conductive PVDF/PA6/CNTs nanocomposites fabricated by dual formation of cocontinuous and nanodispersion structures. Macromolecules 41, 5339–5344 (2008)CrossRef
91.
Zurück zum Zitat C.A. Mitchell, R. Krishnamoorti, Dispersion of single-walled carbon nanotubes in poly(epsiloncaprolactone). Macromolecules 40, 1538–1545 (2007)CrossRef C.A. Mitchell, R. Krishnamoorti, Dispersion of single-walled carbon nanotubes in poly(epsiloncaprolactone). Macromolecules 40, 1538–1545 (2007)CrossRef
92.
Zurück zum Zitat T. Chatterjee, R. Krishnamoorti, Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41, 5333–5338 (2008)CrossRef T. Chatterjee, R. Krishnamoorti, Steady shear response of carbon nanotube networks dispersed in poly(ethylene oxide). Macromolecules 41, 5333–5338 (2008)CrossRef
93.
Zurück zum Zitat T. Chatterjee, K. Yurekli, V.G. Hadjiev, R. Krishnamoorti, Single-walled carbon nanotube dispersions in poly(ethylene oxide). Adv. Funct. Mater. 15, 1832–1838 (2005)CrossRef T. Chatterjee, K. Yurekli, V.G. Hadjiev, R. Krishnamoorti, Single-walled carbon nanotube dispersions in poly(ethylene oxide). Adv. Funct. Mater. 15, 1832–1838 (2005)CrossRef
94.
Zurück zum Zitat H.J. Yoo, Y.C. Jung, J.W. Cho, Effect of interaction between poly(ethylene terephthalate) and carbon nanotubes on the morphology and properties of their nanocomposites. J. Polym. Sci. B Polym. Phys. 46, 900–910 (2008)CrossRef H.J. Yoo, Y.C. Jung, J.W. Cho, Effect of interaction between poly(ethylene terephthalate) and carbon nanotubes on the morphology and properties of their nanocomposites. J. Polym. Sci. B Polym. Phys. 46, 900–910 (2008)CrossRef
95.
Zurück zum Zitat B.W. Ahn, Y.S. Chi, T.J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 110, 4055–4063 (2008)CrossRef B.W. Ahn, Y.S. Chi, T.J. Kang, Preparation and characterization of multi-walled carbon nanotube/poly(ethylene terephthalate) nanoweb. J. Appl. Polym. Sci. 110, 4055–4063 (2008)CrossRef
96.
Zurück zum Zitat K. Wang, W.W. Li, C. Gao, Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization. J. Appl. Polym. Sci. 105, 629–640 (2007)CrossRef K. Wang, W.W. Li, C. Gao, Poly(epsilon-caprolactone)-functionalized carbon nanofibers by surface-initiated ring-opening polymerization. J. Appl. Polym. Sci. 105, 629–640 (2007)CrossRef
97.
Zurück zum Zitat N. Wakamatsu, H. Takamori, T. Fujigaya, N. Nakashima, Self-organized single-walled carbon nanotube conducting thin films with honeycomb structures on flexible plastic films. Adv. Funct. Mater. 19, 311–316 (2009)CrossRef N. Wakamatsu, H. Takamori, T. Fujigaya, N. Nakashima, Self-organized single-walled carbon nanotube conducting thin films with honeycomb structures on flexible plastic films. Adv. Funct. Mater. 19, 311–316 (2009)CrossRef
98.
Zurück zum Zitat H. Chen, Z. Liu, P. Cebe, Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer 50, 872–880 (2009)CrossRef H. Chen, Z. Liu, P. Cebe, Chain confinement in electrospun nanofibers of PET with carbon nanotubes. Polymer 50, 872–880 (2009)CrossRef
99.
Zurück zum Zitat G.J. Hu, X.Y. Feng, S.M. Zhang, M.S. Yang, Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J. Appl. Polym. Sci. 108, 4080–4089 (2008)CrossRef G.J. Hu, X.Y. Feng, S.M. Zhang, M.S. Yang, Crystallization behavior of poly(ethylene terephthalate)/multiwalled carbon nanotubes composites. J. Appl. Polym. Sci. 108, 4080–4089 (2008)CrossRef
100.
Zurück zum Zitat A. Nyczyk, M. Hasik, W. Turek, A. Sniechota, Nanocomposites of polyaniline, its derivatives and platinum prepared using aqueous Pt sol. Synth. Met. 159, 561–567 (2009)CrossRef A. Nyczyk, M. Hasik, W. Turek, A. Sniechota, Nanocomposites of polyaniline, its derivatives and platinum prepared using aqueous Pt sol. Synth. Met. 159, 561–567 (2009)CrossRef
101.
Zurück zum Zitat G. Zotti, B. Vercelli, A. Berlin, Gold nanoparticle linking to polypyrrole and polythiophene: Monolayers and multilayers. Chem. Mater. 20, 6509–6516 (2008)CrossRef G. Zotti, B. Vercelli, A. Berlin, Gold nanoparticle linking to polypyrrole and polythiophene: Monolayers and multilayers. Chem. Mater. 20, 6509–6516 (2008)CrossRef
102.
Zurück zum Zitat S.W. Huang, K.G. Neoh, E.T. Kang, H.S. Han, K.L. Tan, Palladium-containing polyaniline and polypyrrole microparticles. J. Mater. Chem. 8, 1743–1748 (1998)CrossRef S.W. Huang, K.G. Neoh, E.T. Kang, H.S. Han, K.L. Tan, Palladium-containing polyaniline and polypyrrole microparticles. J. Mater. Chem. 8, 1743–1748 (1998)CrossRef
103.
Zurück zum Zitat J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95, 1439 (2004)CrossRef J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles. J. Appl. Phys. 95, 1439 (2004)CrossRef
104.
Zurück zum Zitat G. Yurkov, A. Fionov, Y. Koksharov, V. Koleso, S. Gubin, Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles. Inorg. Mater. 43, 834–844 (2007)CrossRef G. Yurkov, A. Fionov, Y. Koksharov, V. Koleso, S. Gubin, Electrical and magnetic properties of nanomaterials containing iron or cobalt nanoparticles. Inorg. Mater. 43, 834–844 (2007)CrossRef
105.
Zurück zum Zitat A. Sarkar, S. Kapoor, G. Yashwant, H.G. Salunke, T. Mukherjee, Preparation and characterization of ultrafine co and Ni particles in a polymer matrix. J. Phys. Chem. B 109, 7203–7207 (2005)PubMedCrossRef A. Sarkar, S. Kapoor, G. Yashwant, H.G. Salunke, T. Mukherjee, Preparation and characterization of ultrafine co and Ni particles in a polymer matrix. J. Phys. Chem. B 109, 7203–7207 (2005)PubMedCrossRef
106.
Zurück zum Zitat Y. Sun, J. Sun, M. Liu, Q. Chen, Mechanical strength of carbon nanotube-nickel nanocomposites. Nanotechnology 18, 505704–505704 (2007)CrossRef Y. Sun, J. Sun, M. Liu, Q. Chen, Mechanical strength of carbon nanotube-nickel nanocomposites. Nanotechnology 18, 505704–505704 (2007)CrossRef
107.
Zurück zum Zitat L. Balan, M. Jin, J.P. Malval, H. Chaumeil, A. Defoin, L. Vidal, Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye. Macromolecules 41, 9359–9365 (2008)CrossRef L. Balan, M. Jin, J.P. Malval, H. Chaumeil, A. Defoin, L. Vidal, Fabrication of silver nanoparticle-embedded polymer promoted by combined photochemical properties of a 2,7-diaminofluorene derivative dye. Macromolecules 41, 9359–9365 (2008)CrossRef
108.
Zurück zum Zitat A. Dundigalla, S. Lin Gibson, V. Ferreiro, M.M. Malwitz, G. Schmidt, Unusual multi-layered structures in PEO/laponite nanocomposite films. Macromol. Rapid Commun. 26, 143–149 (2005)CrossRef A. Dundigalla, S. Lin Gibson, V. Ferreiro, M.M. Malwitz, G. Schmidt, Unusual multi-layered structures in PEO/laponite nanocomposite films. Macromol. Rapid Commun. 26, 143–149 (2005)CrossRef
109.
Zurück zum Zitat M.M. Elmahdy, K. Chrissopoulou, A. Afratis, G. Floudas, S.H. Anastasiadis, Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39, 5170–5173 (2006)CrossRef M.M. Elmahdy, K. Chrissopoulou, A. Afratis, G. Floudas, S.H. Anastasiadis, Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39, 5170–5173 (2006)CrossRef
110.
Zurück zum Zitat H.I. Inyang, S. Bae, G. Mbamalu, S.-W. Park, Aqueous polymer effects on volumetric swelling of Na-montmorillonite. J. Mater. Civ. Eng. 19:1, 84–90 (2007)CrossRef H.I. Inyang, S. Bae, G. Mbamalu, S.-W. Park, Aqueous polymer effects on volumetric swelling of Na-montmorillonite. J. Mater. Civ. Eng. 19:1, 84–90 (2007)CrossRef
111.
Zurück zum Zitat A. Loiseau, J.F. Tassin, Model nanocomposites based on laponite and poly(elhylene oxide): Preparation and rheology. Macromolecules 39, 9185–9191 (2006)CrossRef A. Loiseau, J.F. Tassin, Model nanocomposites based on laponite and poly(elhylene oxide): Preparation and rheology. Macromolecules 39, 9185–9191 (2006)CrossRef
112.
Zurück zum Zitat W. Loyens, F.H.J. Maurer, P. Jannasch, Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46, 7334–7345 (2005)CrossRef W. Loyens, F.H.J. Maurer, P. Jannasch, Melt-compounded salt-containing poly(ethylene oxide)/clay nanocomposites for polymer electrolyte membranes. Polymer 46, 7334–7345 (2005)CrossRef
113.
Zurück zum Zitat W.L. Qiu, M. Pyda, E. Nowak-Pyda, A. Habenschuss, B. Wunderlich, Reversibility between glass and melting transitions of poly(oxyethylene). Macromolecules 38, 8454–8467 (2005)CrossRef W.L. Qiu, M. Pyda, E. Nowak-Pyda, A. Habenschuss, B. Wunderlich, Reversibility between glass and melting transitions of poly(oxyethylene). Macromolecules 38, 8454–8467 (2005)CrossRef
114.
Zurück zum Zitat E.A. Stefanescu, P.J. Schexnailder, A. Dundigalla, I.I. Negulescu, G. Schmidt, Structure and thermal properties of multilayered Laponite/PEO nanocomposite films. Polymer 47, 7339–7348 (2006)CrossRef E.A. Stefanescu, P.J. Schexnailder, A. Dundigalla, I.I. Negulescu, G. Schmidt, Structure and thermal properties of multilayered Laponite/PEO nanocomposite films. Polymer 47, 7339–7348 (2006)CrossRef
115.
Zurück zum Zitat E.A. Stefanescu, C. Stefanescu, W.H. Daly, G. Schmidt, I.I. Negulescu, Hybrid polymer-clay nanocomposites: A mechanical study on gels and multilayered films. Polymer 49, 3785–3794 (2008)CrossRef E.A. Stefanescu, C. Stefanescu, W.H. Daly, G. Schmidt, I.I. Negulescu, Hybrid polymer-clay nanocomposites: A mechanical study on gels and multilayered films. Polymer 49, 3785–3794 (2008)CrossRef
116.
Zurück zum Zitat C.B. Arias, A.A. Zaman, J. Talton, Rheological behavior and wear abrasion resistance of polyethylene oxide/laponie nanocomposites. J. Dispers. Sci. Technol. 28, 247–254 (2007)CrossRef C.B. Arias, A.A. Zaman, J. Talton, Rheological behavior and wear abrasion resistance of polyethylene oxide/laponie nanocomposites. J. Dispers. Sci. Technol. 28, 247–254 (2007)CrossRef
117.
Zurück zum Zitat Y. Xu, B. Higgins, W.J. Brittain, Bottom-up synthesis of PS–CNF nanocomposites. Polymer 46, 799–810 (2005)CrossRef Y. Xu, B. Higgins, W.J. Brittain, Bottom-up synthesis of PS–CNF nanocomposites. Polymer 46, 799–810 (2005)CrossRef
118.
Zurück zum Zitat C. Wang, C.-L. Huang, Y.-C. Chen, G.-L. Hwang, S.-J. Tsai, Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features. Polymer 49, 5564–5574 (2008)CrossRef C. Wang, C.-L. Huang, Y.-C. Chen, G.-L. Hwang, S.-J. Tsai, Carbon nanocapsules-reinforced syndiotactic polystyrene nanocomposites: Crystallization and morphological features. Polymer 49, 5564–5574 (2008)CrossRef
119.
Zurück zum Zitat J. Shen, C. Zeng, L.J. Lee, Synthesis of polystyrene–carbon nanofibers nanocomposite foams. Polymer 46, 5218–5224 (2005)CrossRef J. Shen, C. Zeng, L.J. Lee, Synthesis of polystyrene–carbon nanofibers nanocomposite foams. Polymer 46, 5218–5224 (2005)CrossRef
120.
Zurück zum Zitat M. Mu, A.M. Walker, J.M. Torkelson, K.I. Winey, Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49, 1332–1337 (2008)CrossRef M. Mu, A.M. Walker, J.M. Torkelson, K.I. Winey, Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49, 1332–1337 (2008)CrossRef
121.
Zurück zum Zitat A. Chang, A. Kisliuk, S.M. Rhodes, W.J. Brittain, A.P. Sokolov, Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47, 7740–7746 (2006)CrossRef A. Chang, A. Kisliuk, S.M. Rhodes, W.J. Brittain, A.P. Sokolov, Conductivity and mechanical properties of well-dispersed single-wall carbon nanotube/polystyrene composite. Polymer 47, 7740–7746 (2006)CrossRef
122.
Zurück zum Zitat M.R. Nyden, S.I. Stoliarov, Calculations of the energy of mixing carbon nanotubes with polymers. Polymer 49, 635–641 (2007)CrossRef M.R. Nyden, S.I. Stoliarov, Calculations of the energy of mixing carbon nanotubes with polymers. Polymer 49, 635–641 (2007)CrossRef
123.
Zurück zum Zitat L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)CrossRef L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)CrossRef
124.
Zurück zum Zitat K. Putz, R. Krishnamoorti, P.F. Green, The role of interfacial interactions in the dynamic mechanical response of functionalized SWNTePS nanocomposites. Polymer 48, 3540–3545 (2007)CrossRef K. Putz, R. Krishnamoorti, P.F. Green, The role of interfacial interactions in the dynamic mechanical response of functionalized SWNTePS nanocomposites. Polymer 48, 3540–3545 (2007)CrossRef
125.
Zurück zum Zitat B.H. Cipriano, A.K. Kota, A.L. Gershon, C.J. Laskowski, T. Kashiwagi, H.A. Bruck, S.R. Raghavan, Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 4846–4851 (2008)CrossRef B.H. Cipriano, A.K. Kota, A.L. Gershon, C.J. Laskowski, T. Kashiwagi, H.A. Bruck, S.R. Raghavan, Conductivity enhancement of carbon nanotube and nanofiber-based polymer nanocomposites by melt annealing. Polymer 49, 4846–4851 (2008)CrossRef
126.
Zurück zum Zitat A.K. Kota, B.H. Cipriano, M.K. Duesterberg, A.L. Gershon, D. Powell, S.R. Raghavan, H.A. Bruck, Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40, 7400–7406 (2007)CrossRef A.K. Kota, B.H. Cipriano, M.K. Duesterberg, A.L. Gershon, D. Powell, S.R. Raghavan, H.A. Bruck, Electrical and rheological percolation in polystyrene/MWCNT nanocomposites. Macromolecules 40, 7400–7406 (2007)CrossRef
127.
Zurück zum Zitat B.H. Cipiriano, T. Kashiwagi, S.R. Raghavan, Y. Yang, E.A. Grulke, K. Yamamoto, J.R. Shields, J.F. Douglas, Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 6086–6096 (2007)CrossRef B.H. Cipiriano, T. Kashiwagi, S.R. Raghavan, Y. Yang, E.A. Grulke, K. Yamamoto, J.R. Shields, J.F. Douglas, Effects of aspect ratio of MWNT on the flammability properties of polymer nanocomposites. Polymer 48, 6086–6096 (2007)CrossRef
128.
Zurück zum Zitat J. Cui, W.P. Wang, Y. You, C. Liu, P. Wang, Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45, 8717–8721 (2004)CrossRef J. Cui, W.P. Wang, Y. You, C. Liu, P. Wang, Functionalization of multiwalled carbon nanotubes by reversible addition fragmentation chain-transfer polymerization. Polymer 45, 8717–8721 (2004)CrossRef
129.
Zurück zum Zitat G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, Y. You, Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization. Polymer 47, 5909–5918 (2006)CrossRef G. Xu, W.-T. Wu, Y. Wang, W. Pang, Q. Zhu, P. Wang, Y. You, Constructing polymer brushes on multiwalled carbon nanotubes by in situ reversible addition fragmentation chain transfer polymerization. Polymer 47, 5909–5918 (2006)CrossRef
130.
Zurück zum Zitat X. Jinqi, W.B. Jeremy, A.B.. David, T. Tzu-Chia, E.M. Michael, L.W. Karen, Hierarchical inorganic-organic nanocomposites possessing amphiphilic and morphological complexities: Influence of nanofiller dispersion on mechanical performance. Adv. Funct. Mater. 18, 2733–2744 (2008)CrossRef X. Jinqi, W.B. Jeremy, A.B.. David, T. Tzu-Chia, E.M. Michael, L.W. Karen, Hierarchical inorganic-organic nanocomposites possessing amphiphilic and morphological complexities: Influence of nanofiller dispersion on mechanical performance. Adv. Funct. Mater. 18, 2733–2744 (2008)CrossRef
131.
Zurück zum Zitat A.K. Mohanty, M. Misra, I.T. Drzal, Natural Fibers, Biopolymers and Biocomposites (CRC Press, Taylor & Francis, New York, 2005)CrossRef A.K. Mohanty, M. Misra, I.T. Drzal, Natural Fibers, Biopolymers and Biocomposites (CRC Press, Taylor & Francis, New York, 2005)CrossRef
132.
Zurück zum Zitat X. Huang, A.N. Netravali, Characterization of nanoclay reinforced Phytogel- modified soy protein concentrate resin. Biomacromolecules 7, 2783–2789 (2006)PubMedCrossRef X. Huang, A.N. Netravali, Characterization of nanoclay reinforced Phytogel- modified soy protein concentrate resin. Biomacromolecules 7, 2783–2789 (2006)PubMedCrossRef
133.
Zurück zum Zitat P. Iodha, A.N. Netravali, Characterization of Phytogel modified soy protein isolate resin and unidirectional flax yarn reinforced ‘green’ composites. Polym. Compos. 26, 647–659 (2005)CrossRef P. Iodha, A.N. Netravali, Characterization of Phytogel modified soy protein isolate resin and unidirectional flax yarn reinforced ‘green’ composites. Polym. Compos. 26, 647–659 (2005)CrossRef
134.
Zurück zum Zitat D.N. Saheb, J.P. Jog, Natural fiber polymer composites: Review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef D.N. Saheb, J.P. Jog, Natural fiber polymer composites: Review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef
135.
Zurück zum Zitat W. Helbert, J.Y. Cavaille, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour. Polym. Compos. 17(4), 604–611 (1996)CrossRef W. Helbert, J.Y. Cavaille, A. Dufresne, Thermoplastic nanocomposites filled with wheat straw cellulose whiskers. Part I: Processing and mechanical behaviour. Polym. Compos. 17(4), 604–611 (1996)CrossRef
136.
Zurück zum Zitat T. Nishino, K. Takano, K. Nakamae, Elastic-modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. Polym. Phys. 33(11), 1647–1651 (1995)CrossRef T. Nishino, K. Takano, K. Nakamae, Elastic-modulus of the crystalline regions of cellulose polymorphs. J. Polym. Sci. Polym. Phys. 33(11), 1647–1651 (1995)CrossRef
137.
Zurück zum Zitat A.N. Nakagaito, H. Yano, Novel high- strength biocomposites based on micro- fibrillated cellulose having nano order unit web-like network structure. Appl. Phys. A Mater. 80(1), 155–159 (2003)CrossRef A.N. Nakagaito, H. Yano, Novel high- strength biocomposites based on micro- fibrillated cellulose having nano order unit web-like network structure. Appl. Phys. A Mater. 80(1), 155–159 (2003)CrossRef
138.
Zurück zum Zitat I. Turner, C. Karatzas, in Natural Fibers, Plastics and Composites, ed. by F. T. Wallenberger, N. Weston, (Kluwer Academic Publishers, Boston, 2004), pp. 2–79 I. Turner, C. Karatzas, in Natural Fibers, Plastics and Composites, ed. by F. T. Wallenberger, N. Weston, (Kluwer Academic Publishers, Boston, 2004), pp. 2–79
139.
Zurück zum Zitat D.T. Grubb, I. Jelinski, Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30(10), 2860–2867 (1997)CrossRef D.T. Grubb, I. Jelinski, Fiber morphology of spider silk: The effects of tensile deformation. Macromolecules 30(10), 2860–2867 (1997)CrossRef
140.
Zurück zum Zitat S. Salmon, S.M. Hudson, Crystal morphology, biosynthesis and physical assembly of cellulose, chitin and chitosan. J. Maccromol. Sci. C Polym. Rev. 37(2), 199–276 (1997) S. Salmon, S.M. Hudson, Crystal morphology, biosynthesis and physical assembly of cellulose, chitin and chitosan. J. Maccromol. Sci. C Polym. Rev. 37(2), 199–276 (1997)
141.
Zurück zum Zitat A. Steinbuchel, Biopolymers – General Aspects and Special Applications, vol 10 (Wiley-VCH, Weinheim, 2003), pp. 2–342 A. Steinbuchel, Biopolymers – General Aspects and Special Applications, vol 10 (Wiley-VCH, Weinheim, 2003), pp. 2–342
142.
Zurück zum Zitat I. Yu, K. Dean, I. Li, Polymer blends & composites from renewable resources. Prog. Polym. Sci. 31(6), 576–602 (2006)CrossRef I. Yu, K. Dean, I. Li, Polymer blends & composites from renewable resources. Prog. Polym. Sci. 31(6), 576–602 (2006)CrossRef
143.
Zurück zum Zitat A.K. Rana, A. Mandal, B.C. Mitra, R. Jacobson, R. Rowell, A.N. Banerjee, Short jute fiber reinforced polypropylene composites. J. Appl. Polym. Sci. 69(2), 329–338 (1998)CrossRef A.K. Rana, A. Mandal, B.C. Mitra, R. Jacobson, R. Rowell, A.N. Banerjee, Short jute fiber reinforced polypropylene composites. J. Appl. Polym. Sci. 69(2), 329–338 (1998)CrossRef
144.
Zurück zum Zitat A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. J. Prog. Polym. Sci. 24(2), 221–234 (1999)CrossRef A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. J. Prog. Polym. Sci. 24(2), 221–234 (1999)CrossRef
145.
Zurück zum Zitat B.W. Brouwer, Natural fibre composites: Where can flax compete with glass? J. SAMPE J. 36(6), 18–23 (2000) B.W. Brouwer, Natural fibre composites: Where can flax compete with glass? J. SAMPE J. 36(6), 18–23 (2000)
146.
Zurück zum Zitat A. Stamboulis, C.A. Baille, T. Pejis, Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos. A Appl. Sci. Manuf. 32(8), 1105–11015 (2001)CrossRef A. Stamboulis, C.A. Baille, T. Pejis, Effects of environmental conditions on mechanical and physical properties of flax fibers. Compos. A Appl. Sci. Manuf. 32(8), 1105–11015 (2001)CrossRef
147.
Zurück zum Zitat S. Chabba, A.N. Netravali, ‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6263–6273 (2005)CrossRef S. Chabba, A.N. Netravali, ‘Green’ composites Part 1: Characterization of flax fabric and glutaraldehyde modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6263–6273 (2005)CrossRef
148.
Zurück zum Zitat S. Chabba, A.N. Netravali, ‘Green’ Composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6275–6282 (2005)CrossRef S. Chabba, A.N. Netravali, ‘Green’ Composites Part 2: Characterization of flax yarn and glutaraldehyde/poly(vinyl alcohol) modified soy protein concentrate composites. J. Mater. Sci. 40(23), 6275–6282 (2005)CrossRef
149.
Zurück zum Zitat N.K. Naik, R. Kuchibhotla, Analytical study of strength and failure behaviour of plain weave fabric composites made of twisted yarns. Compos. A: Appl. Sci. Manuf. 33(5), 697–708 (2002)CrossRef N.K. Naik, R. Kuchibhotla, Analytical study of strength and failure behaviour of plain weave fabric composites made of twisted yarns. Compos. A: Appl. Sci. Manuf. 33(5), 697–708 (2002)CrossRef
150.
Zurück zum Zitat N.K. Naik, in Numerical Analysis and Modeling of Composite Materials, ed. by J. W. Bull, (Blackie, London/New York, 1996), pp. 376–543 N.K. Naik, in Numerical Analysis and Modeling of Composite Materials, ed. by J. W. Bull, (Blackie, London/New York, 1996), pp. 376–543
151.
Zurück zum Zitat A.K. Mohanty, A.M. Khan, G. Hinrichsen, Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos. Sci. Technol. 60(7), 1115–1124 (2000)CrossRef A.K. Mohanty, A.M. Khan, G. Hinrichsen, Surface modification of jute and its influence on performance of biodegradable jute-fabric/biopol composites. Compos. Sci. Technol. 60(7), 1115–1124 (2000)CrossRef
152.
Zurück zum Zitat I.Y. Mwaikambo, E. Martuscelli, M. Avella, Kapok/cotton fabric-polypropylene composites. Polym. Test. 19(8), 905–918 (2000)CrossRef I.Y. Mwaikambo, E. Martuscelli, M. Avella, Kapok/cotton fabric-polypropylene composites. Polym. Test. 19(8), 905–918 (2000)CrossRef
153.
Zurück zum Zitat M. Nardin, I.M. Ward, Influence of surface treatment on adhesion of polyethylene fiber. Mater. Sci. Technol. Scr. 3(10), 814–826 (1987)CrossRef M. Nardin, I.M. Ward, Influence of surface treatment on adhesion of polyethylene fiber. Mater. Sci. Technol. Scr. 3(10), 814–826 (1987)CrossRef
154.
Zurück zum Zitat C.C. Chamis, in Interfaces in Polymer Matrix Composites, ed. by E. P. Piuddemann, (Academic Press, New York, 1974), pp. 2–63 C.C. Chamis, in Interfaces in Polymer Matrix Composites, ed. by E. P. Piuddemann, (Academic Press, New York, 1974), pp. 2–63
155.
Zurück zum Zitat L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3), 588–1593 (2011)CrossRef L. Chen, C. Liu, K. Liu, C. Meng, C. Hu, J. Wang, S. Fan, High-performance, low-voltage, and easy-operable bending actuator based on aligned carbon nanotube/polymer composites. ACS Nano 5(3), 588–1593 (2011)CrossRef
156.
Zurück zum Zitat D.K. Seo, T.J. Kang, D.W. Kim, Y.H. Kim, Twistable and bendable actuator: A CNT/polymer sandwich structure driven by thermal gradient. Nanotechnology 23(7), 075501 (2012)PubMedCrossRef D.K. Seo, T.J. Kang, D.W. Kim, Y.H. Kim, Twistable and bendable actuator: A CNT/polymer sandwich structure driven by thermal gradient. Nanotechnology 23(7), 075501 (2012)PubMedCrossRef
157.
Zurück zum Zitat S. Ahir, E. Terentjev, Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Let. 96(13), 133902 (2006)CrossRef S. Ahir, E. Terentjev, Fast relaxation of carbon nanotubes in polymer composite actuators. Phys. Rev. Let. 96(13), 133902 (2006)CrossRef
158.
Zurück zum Zitat S. Lu, B. Panchapakesan, Photomechanical responses of carbon nanotube/polymer actuators. Nanotechnology 18(30), 305502 (2007)CrossRef S. Lu, B. Panchapakesan, Photomechanical responses of carbon nanotube/polymer actuators. Nanotechnology 18(30), 305502 (2007)CrossRef
159.
Zurück zum Zitat H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, S.-H. Lee, CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59(5), 1472–1479 (2012)PubMedCrossRef H.-C. Jung, J.-H. Moon, D.-H. Baek, J.-H. Lee, Y.-Y. Choi, J.-S. Hong, S.-H. Lee, CNT/PDMS composite flexible dry electrodes for long-term ECG monitoring. IEEE Trans. Biomed. Eng. 59(5), 1472–1479 (2012)PubMedCrossRef
160.
Zurück zum Zitat P.R. Prajith, R. Ganesan, S. Gobalakrishnan, Design of Electroencephalogram Sensor for long-term bio-signal measurement. Int. J. Lat. Tren. Eng. Tech. 2(3), 198–206 (2013) P.R. Prajith, R. Ganesan, S. Gobalakrishnan, Design of Electroencephalogram Sensor for long-term bio-signal measurement. Int. J. Lat. Tren. Eng. Tech. 2(3), 198–206 (2013)
161.
Zurück zum Zitat K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)CrossRef K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)CrossRef
162.
Zurück zum Zitat J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)CrossRef J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)CrossRef
163.
Zurück zum Zitat J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)CrossRef J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)CrossRef
164.
Zurück zum Zitat F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)CrossRef F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)CrossRef
165.
Zurück zum Zitat J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835–1839 (2000)CrossRef J.M. Garces, D.J. Moll, J. Bicerano, R. Fibiger, D.G. McLeod, Polymeric Nanocomposites for automotive applications. Adv. Mater. 12(3), 1835–1839 (2000)CrossRef
166.
Zurück zum Zitat P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)CrossRef P. Svoboda, C. Zeng, H. Wang, L. Lee, D. Tomasko, Morphology and mechanical properties of polypropylene/organoclay nanocomposites. J. Appl. Polym. Sci 85(7), 1562–1570 (2002)CrossRef
167.
Zurück zum Zitat J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)CrossRef J. Jordan, K.I. Jacob, R. Tannenbaum, M.A. Sharaf, I. Jasiuk, Experimental trends in polymer nanocomposites – A review. Mater. Sci. Eng. A 393, 1–11 (2005)CrossRef
168.
Zurück zum Zitat M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRef M. Berta, C. Lindsay, G. Pans, G. Camino, Effect of chemical structure on combustion and thermal behaviour of polyurethane elastomer layered silicate nanocomposites. Polym. Degrad. Stab. 91, 1179–1191 (2006)CrossRef
169.
Zurück zum Zitat C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)CrossRef C. Sanchez, B. Julián, P. Belleville, M. Popall, Applications of hybrid organic-inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)CrossRef
170.
Zurück zum Zitat P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc., New York, 1997), pp. 6–10CrossRef P. Hiemenz, R. Rajagopalan, Principles of Colloid and Surface Chemistry (Marcel Dekker Inc., New York, 1997), pp. 6–10CrossRef
171.
Zurück zum Zitat C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992)CrossRef C. Suryanarayana, F.H. Froes, The structure and mechanical properties of metallic nanocrystals. Metall. Trans. A. 23, 1071–1081 (1992)CrossRef
172.
Zurück zum Zitat A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008)CrossRef A. Chandra, L.S. Turng, P. Gopalan, R.M. Rowell, S. Gong, Study of utilizing thin polymer surface coating on the nanoparticles for melt compounding of polycarbonate/alumina nanocomposites and their optical properties. Compos. Sci. Technol. 68, 768–776 (2008)CrossRef
173.
Zurück zum Zitat M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005)CrossRef M.A. Osman, J.E.P. Rupp, U.W. Suter, Effect of non-ionic surfactants on the exfoliation and properties of polyethylene-layered silicate nanocomposites. Polymer 46, 8202–8209 (2005)CrossRef
174.
Zurück zum Zitat J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)CrossRef J.W. Cho, D.R. Paul, Nylon 6 nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)CrossRef
175.
Zurück zum Zitat J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)CrossRef J.H. Chang, Y.U. An, D. Cho, E.P. Giannelis, Poly(lactic acid) nanocomposites: Comparison of their properties with montmorillonite and synthetic mica (II). Polymer 44, 3715–3720 (2003)CrossRef
176.
Zurück zum Zitat T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005)CrossRef T. Gupakumar, D. Page, Compounding of Nanocomposites by Thermokinetic mixing. J. Appl. Polym. Sci. 96(5), 1557–1563 (2005)CrossRef
177.
Zurück zum Zitat E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004)CrossRef E. Lee, D. Mielewski, R. Baird, Exfoliation and dispersion enhancement in polypropylene Nanocomposites by in-situ melt phase Ultrasonication. Polym. Eng. Sci 44(9), 1773–1782 (2004)CrossRef
178.
Zurück zum Zitat Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004)CrossRef Y. Wang, F. Chen, K. Wu, Twin-screw extrusion compounding of polypropylene/Organoclay Nanocomposites modified by Maleated polypropylenes. J. Appl. Polym. Sci. 93(1), 100–112 (2004)CrossRef
179.
Zurück zum Zitat S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater 14(1), 44–51 (2002)CrossRef S.C. Tjong, Y.Z. Meng, A.S. Hay, Novel preparation and properties of polypropylene-vermiculite Nanocomposites. Chem. Mater 14(1), 44–51 (2002)CrossRef
180.
Zurück zum Zitat M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci 44(7), 1205–1211 (2004)CrossRef M. Kato, M. Matsushita, K. Fukumori, Development of an e-production method for a polypropylene-clay nanocomposite. Polym. Eng. Sci 44(7), 1205–1211 (2004)CrossRef
181.
Zurück zum Zitat T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001)CrossRef T.D. Fornes, P.J. Yoon, H. Keskkula, D.R. Paul, Nylon 6 nanocomposites: The effect of matrix molecular weight. Polymer 42, 9929 (2001)CrossRef
182.
Zurück zum Zitat E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)CrossRef E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, T.C. Chung, Polypropylene/Montmorillonite Nanocomposites, review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)CrossRef
183.
Zurück zum Zitat P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)CrossRef P. Reichert, H. Nitz, S. Klinke, R. Brandsch, R. Thomann, R. Mulhaupt, Poly(propylene)/Organoclay Nanocomposite formulation: Influence of Compatibilizer functionality and Organoclay modification. Macromol. Mater. Eng. 275, 8–17 (2000)CrossRef
184.
Zurück zum Zitat M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004)CrossRef M.T. Ton-That, F. Perrin-Sarazin, K.C. Cole, M.N. Bureau, J. Denault, Polyolefin Nanocomposites: Formulation and development. Polym. Eng. Sci. 44(7), 1212–1219 (2004)CrossRef
185.
Zurück zum Zitat R. Zhang, M. Baxendale, T. Peijs, Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys. Rev. B 76(19), 195433–195436 (2007)CrossRef R. Zhang, M. Baxendale, T. Peijs, Universal resistivity-strain dependence of carbon nanotube/polymer composites. Phys. Rev. B 76(19), 195433–195436 (2007)CrossRef
186.
Zurück zum Zitat M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)CrossRef M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)CrossRef
187.
Zurück zum Zitat M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000)CrossRef M. Alexander, P. Dubois, Polymer-layered silicate nanocomposites: Preparation, properties and uses of a new class of materials. Mater. Sci. Eng. R. Rep. 28, 1–63 (2000)CrossRef
188.
Zurück zum Zitat E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)CrossRef E.P. Giannelis, R. Krishnamoorti, E. Manias, Polymer-silicate nanocomposites: Modelsystems for confined polymers and polymer brushes. Adv. Polym. Sci. 138, 107–147 (1999)CrossRef
189.
Zurück zum Zitat P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999)CrossRef P.C. LeBaron, Z. Wang, T.J. Pinnavaia, Polymer-layered silicate nanocomposites: An overview. J. Appl. Clay Sci. 15, 11–29 (1999)CrossRef
190.
Zurück zum Zitat (a) S. Sepehri, B.B. Garcia, G. Cao, Tuning dehydrogenation temperature of carbon–ammonia borane nanocomposites. J. Mater. Chem. 18(34), 4034–4037 (2008); (b) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mat. Sci. Eng. 88, 60–61 (2003) (a) S. Sepehri, B.B. Garcia, G. Cao, Tuning dehydrogenation temperature of carbon–ammonia borane nanocomposites. J. Mater. Chem. 18(34), 4034–4037 (2008); (b) A.K. Mohanty, L.T. Drzal, M. Misra, Nano reinforcement of bio-based polymers-the hope and reality. Polym. Mat. Sci. Eng. 88, 60–61 (2003)
191.
Zurück zum Zitat R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rap. Com. 25, 1359 (2004)CrossRef R. Hiroi, S.S. Ray, M. Okamoto, Organically modified layered titanate: A new nanofiller to improve the performance of biodegradable polylactide. Macromol. Rap. Com. 25, 1359 (2004)CrossRef
192.
Zurück zum Zitat C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002)CrossRef C.A. Mitchell, J.L. Bahr, S. Arepalli, J.M. Tour, R. Krishnamoorti, Dispersion of functionalized carbon nanotubes in polystyrene. Macromolecules 35, 8825–8830 (2002)CrossRef
193.
Zurück zum Zitat P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003)CrossRef P. PoÈtschke, A. Bhattacharyya, A. Janke, H. Goering, Melt-mixing of polycarbonate/multi-wall carbon nanotube composites. Compos. Interf. 10, 389–404 (2003)CrossRef
194.
Zurück zum Zitat R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opin. Sol. Stat. Mat. Sci. 8, 31–37 (2004)CrossRef R. Andrews, M.C. Wisenberger, Carbon nanotube polymer composites. Curr. Opin. Sol. Stat. Mat. Sci. 8, 31–37 (2004)CrossRef
195.
Zurück zum Zitat E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998)CrossRef E. Hackett, E. Manias, E.P. Giannelis, Molecular dynamics simulations of organically modified layered silicates. J. Chem. Phys. 108, 7410–7415 (1998)CrossRef
196.
Zurück zum Zitat E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000)CrossRef E. Hackett, E. Manias, E.P. Giannelis, Computer simulation studies of PEO/layered silicate nanocomposites. Chem. Mater. 12, 2161–2167 (2000)CrossRef
197.
Zurück zum Zitat D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822 (2001)CrossRef D.L. Vanderhart, A. Asano, J.W. Gilman, NMR measurements related to clay dispersion quality and organic-modifier stability in nylon 6/clay nanocomposites. Macromolecules 34(12), 3819–3822 (2001)CrossRef
198.
Zurück zum Zitat P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRef P. Kumar, D. Depan, N.S. Tomer, R.P. Singh, Nanoscale particles for polymer degradation and stabilization-trends and future perspectives. Prog. Polym. Sci. 34, 479–515 (2009)CrossRef
199.
Zurück zum Zitat P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)CrossRef P.H.C. Camargo, K.G. Satyanarayana, F. Wypych, Nanocomposites: Synthesis, structure, properties and new application opportunities. Mater. Res. 12(1), 1–39 (2009)CrossRef
200.
Zurück zum Zitat G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)CrossRef G. William, P.V. Kamat, Graphene-semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25(24), 13869–13873 (2009)CrossRef
201.
Zurück zum Zitat M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)CrossRef M. Zanetti, G. Camino, R. Thomann, R. Mülhaupt, Synthesis and thermal behaviour of layered silicate-EVA nanocomposites. Polymer 42, 4501–4507 (2001)CrossRef
202.
Zurück zum Zitat N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)PubMedCrossRef N. Ljungberg, C. Bonini, F. Bortolussi, C. Boisson, L. Heux, J.Y. Cavaille, New nanocomposite materials reinforced with cellulose whiskers in atactic polypropylene: Effect of surface and dispersion characteristics. Biomacromolecules 6, 2732–2739 (2005)PubMedCrossRef
203.
Zurück zum Zitat S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)CrossRef S.M. Lai, W.C. Chen, X.S. Zhu, Melt mixed compatibilized polypropylene/clay nanocomposites: Part 1- the effect of compatibilizers on optical transmittance and mechanical properties. Compos. Part A 40, 754–765 (2009)CrossRef
204.
Zurück zum Zitat R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)CrossRef R.N. Choi, C.I. Cheigh, S.Y. Lee, M.S. Chung, Preparation and properties of polypropylene/clay nanocomposites for food packaging. J. Food Sci. 76(8), 62–67 (2011)CrossRef
205.
Zurück zum Zitat J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)CrossRef J.P.G. Villaluenge, M. Khayer, M.A. Lo’pez-Manchado, J.L. Valentin, B. Seoane, J.I. Mengual, Gas transport properties of polypropylene/clay composite membranes. Eur. Polym. J. 43, 1132–1143 (2007)CrossRef
206.
Zurück zum Zitat L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)CrossRef L. Zhu, M. Xanthos, Effects of process conditions and mixing protocols on structure of extruded polypropylene nanocomposites. J. Appl. Polym. Sci. 93, 1891–1899 (2004)CrossRef
207.
Zurück zum Zitat Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef Z.-M. Huang, Y.-Z. Zhang, M. Kotaki, S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63(15), 2223–2253 (2003)CrossRef
208.
Zurück zum Zitat W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)CrossRef W. Chen, Q. Xu, R.Z. Yuan, Modification of poly(ethylene oxide) with polymethylmethacrylate in polymer-layered silicate nanocomposites. J. Mater. Sci. Lett. 18, 711–713 (1999)CrossRef
209.
Zurück zum Zitat H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)CrossRef H.R. Fischer, L.H. Gielgens, T.P.M. Koster, Nanocomposites from polymers and layered materials. Acta Polym. 50, 122–126 (1999)CrossRef
210.
Zurück zum Zitat K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)CrossRef K.A. Carrado, L.Q. Xu, In-situ synthesis of polymer-clay nanocomposites from silicate gels. Chem. Mater. 10, 1440–1445 (1998)CrossRef
211.
Zurück zum Zitat J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)CrossRef J. Lee, T. Takekoshi, E. Giannelis, Fire retardant polyetherimide nanocomposites. Mater. Res. Soc. Symp. Proc. 457, 513–518 (1997)CrossRef
212.
Zurück zum Zitat J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)CrossRef J.W. Gilman, Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl. Clay Sci. 15, 31–49 (1999)CrossRef
213.
Zurück zum Zitat F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)CrossRef F. Dietsche, R.M. Èlhaupt, Thermal properties and flammability of acrylic nanocomposites based upon organophilic layered silicates. Polym. Bull. 43, 395–402 (1999)CrossRef
214.
Zurück zum Zitat A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites. Composites 5(4), 157–164 (1974)CrossRef A.R. Bunsell, B. Harris, Hybrid carbon and glass fibre composites. Composites 5(4), 157–164 (1974)CrossRef
215.
Zurück zum Zitat J. Summerscales, D. Short, Carbon fibre and glass fibre hybrid reinforced plastics. Composites 9(3), 157–166 (1978)CrossRef J. Summerscales, D. Short, Carbon fibre and glass fibre hybrid reinforced plastics. Composites 9(3), 157–166 (1978)CrossRef
216.
Zurück zum Zitat D. Short, J. Summerscales, Hybrids – A review: Part 2. Physical properties. Composites 11(1), 33–38 (1980)CrossRef D. Short, J. Summerscales, Hybrids – A review: Part 2. Physical properties. Composites 11(1), 33–38 (1980)CrossRef
217.
Zurück zum Zitat M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Act. Mater. 51(19), 5801–5821 (2003)CrossRef M.F. Ashby, Y.J.M. Bréchet, Designing hybrid materials. Act. Mater. 51(19), 5801–5821 (2003)CrossRef
218.
Zurück zum Zitat M.F. Ashby, Chapter 11 – Designing hybrid materials, in Materials Selection in Mechanical Design, ed. by M. F. Ashby, 4th edn., (Butterworth Heinemann, Oxford, 2011), pp. 299–340CrossRef M.F. Ashby, Chapter 11 – Designing hybrid materials, in Materials Selection in Mechanical Design, ed. by M. F. Ashby, 4th edn., (Butterworth Heinemann, Oxford, 2011), pp. 299–340CrossRef
219.
Zurück zum Zitat A. Pegoretti et al., Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polym. Int. 53(9), 1290–1297 (2004)CrossRef A. Pegoretti et al., Intraply and interply hybrid composites based on E-glass and poly(vinyl alcohol) woven fabrics: Tensile and impact properties. Polym. Int. 53(9), 1290–1297 (2004)CrossRef
220.
Zurück zum Zitat H. Fukunaga, T.-W. Chou, H. Fukuda, Strength of intermingled hybrid composites. J. Reinf. Plast. Compos. 3(2), 145–160 (1984)CrossRef H. Fukunaga, T.-W. Chou, H. Fukuda, Strength of intermingled hybrid composites. J. Reinf. Plast. Compos. 3(2), 145–160 (1984)CrossRef
221.
Zurück zum Zitat G. Kretsis, A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18(1), 13–23 (1987)CrossRef G. Kretsis, A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites 18(1), 13–23 (1987)CrossRef
222.
Zurück zum Zitat P. Wambua, J. Ivens, I. Verpoest, Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)CrossRef P. Wambua, J. Ivens, I. Verpoest, Natural fibres: Can they replace glass in fibre reinforced plastics? Compos. Sci. Technol. 63(9), 1259–1264 (2003)CrossRef
223.
Zurück zum Zitat O. Faruk et al., Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)CrossRef O. Faruk et al., Biocomposites reinforced with natural fibers: 2000–2010. Prog. Polym. Sci. 37(11), 1552–1596 (2012)CrossRef
224.
Zurück zum Zitat F.P. La Mantia, M. Morreale, Green composites: A brief review. Compos A: Appl. Sci. Manuf. 42(6), 579–588 (2011)CrossRef F.P. La Mantia, M. Morreale, Green composites: A brief review. Compos A: Appl. Sci. Manuf. 42(6), 579–588 (2011)CrossRef
225.
Zurück zum Zitat G. Marom et al., Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 13(7), 1419–1426 (1978)CrossRef G. Marom et al., Hybrid effects in composites: Conditions for positive or negative effects versus rule-of-mixtures behaviour. J. Mater. Sci. 13(7), 1419–1426 (1978)CrossRef
226.
Zurück zum Zitat Y. Swolfs, L. Gorbatikh, I. Verpoest, Fibre hybridisation in polymer composites: A review. Compos. A Appl. Sci. Manuf. 67, 181–200 (2014)CrossRef Y. Swolfs, L. Gorbatikh, I. Verpoest, Fibre hybridisation in polymer composites: A review. Compos. A Appl. Sci. Manuf. 67, 181–200 (2014)CrossRef
227.
Zurück zum Zitat S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2002)CrossRef S. Torquato, Random Heterogeneous Materials: Microstructure and Macroscopic Properties (Springer, New York, 2002)CrossRef
228.
Zurück zum Zitat M. Biron, 7 – Future prospects for thermosets and composites, in Thermosets and Composites, ed. by M. Biron, 2nd edn., (William Andrew Publishing, Oxford, 2014), pp. 475–501CrossRef M. Biron, 7 – Future prospects for thermosets and composites, in Thermosets and Composites, ed. by M. Biron, 2nd edn., (William Andrew Publishing, Oxford, 2014), pp. 475–501CrossRef
229.
Zurück zum Zitat F. Ahmad et al., Hybrid composites for engineering application, in Composite Technologies for 2020, ed. by L. Ye, Y. W. Mai, Z. Su, (Woodhead Publishing, Cambride, 2004), pp. 545–550CrossRef F. Ahmad et al., Hybrid composites for engineering application, in Composite Technologies for 2020, ed. by L. Ye, Y. W. Mai, Z. Su, (Woodhead Publishing, Cambride, 2004), pp. 545–550CrossRef
230.
Zurück zum Zitat V. Fiore, G. Di Bella, A. Valenza, Glass–basalt/epoxy hybrid composites for marine applications. Mater. Design 32(4), 2091–2099 (2011)CrossRef V. Fiore, G. Di Bella, A. Valenza, Glass–basalt/epoxy hybrid composites for marine applications. Mater. Design 32(4), 2091–2099 (2011)CrossRef
231.
Zurück zum Zitat D. Lau, Hybrid fiber-reinforced polymer (FRP) composites for structural applications, in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, ed. by N. Uddin, (Woodhead Publishing, Cambridge, UK, 2013), pp. 205–225CrossRef D. Lau, Hybrid fiber-reinforced polymer (FRP) composites for structural applications, in Developments in Fiber-Reinforced Polymer (FRP) Composites for Civil Engineering, ed. by N. Uddin, (Woodhead Publishing, Cambridge, UK, 2013), pp. 205–225CrossRef
232.
Zurück zum Zitat T. Sathishkumar, J. Naveen, S. Satheeshkumar, Hybrid fiber reinforced polymer composites – A review. J. Reinf. Plast. Compos. 33(5), 454–471 (2014)CrossRef T. Sathishkumar, J. Naveen, S. Satheeshkumar, Hybrid fiber reinforced polymer composites – A review. J. Reinf. Plast. Compos. 33(5), 454–471 (2014)CrossRef
233.
Zurück zum Zitat D. Lehmhus et al., Taking a downward turn on the weight spiral – Lightweight materials in transport applications. Mater. Des. 66(0), 385–389 (2015)CrossRef D. Lehmhus et al., Taking a downward turn on the weight spiral – Lightweight materials in transport applications. Mater. Des. 66(0), 385–389 (2015)CrossRef
234.
Zurück zum Zitat M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R. Rep. 63(1), 1–30 (2008)CrossRef M. Wang, N. Pan, Predictions of effective physical properties of complex multiphase materials. Mater. Sci. Eng. R. Rep. 63(1), 1–30 (2008)CrossRef
235.
Zurück zum Zitat (a) J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344–352 (1976); (b) M. Jawaid, H.P.S.A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carb. Polym. 86(1), 1–18 (2011) (a) J.C. Halpin, J.L. Kardos, The Halpin-Tsai equations: A review. Polym. Eng. Sci. 16, 344–352 (1976); (b) M. Jawaid, H.P.S.A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review. Carb. Polym. 86(1), 1–18 (2011)
236.
Zurück zum Zitat (a) M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J.C. Cabanelas, S.M. Vega-Díaz, J. Baselga, Interphases in graphene polymer-based Nanocomposites: Achievements and challenges. Adv. Mater. 23, 5302–5310 (2011); (b) A. Ashori, S. Sheshmani, Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behaviour. Bioresour. Technol. 101(12), 4717–4720 (2010) (a) M. Terrones, O. Martín, M. González, J. Pozuelo, B. Serrano, J.C. Cabanelas, S.M. Vega-Díaz, J. Baselga, Interphases in graphene polymer-based Nanocomposites: Achievements and challenges. Adv. Mater. 23, 5302–5310 (2011); (b) A. Ashori, S. Sheshmani, Hybrid composites made from recycled materials: Moisture absorption and thickness swelling behaviour. Bioresour. Technol. 101(12), 4717–4720 (2010)
237.
Zurück zum Zitat (a) M. Cadek, J.N. Coleman, K.P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J.B. Nagy, K. Szostak, F. Béguin, W.J. Blau, Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 4, 353–356 (2004); (b) A. Kelly, et al., Controlling thermal expansion to obtain negative expansivity using laminated composites. Compos. Sci. Technol. 65(1), 47–59 (2005) (a) M. Cadek, J.N. Coleman, K.P. Ryan, V. Nicolosi, G. Bister, A. Fonseca, J.B. Nagy, K. Szostak, F. Béguin, W.J. Blau, Reinforcement of polymers with carbon nanotubes: The role of nanotube surface area. Nano Lett. 4, 353–356 (2004); (b) A. Kelly, et al., Controlling thermal expansion to obtain negative expansivity using laminated composites. Compos. Sci. Technol. 65(1), 47–59 (2005)
238.
Zurück zum Zitat (a) R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000); (b) A. Kelly, R.J. Stearn, L.N. McCartney, Composite materials of controlled thermal expansion. Compos. Sci. Technol. 66(2), 154–159 (2006) (a) R. Haggenmueller, H.H. Gommans, A.G. Rinzler, J.E. Fischer, K.I. Winey, Aligned single-wall carbon nanotubes in composites by melt processing methods. Chem. Phys. Lett. 330, 219–225 (2000); (b) A. Kelly, R.J. Stearn, L.N. McCartney, Composite materials of controlled thermal expansion. Compos. Sci. Technol. 66(2), 154–159 (2006)
239.
Zurück zum Zitat (a) R. Haggenmueller, W. Zhou, J.E. Fisher, K.I. Winey, Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3, 105–110 (2003); (b) G. Jefferson, T.A. Parthasarathy, R.J. Kerans, Tailorable thermal expansion hybrid structures. Int. J. Solids Struct. 46(11–12), 2372–2387 (2009) (a) R. Haggenmueller, W. Zhou, J.E. Fisher, K.I. Winey, Production and characterization of polymer nanocomposites with highly aligned single-walled carbon nanotubes. J. Nanosci. Nanotechnol. 3, 105–110 (2003); (b) G. Jefferson, T.A. Parthasarathy, R.J. Kerans, Tailorable thermal expansion hybrid structures. Int. J. Solids Struct. 46(11–12), 2372–2387 (2009)
240.
Zurück zum Zitat (a) X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78, 3714–3716 (2001); (b) L.Z. Zhao et al., Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites. Compos. Sci. Technol. 67(15–16), 3404–3408 (2007) (a) X.Q. Chen, T. Saito, H. Yamada, K. Matsushige, Aligning single-wall carbon nanotubes with an alternating-current electric field. Appl. Phys. Lett. 78, 3714–3716 (2001); (b) L.Z. Zhao et al., Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites. Compos. Sci. Technol. 67(15–16), 3404–3408 (2007)
241.
Zurück zum Zitat (a) M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes. Solid State Electron. 47, 2075–2080 (2003); (b) H.T. Hatta, T. Takei, M. Taya, Effects of dispersed microvoids on thermal expansion behavior of composite materials. Mater. Sci. Eng. A 285(1–2), 99–110 (2000) (a) M.S. Kumar, S.H. Lee, T.Y. Kim, T.H. Kim, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, DC electric field assisted alignment of carbon nanotubes on metal electrodes. Solid State Electron. 47, 2075–2080 (2003); (b) H.T. Hatta, T. Takei, M. Taya, Effects of dispersed microvoids on thermal expansion behavior of composite materials. Mater. Sci. Eng. A 285(1–2), 99–110 (2000)
242.
Zurück zum Zitat (a) M.S. Kumar, T.H. Kim, S.H. Lee, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, Influence of electric field type on the assembly of single walled carbon nanotubes. Chem. Phys. Lett. 383, 235–239 (2004); (b) A.M.D. Pascual, M. Naffakh, M.A. Gómez-Fatou, Mechanical and electrical properties of novel poly(ether ether ketone)/carbon nanotube/inorganic fullerene-like WS2 hybrid nanocomposites: Experimental measurements and theoretical predictions. Mater. Chem. Phys. 130(1–2), 126–133 (2011) (a) M.S. Kumar, T.H. Kim, S.H. Lee, S.M. Song, J.W. Yang, K.S. Nahm, E.K. Suh, Influence of electric field type on the assembly of single walled carbon nanotubes. Chem. Phys. Lett. 383, 235–239 (2004); (b) A.M.D. Pascual, M. Naffakh, M.A. Gómez-Fatou, Mechanical and electrical properties of novel poly(ether ether ketone)/carbon nanotube/inorganic fullerene-like WS2 hybrid nanocomposites: Experimental measurements and theoretical predictions. Mater. Chem. Phys. 130(1–2), 126–133 (2011)
243.
Zurück zum Zitat (a) C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W.K. Bauhofer, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877–886 (2005); (b) J. Tan, T. Kitano, T. Hatakeyama, Crystallization of carbon fibre reinforced polypropylene. J. Mater. Sci. 25(7), 3380–3384 (1990) (a) C.A. Martin, J.K.W. Sandler, A.H. Windle, M.K. Schwarz, W.K. Bauhofer, M.S.P. Shaffer, Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites. Polymer 46, 877–886 (2005); (b) J. Tan, T. Kitano, T. Hatakeyama, Crystallization of carbon fibre reinforced polypropylene. J. Mater. Sci. 25(7), 3380–3384 (1990)
244.
Zurück zum Zitat C.J. Strobl, C. Schaflein, U. Beierlein, J. Ebbecke, A. Wixforth, Carbon nanotube alignment by surface acoustic waves. Appl. Phys. Lett. 85, 1427–1429 (2004)CrossRef C.J. Strobl, C. Schaflein, U. Beierlein, J. Ebbecke, A. Wixforth, Carbon nanotube alignment by surface acoustic waves. Appl. Phys. Lett. 85, 1427–1429 (2004)CrossRef
245.
Zurück zum Zitat (a) P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, D. Meisel, Self-assembled linear bundles of Single Wall carbon nanotubes and their alignment and deposition as a film in a DC field. J. Am. Chem. Soc. 126, 10757–10762 (2004); (b) C. Pradere, C. Sauder, Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures. Carbon 46(14), 1874–1884 (2008) (a) P.V. Kamat, K.G. Thomas, S. Barazzouk, G. Girishkumar, K. Vinodgopal, D. Meisel, Self-assembled linear bundles of Single Wall carbon nanotubes and their alignment and deposition as a film in a DC field. J. Am. Chem. Soc. 126, 10757–10762 (2004); (b) C. Pradere, C. Sauder, Transverse and longitudinal coefficient of thermal expansion of carbon fibers at high temperatures. Carbon 46(14), 1874–1884 (2008)
246.
Zurück zum Zitat (a) E. Camponeschi, R. Vance, M.S. Al-Haik, H. Garmestani, R. Tannebaum, Properties of carbon nanotube-polymer composites in a magnetic field. Carbon 45, 2037–2046 (2007); (b) M.H. Gabr et al., Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. Part B 69, 94–100 (2015) (a) E. Camponeschi, R. Vance, M.S. Al-Haik, H. Garmestani, R. Tannebaum, Properties of carbon nanotube-polymer composites in a magnetic field. Carbon 45, 2037–2046 (2007); (b) M.H. Gabr et al., Mechanical and thermal properties of carbon fiber/polypropylene composite filled with nano-clay. Compos. Part B 69, 94–100 (2015)
247.
Zurück zum Zitat (a) H. Garmestani, M.S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S.S. Sablin, M.Y. Hussaini, Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv. Mater. 15, 1918–1921 (2003); (b) C. Sauder, J. Lamon, R. Pailler, Thermomechanical properties of carbon fibres at high temperatures (up to 2000°C). Compos. Sci. Technol. 62(4), 499–504 (2002) (a) H. Garmestani, M.S. Al-Haik, K. Dahmen, R. Tannenbaum, D. Li, S.S. Sablin, M.Y. Hussaini, Polymer-mediated alignment of carbon nanotubes under high magnetic fields. Adv. Mater. 15, 1918–1921 (2003); (b) C. Sauder, J. Lamon, R. Pailler, Thermomechanical properties of carbon fibres at high temperatures (up to 2000°C). Compos. Sci. Technol. 62(4), 499–504 (2002)
248.
Zurück zum Zitat (a) B.W. Steinart, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009); (b) R.S. Praveen et al., Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics 51(2), 95–104 (2011) (a) B.W. Steinart, D.R. Dean, Magnetic field alignment and electrical properties of solution cast PET-carbon nanotube composite films. Polymer 50, 898–904 (2009); (b) R.S. Praveen et al., Hybridization of carbon–glass epoxy composites: An approach to achieve low coefficient of thermal expansion at cryogenic temperatures. Cryogenics 51(2), 95–104 (2011)
249.
Zurück zum Zitat (a) J. Yang, C. Wang, K. Wang, Q. Zhang, F. Chen, R. Du, Q. Fu, Direct formation of Nanohybrid shish-kebab in the injection molded Bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42, 7016–7023 (2009); (b) M. Esposito et al., Fiber Bragg grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures. Sensors Act. A: Phys. 189, 195–203 (2013) (a) J. Yang, C. Wang, K. Wang, Q. Zhang, F. Chen, R. Du, Q. Fu, Direct formation of Nanohybrid shish-kebab in the injection molded Bar of polyethylene/multiwalled carbon nanotubes composite. Macromolecules 42, 7016–7023 (2009); (b) M. Esposito et al., Fiber Bragg grating sensors to measure the coefficient of thermal expansion of polymers at cryogenic temperatures. Sensors Act. A: Phys. 189, 195–203 (2013)
250.
Zurück zum Zitat (a) Y. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36, 6213–6219 (2003); (b) A. Tezvergil, L.V.J. Lassila, P.K. Vallittu, The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent. Mater. 19(6), 471–477 (2003) (a) Y. Bin, M. Kitanaka, D. Zhu, M. Matsuo, Development of highly oriented polyethylene filled with aligned carbon nanotubes by gelation/crystallization from solutions. Macromolecules 36, 6213–6219 (2003); (b) A. Tezvergil, L.V.J. Lassila, P.K. Vallittu, The effect of fiber orientation on the thermal expansion coefficients of fiber-reinforced composites. Dent. Mater. 19(6), 471–477 (2003)
251.
Zurück zum Zitat (a) W. Chen, X. Tao, Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes. Appl. Surf. Sci. 252, 3547–3552 (2006); (b) Y.A. Dzenis, Thermal expansion of a composite with a hybrid granular-fibrous filler. Mech. Compos. Mater. 25(2), 173–182 (1989) (a) W. Chen, X. Tao, Production and characterization of polymer nanocomposite with aligned single wall carbon nanotubes. Appl. Surf. Sci. 252, 3547–3552 (2006); (b) Y.A. Dzenis, Thermal expansion of a composite with a hybrid granular-fibrous filler. Mech. Compos. Mater. 25(2), 173–182 (1989)
252.
Zurück zum Zitat (a) Q. Wang, J.F. Dai, W. Li, Z.Q. Wei, J.L. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68, 1644–1648 (2008); (b) C.W. Camacho et al., Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11(4), 229–239 (1990) (a) Q. Wang, J.F. Dai, W. Li, Z.Q. Wei, J.L. Jiang, The effects of CNT alignment on electrical conductivity and mechanical properties of SWNT/epoxy nanocomposites. Compos. Sci. Technol. 68, 1644–1648 (2008); (b) C.W. Camacho et al., Stiffness and thermal expansion predictions for hybrid short fiber composites. Polym. Compos. 11(4), 229–239 (1990)
253.
Zurück zum Zitat (a) M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010); (b) J.S. Jang et al., Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites. Compos. A: Appl. Sci. Manuf. 42(1), 98–103 (2011) (a) M.A. Rafiee, J. Rafiee, I. Srivastava, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Fracture and fatigue in graphene nanocomposites. Small 6, 179–183 (2010); (b) J.S. Jang et al., Experimental and analytical investigation of mechanical damping and CTE of both SiO2 particle and carbon nanofiber reinforced hybrid epoxy composites. Compos. A: Appl. Sci. Manuf. 42(1), 98–103 (2011)
254.
Zurück zum Zitat (a) A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1182–1189 (2006); (b) F.-L. Jin, S.-J. Park, Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 97(11), 2148–2153 (2012) (a) A. Yasmin, J.J. Luo, I.M. Daniel, Processing of expanded graphite reinforced polymer nanocomposites. Compos. Sci. Technol. 66, 1182–1189 (2006); (b) F.-L. Jin, S.-J. Park, Thermal properties of epoxy resin/filler hybrid composites. Polym. Degrad. Stab. 97(11), 2148–2153 (2012)
255.
Zurück zum Zitat (a) H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010); (b) G.C. Papanicolaou, A.S. Bouboulas, N.K. Anifantis, Thermal expansivities in fibrous composites incorporating hybrid interphase regions. Compos. Struc. 88(4), 542–547 (2009) (a) H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer Nanocomposites. Macromolecules 43, 6515–6530 (2010); (b) G.C. Papanicolaou, A.S. Bouboulas, N.K. Anifantis, Thermal expansivities in fibrous composites incorporating hybrid interphase regions. Compos. Struc. 88(4), 542–547 (2009)
256.
Zurück zum Zitat (a) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003); (b) C.D. Price et al., Modelling the elastic and thermoelastic properties of short fibre composites with anisotropic phases. Compos. Sci. Technol. 66(1), 69–79 (2006) (a) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003); (b) C.D. Price et al., Modelling the elastic and thermoelastic properties of short fibre composites with anisotropic phases. Compos. Sci. Technol. 66(1), 69–79 (2006)
257.
Zurück zum Zitat (a) A. Usuki, N. Hasegawa, M. Kato, Polymer-clay Nanocomposites. Adv. Polym. Sci. 179, 135–195 (2005); (b) H. Tsukamoto, A mean-field micromechanical approach to design of multiphase composite laminates. Mater. Sci. Eng. A 528(7–8), 3232–3242 (2011) (a) A. Usuki, N. Hasegawa, M. Kato, Polymer-clay Nanocomposites. Adv. Polym. Sci. 179, 135–195 (2005); (b) H. Tsukamoto, A mean-field micromechanical approach to design of multiphase composite laminates. Mater. Sci. Eng. A 528(7–8), 3232–3242 (2011)
258.
Zurück zum Zitat (a) A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179–1184 (1993); (b) S.K. Nayak, S. Mohanty, S.K. Samal, Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng. A. 523(1–2), 32–38 (2009) (a) A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, Synthesis of nylon 6-clay hybrid. J. Mater. Res. 8, 1179–1184 (1993); (b) S.K. Nayak, S. Mohanty, S.K. Samal, Influence of short bamboo/glass fiber on the thermal, dynamic mechanical and rheological properties of polypropylene hybrid composites. Mater. Sci. Eng. A. 523(1–2), 32–38 (2009)
259.
Zurück zum Zitat (a) E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001); (b) O.L.S. Alsina et al., Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polym. Test. 24(1), 81–85 (2005) (a) E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001); (b) O.L.S. Alsina et al., Thermal properties of hybrid lignocellulosic fabric-reinforced polyester matrix composites. Polym. Test. 24(1), 81–85 (2005)
260.
Zurück zum Zitat Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRef Z. Han, A. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. Prog. Polym. Sci. 36(7), 914–944 (2011)CrossRef
261.
Zurück zum Zitat R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectricpyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)CrossRef R.E. Newnham, D.P. Skinner, L.E. Cross, Connectivity and piezoelectricpyroelectric composites. Mater. Res. Bull. 13(5), 525–536 (1978)CrossRef
262.
Zurück zum Zitat M. Taya, Electronic Composites. Modeling, Characterization, Processing, and MEMS Applications (Cambridge University Press, Cambridge, 2008) M. Taya, Electronic Composites. Modeling, Characterization, Processing, and MEMS Applications (Cambridge University Press, Cambridge, 2008)
263.
Zurück zum Zitat W.J. Kim, M. Taya, M.N. Nguyen, Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech. Mater. 41(10), 1116–1124 (2009)CrossRef W.J. Kim, M. Taya, M.N. Nguyen, Electrical and thermal conductivities of a silver flake/thermosetting polymer matrix composite. Mech. Mater. 41(10), 1116–1124 (2009)CrossRef
264.
Zurück zum Zitat M. El Hasnaoui et al., Modelling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Phys. B Condens. Matter 433, 62–66 (2014)CrossRef M. El Hasnaoui et al., Modelling of dielectric relaxation processes of epoxy-resin filled with carbon black particles. Phys. B Condens. Matter 433, 62–66 (2014)CrossRef
265.
Zurück zum Zitat I. Novák, I. Krupa, I. Janigová, Hybrid electro-conductive composites with improved toughness, filled by carbon black. Carbon 43(4), 841–848 (2005)CrossRef I. Novák, I. Krupa, I. Janigová, Hybrid electro-conductive composites with improved toughness, filled by carbon black. Carbon 43(4), 841–848 (2005)CrossRef
266.
Zurück zum Zitat L. Shen et al., The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 30(4), 442–448 (2011)CrossRef L. Shen et al., The combined effects of carbon black and carbon fiber on the electrical properties of composites based on polyethylene or polyethylene/polypropylene blend. Polym. Test. 30(4), 442–448 (2011)CrossRef
267.
Zurück zum Zitat J. Jin et al., Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 49(5), 1066–1072 (2013)CrossRef J. Jin et al., Enhancing the electrical conductivity of polymer composites. Eur. Polym. J. 49(5), 1066–1072 (2013)CrossRef
268.
Zurück zum Zitat R.N. Othman, I.A. Kinloch, A.N. Wilkinson, Synthesis and characterisation of silica–carbon nanotube hybrid microparticles and their effect on the electrical properties of poly (vinyl alcohol) composites. Carbon 60, 461–470 (2013)CrossRef R.N. Othman, I.A. Kinloch, A.N. Wilkinson, Synthesis and characterisation of silica–carbon nanotube hybrid microparticles and their effect on the electrical properties of poly (vinyl alcohol) composites. Carbon 60, 461–470 (2013)CrossRef
269.
Zurück zum Zitat J.A. Puértolas, S.M. Kurtz, Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 39, 129–145 (2014)PubMedCrossRef J.A. Puértolas, S.M. Kurtz, Evaluation of carbon nanotubes and graphene as reinforcements for UHMWPE-based composites in arthroplastic applications: A review. J. Mech. Behav. Biomed. Mater. 39, 129–145 (2014)PubMedCrossRef
270.
Zurück zum Zitat M.H.G. Wichmann et al., Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Eng. Frac. Mech. 73(16), 2346–2359 (2006)CrossRef M.H.G. Wichmann et al., Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix. Eng. Frac. Mech. 73(16), 2346–2359 (2006)CrossRef
271.
Zurück zum Zitat A. Lonjon et al., Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes. J. Non Cryst. Solids 358(15), 1859–1862 (2012)CrossRef A. Lonjon et al., Electrical conductivity improvement of aeronautical carbon fiber reinforced polyepoxy composites by insertion of carbon nanotubes. J. Non Cryst. Solids 358(15), 1859–1862 (2012)CrossRef
272.
Zurück zum Zitat N. Yamamoto, R.G. de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012)CrossRef N. Yamamoto, R.G. de Villoria, B.L. Wardle, Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes. Compos. Sci. Technol. 72(16), 2009–2015 (2012)CrossRef
273.
Zurück zum Zitat G. George et al., Dielectric behaviour of PP/jute yarn commingled composites: Effect of fibre content, chemical treatments, temperature and moisture. Compos. A: Appl. Sci. Manuf. 47, 12–21 (2013)CrossRef G. George et al., Dielectric behaviour of PP/jute yarn commingled composites: Effect of fibre content, chemical treatments, temperature and moisture. Compos. A: Appl. Sci. Manuf. 47, 12–21 (2013)CrossRef
274.
Zurück zum Zitat C.Q. Yang, Z.S. Wu, H. Huang, Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs. Carbon 45(15), 3027–3035 (2007)CrossRef C.Q. Yang, Z.S. Wu, H. Huang, Electrical properties of different types of carbon fiber reinforced plastics (CFRPs) and hybrid CFRPs. Carbon 45(15), 3027–3035 (2007)CrossRef
275.
Zurück zum Zitat L. Yao et al., Modeling and experimental verification of dielectric constants for three dimensional woven composites. Compos. Sci. Technol. 68(7–8), 1794–1799 (2008)CrossRef L. Yao et al., Modeling and experimental verification of dielectric constants for three dimensional woven composites. Compos. Sci. Technol. 68(7–8), 1794–1799 (2008)CrossRef
276.
Zurück zum Zitat M. Zhan, R.P. Wool, J.Q. Xiao, Electrical properties of chicken feather fiber reinforced epoxy composites. Compos. A: Appl. Sci. Manuf. 42(3), 229–233 (2011)CrossRef M. Zhan, R.P. Wool, J.Q. Xiao, Electrical properties of chicken feather fiber reinforced epoxy composites. Compos. A: Appl. Sci. Manuf. 42(3), 229–233 (2011)CrossRef
277.
Zurück zum Zitat J.-M. Thomassin et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013)CrossRef J.-M. Thomassin et al., Polymer/carbon based composites as electromagnetic interference (EMI) shielding materials. Mater. Sci. Eng. R. Rep. 74(7), 211–232 (2013)CrossRef
278.
Zurück zum Zitat M.H. Al-Saleh, W.H. Saadeh, Hybrids of conductive polymer nanocomposites. Mater. Design 52, 1071–1076 (2013)CrossRef M.H. Al-Saleh, W.H. Saadeh, Hybrids of conductive polymer nanocomposites. Mater. Design 52, 1071–1076 (2013)CrossRef
279.
Zurück zum Zitat G. Zheming et al., Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J. Ind. Eng. Chem. 16(1), 10–14 (2010)CrossRef G. Zheming et al., Electrical properties and morphology of highly conductive composites based on polypropylene and hybrid fillers. J. Ind. Eng. Chem. 16(1), 10–14 (2010)CrossRef
280.
Zurück zum Zitat A.B.. Silva et al., Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur. Polym. J. 49(10), 3318–3327 (2013) A.B.. Silva et al., Synergic effect in electrical conductivity using a combination of two fillers in PVDF hybrids composites. Eur. Polym. J. 49(10), 3318–3327 (2013)
281.
Zurück zum Zitat S.-Y. Yang et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3), 793–803 (2011)CrossRef S.-Y. Yang et al., Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49(3), 793–803 (2011)CrossRef
282.
Zurück zum Zitat C.-R. Yu et al., Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 71(15), 1706–1712 (2011)CrossRef C.-R. Yu et al., Electrical and dielectric properties of polypropylene nanocomposites based on carbon nanotubes and barium titanate nanoparticles. Compos. Sci. Technol. 71(15), 1706–1712 (2011)CrossRef
283.
Zurück zum Zitat A. Salinier et al., Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Compos. Struct. 102, 81–89 (2013)CrossRef A. Salinier et al., Electrical, rheological and mechanical characterization of multiscale composite materials based on poly(etherimide)/short glass fibers/multiwalled carbon nanotubes. Compos. Struct. 102, 81–89 (2013)CrossRef
284.
Zurück zum Zitat A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. (2014) A. Motaghi, A. Hrymak, G.H. Motlagh, Electrical conductivity and percolation threshold of hybrid carbon/polymer composites. J. Appl. Polym. Sci. (2014)
285.
Zurück zum Zitat M. Shah, B. Reduwan, Textile Coatings, in Polymer and Polymer Composites: A Reference Series. Functional Polymers ed. by M. J. Mazumder, H. Sheardown, A. A. Ahmed, Springer International Publishing AG, Part of Springer Nature, Germany, ISBN: 978-3-319-92067-2. https://doi.org/10.1007/978-3-319-92067-2_30-1, 1–58 (2018) M. Shah, B. Reduwan, Textile Coatings, in Polymer and Polymer Composites: A Reference Series. Functional Polymers ed. by M. J. Mazumder, H. Sheardown, A. A. Ahmed, Springer International Publishing AG, Part of Springer Nature, Germany, ISBN: 978-3-319-92067-2. https://​doi.​org/​10.​1007/​978-3-319-92067-2_​30-1, 1–58 (2018)
286.
287.
Zurück zum Zitat M. Shah, B. Reduwan, Sazzad Hossain, ed. by M. Nahid Pervez, Md Obidul Haque, Chapter on Enzyme Responsive Hydrogels, in the book on Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, I. H. Mondal (Ed), Springer, Germany, ISBN: 978-3-319-76573-0. http://doi.org/10.1007/978-3-319-76573-0_62-1 2–23 (2018) M. Shah, B. Reduwan, Sazzad Hossain, ed. by M. Nahid Pervez, Md Obidul Haque, Chapter on Enzyme Responsive Hydrogels, in the book on Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, I. H. Mondal (Ed), Springer, Germany, ISBN: 978-3-319-76573-0. http://​doi.​org/​10.​1007/​978-3-319-76573-0_​62-1 2–23 (2018)
288.
Zurück zum Zitat (a) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain, M. Nahid Pervez; Cellulose Based Hydrogels for Industrial Applications, in Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, ed. I. H. Mondal, (Springer, Germany, 2018), ISBN: 978-3-319-76573-0, http://doi.org/10.1007/978-3-319-76573-0_63-1, pp. 2–41; (b) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of external stimuli-responsive hydrogels based CMC and other cellulose derivatives for advanced applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, (Nova Science Publishers, New York, USA, 2019), ISBN:978-1-53614-752-0 (eBook), pp. 43–75 (a) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain, M. Nahid Pervez; Cellulose Based Hydrogels for Industrial Applications, in Polymer and Polymer Composites: A Reference Series. Cellulose-Based Superabsorbent Hydrogels, ed. I. H. Mondal, (Springer, Germany, 2018), ISBN: 978-3-319-76573-0, http://​doi.​org/​10.​1007/​978-3-319-76573-0_​63-1, pp. 2–41; (b) M. Shah, B. Reduwan, I. H. Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of external stimuli-responsive hydrogels based CMC and other cellulose derivatives for advanced applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, (Nova Science Publishers, New York, USA, 2019), ISBN:978-1-53614-752-0 (eBook), pp. 43–75
289.
Zurück zum Zitat J. Yan et al., Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos. A: Appl. Sci. Manuf. 67, 1–7 (2014)CrossRef J. Yan et al., Elastic and electrically conductive carbon nanotubes/chitosan composites with lamellar structure. Compos. A: Appl. Sci. Manuf. 67, 1–7 (2014)CrossRef
290.
Zurück zum Zitat J. Yan, Y.G. Jeong, Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 106, 134–140 (2015)CrossRef J. Yan, Y.G. Jeong, Synergistic effect of hybrid carbon fillers on electric heating behavior of flexible polydimethylsiloxane-based composite films. Compos. Sci. Technol. 106, 134–140 (2015)CrossRef
291.
Zurück zum Zitat D.C. Edwards, Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 25, 4175–4185 (1990)CrossRef D.C. Edwards, Polymer-filler interactions in rubber reinforcement. J. Mater. Sci. 25, 4175–4185 (1990)CrossRef
292.
Zurück zum Zitat (a) R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011); (b) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003) (a) R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011); (b) T.D. Fornes, D.R. Paul, Modeling properties of nylon 6/clay nanocomposites using composite theories. Polymer 44, 4993–5013 (2003)
293.
Zurück zum Zitat (a) E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996); (b) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006) (a) E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996); (b) J.N. Coleman, U. Khan, W.J. Blau, Y.K. Gun’ko, Small but strong: A review of the mechanical properties of carbon nanotube-polymer composites. Carbon 44, 1624–1652 (2006)
294.
Zurück zum Zitat (a) P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009); (b) B. Lin, G.A. Gelves, J.A. Haber, U. Sundararaj, Electrical, rheological, and mechanical properties of polystyrene/copper nanowire Nanocomposites. Ind. Eng. Chem. Res. 46, 2481–2487 (2007) (a) P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009); (b) B. Lin, G.A. Gelves, J.A. Haber, U. Sundararaj, Electrical, rheological, and mechanical properties of polystyrene/copper nanowire Nanocomposites. Ind. Eng. Chem. Res. 46, 2481–2487 (2007)
295.
Zurück zum Zitat (a) J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003); (b) A. Okada, A. Usuki, Twenty years of polymer-clay Nanocomposites. Macromol. Mater. Eng. 291, 1449–1476 (2006) (a) J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003); (b) A. Okada, A. Usuki, Twenty years of polymer-clay Nanocomposites. Macromol. Mater. Eng. 291, 1449–1476 (2006)
296.
Zurück zum Zitat (a) A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996); (b) A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6, 858; E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E. 52, 819–828 (1996) (a) A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996); (b) A. Fasolino, J.H. Los, M.I. Katsnelson, Intrinsic ripples in graphene. Nat. Mater. 6, 858; E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E. 52, 819–828 (1996)
297.
Zurück zum Zitat (a) X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011); (b) Y. Liu, A. Wang, R. Claus, Molecular self-assembly of TiO2/polymer Nanocomposite films. J. Phys. Chem. B 101, 1385–1388 (1997) (a) X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011); (b) Y. Liu, A. Wang, R. Claus, Molecular self-assembly of TiO2/polymer Nanocomposite films. J. Phys. Chem. B 101, 1385–1388 (1997)
298.
Zurück zum Zitat (a) J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003); (b) J. Huang, C. He, Y. Xiao, K.Y. Mya, J. Dai, Y.P. Siow, Polyimide/POSS nanocomposites: Interfacial interaction, thermal properties and mechanical properties. Polymer 44, 4491–4499 (2003) (a) J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003); (b) J. Huang, C. He, Y. Xiao, K.Y. Mya, J. Dai, Y.P. Siow, Polyimide/POSS nanocomposites: Interfacial interaction, thermal properties and mechanical properties. Polymer 44, 4491–4499 (2003)
299.
Zurück zum Zitat (a) J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007); (b) E.K. Thostenson, T.W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D. Appl. Phys. 35, L77–L80 (2002) (a) J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007); (b) E.K. Thostenson, T.W. Chou, Aligned multi-walled carbon nanotube-reinforced composites: Processing and mechanical characterization. J. Phys. D. Appl. Phys. 35, L77–L80 (2002)
300.
Zurück zum Zitat (a) W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009); (b) E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997) (a) W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009); (b) E.W. Wong, P.E. Sheehan, C.M. Lieber, Nanobeam mechanics: Elasticity, strength, and toughness of nanorods and nanotubes. Science 277, 1971–1975 (1997)
301.
Zurück zum Zitat (a) L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007); (b) D.A. Brune, J. Bicerano, Micromechanics of nanocomposites: Comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43, 369–387 (2002) (a) L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007); (b) D.A. Brune, J. Bicerano, Micromechanics of nanocomposites: Comparison of tensile and compressive elastic moduli, and prediction of effects of incomplete exfoliation and imperfect alignment on modulus. Polymer 43, 369–387 (2002)
302.
Zurück zum Zitat (a) R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008); (b) K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014) (a) R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008); (b) K. Hu, D.D. Kulkarni, I. Choi, V.V. Tsukruk, Graphene-polymer nanocomposites for structural and functional applications. Prog. Polym. Sci. 39, 1934–1972 (2014)
303.
Zurück zum Zitat D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites. Polymer 49, 3187–3204 (2008)CrossRef
304.
Zurück zum Zitat (a) M. Bhattacharya, Review – Polymer Nanocomposites – A comparison between carbon nanotubes, graphene, and clay as Nanofillers. Materials 9(262), 1–35 (2016); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001) (a) M. Bhattacharya, Review – Polymer Nanocomposites – A comparison between carbon nanotubes, graphene, and clay as Nanofillers. Materials 9(262), 1–35 (2016); (b) M. Biswas, S.S. Ray, Recent progress in synthesis and evaluation of polymer-montmorillonite nanocomposites. Adv. Polym. Sci. 155, 167–221 (2001)
305.
Zurück zum Zitat M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of Nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)PubMedCrossRef M.A. Rafiee, J. Rafiee, Z. Wang, H. Song, Z.Z. Yu, N. Koratkar, Enhanced mechanical properties of Nanocomposites at low graphene content. ACS Nano 3, 3884–3890 (2009)PubMedCrossRef
306.
Zurück zum Zitat B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011)CrossRef B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011)CrossRef
307.
Zurück zum Zitat P. Das, S. Jani-Markus, B.Z. Malho, U. Klemradt, A. Walther, A. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 5, 3738–3747 (2013)PubMedCrossRef P. Das, S. Jani-Markus, B.Z. Malho, U. Klemradt, A. Walther, A. Facile access to large-scale, self-assembled, nacre-inspired, high-performance materials with tunable nanoscale periodicities. ACS Appl. Mater. Interfaces 5, 3738–3747 (2013)PubMedCrossRef
308.
Zurück zum Zitat P. Podsiadlo, Z. Tang, B.S. Shim, N.A. Kotov, Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled Nanocomposites. Nano Lett. 7, 1224–1231 (2007)PubMedCrossRef P. Podsiadlo, Z. Tang, B.S. Shim, N.A. Kotov, Counterintuitive effect of molecular strength and role of molecular rigidity on mechanical properties of layer-by-layer assembled Nanocomposites. Nano Lett. 7, 1224–1231 (2007)PubMedCrossRef
309.
Zurück zum Zitat N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez-Manchado, Recent advances in clay/polymer Nanocomposites. Adv. Mater. 23, 5229–5236 (2011)PubMedCrossRef N. Bitinis, M. Hernandez, R. Verdejo, J.M. Kenny, M.A. Lopez-Manchado, Recent advances in clay/polymer Nanocomposites. Adv. Mater. 23, 5229–5236 (2011)PubMedCrossRef
310.
Zurück zum Zitat T. Kashiwagi, F.M. Du, J.F. Douglas, K.I. Winey, R.H. Harris, J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)PubMedCrossRef T. Kashiwagi, F.M. Du, J.F. Douglas, K.I. Winey, R.H. Harris, J.R. Shields, Nanoparticle networks reduce the flammability of polymer nanocomposites. Nat. Mater. 4, 928–933 (2005)PubMedCrossRef
311.
Zurück zum Zitat D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRef D. Qian, E.C. Dickey, R. Andrews, T. Rantell, Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl. Phys. Lett. 76, 2868–2870 (2000)CrossRef
312.
Zurück zum Zitat J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 637–640 (2006)CrossRef J.N. Coleman, U. Khan, Y.K. Gun’ko, Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18, 637–640 (2006)CrossRef
313.
Zurück zum Zitat K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)CrossRef K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)CrossRef
314.
Zurück zum Zitat U. Gaur, B. Wunderlich, Study of microphase separation in block copolymers of styrene and -Methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules 13, 1618–1625 (1980)CrossRef U. Gaur, B. Wunderlich, Study of microphase separation in block copolymers of styrene and -Methylstyrene in the glass transition region using quantitative thermal analysis. Macromolecules 13, 1618–1625 (1980)CrossRef
315.
Zurück zum Zitat C.B. Roth, J.R. Dutcher, Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. 12, 103–107 (2003) C.B. Roth, J.R. Dutcher, Glass transition temperature of freely-standing films of atactic poly(methyl methacrylate). Eur. Phys. J. 12, 103–107 (2003)
316.
Zurück zum Zitat R.S. Tate, D.S. Fryer, S. Pasqualini, M.F. Montague, J.J. de Pablo, P.F. Nealey, Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J. Chem. Phys. 115, 9982–9990 (2001)CrossRef R.S. Tate, D.S. Fryer, S. Pasqualini, M.F. Montague, J.J. de Pablo, P.F. Nealey, Extraordinary elevation of the glass transition temperature of thin polymer films grafted to silicon oxide substrates. J. Chem. Phys. 115, 9982–9990 (2001)CrossRef
317.
Zurück zum Zitat J.L. Keddie, R.A.L. Jones, R.A. Cory, Interface and surface effects on the glass-transition temperature in thin polymer films. Farad. Discuss. 98, 219–230 (1994)CrossRef J.L. Keddie, R.A.L. Jones, R.A. Cory, Interface and surface effects on the glass-transition temperature in thin polymer films. Farad. Discuss. 98, 219–230 (1994)CrossRef
318.
Zurück zum Zitat P. Rittigstein, J.M. Torkelson, Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 44, 2935–2943 (2006)CrossRef P. Rittigstein, J.M. Torkelson, Polymer-nanoparticle interfacial interactions in polymer nanocomposites: Confinement effects on glass transition temperature and suppression of physical aging. J. Polym. Sci. B Polym. Phys. 44, 2935–2943 (2006)CrossRef
319.
Zurück zum Zitat S.M. Yuen, C.M. Ma, Y.Y. Lin, H.C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos. Sci. Technol. 67, 2564–2573 (2007)CrossRef S.M. Yuen, C.M. Ma, Y.Y. Lin, H.C. Kuan, Preparation, morphology and properties of acid and amine modified multiwalled carbon nanotube/polyimide composite. Compos. Sci. Technol. 67, 2564–2573 (2007)CrossRef
320.
Zurück zum Zitat B.P. Grady, Effects of carbon nanotubes on polymer physics. J. Polym. Sci. B Polym. Phys. 50, 591–623 (2012)CrossRef B.P. Grady, Effects of carbon nanotubes on polymer physics. J. Polym. Sci. B Polym. Phys. 50, 591–623 (2012)CrossRef
321.
Zurück zum Zitat K.M. Lee, C.D. Han, Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44, 4573–4588 (2003)CrossRef K.M. Lee, C.D. Han, Effect of hydrogen bonding on the rheology of polycarbonate/organoclay nanocomposites. Polymer 44, 4573–4588 (2003)CrossRef
322.
Zurück zum Zitat X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane Nanocomposites. Macromolecules 37, 5615–5623 (2004)CrossRef X. Dai, J. Xu, X. Guo, Y. Lu, D. Shen, N. Zhao, X. Luo, X. Zhang, Study on structure and orientation action of polyurethane Nanocomposites. Macromolecules 37, 5615–5623 (2004)CrossRef
323.
Zurück zum Zitat X. Zhang, L.S. Loo, Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 42, 5196–5207 (2009)CrossRef X. Zhang, L.S. Loo, Study of glass transition and reinforcement mechanism in polymer/layered silicate nanocomposites. Macromolecules 42, 5196–5207 (2009)CrossRef
324.
Zurück zum Zitat R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Structure and dynamics of polymer-layered silicate Nanocomposites. Macromolecules 8, 1728–1734 (1996) R. Krishnamoorti, R.A. Vaia, E.P. Giannelis, Structure and dynamics of polymer-layered silicate Nanocomposites. Macromolecules 8, 1728–1734 (1996)
325.
Zurück zum Zitat P.B. Messersmith, E.P. Giannelis, Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. A Polym. Chem. 33, 1047–1057 (1995)CrossRef P.B. Messersmith, E.P. Giannelis, Synthesis and barrier properties of poly(e-caprolactone)-layered silicate nanocomposites. J. Polym. Sci. A Polym. Chem. 33, 1047–1057 (1995)CrossRef
326.
Zurück zum Zitat Y.H. Yang, L. Bolling, M.A. Priolo, J.C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 45, 503–508 (2013)CrossRef Y.H. Yang, L. Bolling, M.A. Priolo, J.C. Grunlan, Super gas barrier and selectivity of graphene oxide-polymer multilayer thin films. Adv. Mater. 45, 503–508 (2013)CrossRef
327.
Zurück zum Zitat H. Liu, T. Kuila, N.H. Kim, B.C. Kud, J.H. Lee, In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 1, 3739–3746 (2013)CrossRef H. Liu, T. Kuila, N.H. Kim, B.C. Kud, J.H. Lee, In situ synthesis of the reduced graphene oxide-polyethyleneimine composite and its gas barrier properties. J. Mater. Chem. A 1, 3739–3746 (2013)CrossRef
328.
Zurück zum Zitat I.M. Tseng, Y.F. Liao, J.C. Chiang, M.H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater. Chem. Phys. 136, 247–253 (2012)CrossRef I.M. Tseng, Y.F. Liao, J.C. Chiang, M.H. Tsai, Transparent polyimide/graphene oxide nanocomposite with improved moisture barrier property. Mater. Chem. Phys. 136, 247–253 (2012)CrossRef
329.
Zurück zum Zitat A.B.. Morgan, Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 96, 206–217 (2006)CrossRef A.B.. Morgan, Flame retarded polymer layered silicate nanocomposites: A review of commercial and open literature systems. Polym. Adv. Technol. 96, 206–217 (2006)CrossRef
330.
Zurück zum Zitat M.R. Schutz, H. Kalo, T. Lunkenbein, J. Breu, C.A. Wilkie, Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52, 3288–3294 (2012)CrossRef M.R. Schutz, H. Kalo, T. Lunkenbein, J. Breu, C.A. Wilkie, Intumescent-like behavior of polystyrene synthetic clay nanocomposites. Polymer 52, 3288–3294 (2012)CrossRef
331.
Zurück zum Zitat M. Bartholmai, B. Schartel, Layered silicate polymer nanocomposites: New approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv.Technol. 15, 355–364 (2004)CrossRef M. Bartholmai, B. Schartel, Layered silicate polymer nanocomposites: New approach or illusion for fire retardancy? Investigations of the potentials and the tasks using a model system. Polym. Adv.Technol. 15, 355–364 (2004)CrossRef
332.
Zurück zum Zitat M.C. Costache, M.J. Heidecker, E. Manias, G. Camino, A. Frache, G. Beyer, R.K. Gupta, C.A. Wilkie, The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 48, 6352–6345 (2007)CrossRef M.C. Costache, M.J. Heidecker, E. Manias, G. Camino, A. Frache, G. Beyer, R.K. Gupta, C.A. Wilkie, The influence of carbon nanotubes, organically modified montmorillonites and layered double hydroxides on the thermal degradation and fire retardancy of polyethylene, ethylene-vinyl acetate copolymer and polystyrene. Polymer 48, 6352–6345 (2007)CrossRef
333.
Zurück zum Zitat P. May, U. Khan, A. O’Neill, J.N. Coleman, Approaching the theoretical limit for reinforcing polymers with graphene. J. Mater. Chem. 22, 1278–1282 (2012)CrossRef P. May, U. Khan, A. O’Neill, J.N. Coleman, Approaching the theoretical limit for reinforcing polymers with graphene. J. Mater. Chem. 22, 1278–1282 (2012)CrossRef
334.
Zurück zum Zitat C.S. Grimmer, C.K.H. Dharan, High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 43, 4487–4492 (2008)CrossRef C.S. Grimmer, C.K.H. Dharan, High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites. J. Mater. Sci. 43, 4487–4492 (2008)CrossRef
335.
Zurück zum Zitat K.T. Kim, W.H. Jo, Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for high performance Nylon66/multi-walled carbon nanotube composites. Carbon 49, 819–826 (2011)CrossRef K.T. Kim, W.H. Jo, Non-destructive functionalization of multi-walled carbon nanotubes with naphthalene-containing polymer for high performance Nylon66/multi-walled carbon nanotube composites. Carbon 49, 819–826 (2011)CrossRef
336.
Zurück zum Zitat W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)CrossRef W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)CrossRef
337.
Zurück zum Zitat S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)CrossRef S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)CrossRef
338.
Zurück zum Zitat C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)CrossRef C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)CrossRef
339.
Zurück zum Zitat P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer 44, 5341–5354 (2003)CrossRef P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites: Part 2. Degradation and color formation. Polymer 44, 5341–5354 (2003)CrossRef
340.
Zurück zum Zitat B. Chen, J.R.G. Evans, Poly(epsilon-caprolactone)-clay Nanocomposites: Structure and mechanical properties. Macromolecules 39, 747–754 (2006)CrossRef B. Chen, J.R.G. Evans, Poly(epsilon-caprolactone)-clay Nanocomposites: Structure and mechanical properties. Macromolecules 39, 747–754 (2006)CrossRef
341.
Zurück zum Zitat B. Lepoittevin, M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Calberg, R. Jérôme, P. Dubois, Poly(caprolactone)/clay nanocomposites prepared by melt intercalation: Mechanical, thermal and rheological properties. Polymer 43, 4017–4023 (2002)CrossRef B. Lepoittevin, M. Devalckenaere, N. Pantoustier, M. Alexandre, D. Kubies, C. Calberg, R. Jérôme, P. Dubois, Poly(caprolactone)/clay nanocomposites prepared by melt intercalation: Mechanical, thermal and rheological properties. Polymer 43, 4017–4023 (2002)CrossRef
342.
Zurück zum Zitat S.S. Ray, K. Yamada, M. Okamoto, A. Ogami, K. Ueda, New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem. Mater. 15, 1456–1465 (2003)CrossRef S.S. Ray, K. Yamada, M. Okamoto, A. Ogami, K. Ueda, New polylactide/layered silicate nanocomposites. 3. High-performance biodegradable materials. Chem. Mater. 15, 1456–1465 (2003)CrossRef
343.
Zurück zum Zitat S.S. Ray, P. Maiti, M. Okamoto, K. Yamada, K. Ueda, New Polylactide/layered silicate Nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)CrossRef S.S. Ray, P. Maiti, M. Okamoto, K. Yamada, K. Ueda, New Polylactide/layered silicate Nanocomposites. 1. Preparation, characterization, and properties. Macromolecules 35, 3104–3110 (2002)CrossRef
344.
Zurück zum Zitat P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto, New polylactide/layered silicate nanocomposites: Role of organoclays. Chem. Mater. 14, 4654–4661 (2002)CrossRef P. Maiti, K. Yamada, M. Okamoto, K. Ueda, K. Okamoto, New polylactide/layered silicate nanocomposites: Role of organoclays. Chem. Mater. 14, 4654–4661 (2002)CrossRef
345.
Zurück zum Zitat J.H. Wang, T.H. Young, D.J. Lin, M.K. Sun, H.S. Huag, L.P. Cheng, Preparation of clay/PMMA Nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol. Mater. Eng. 291, 661–669 (2006)CrossRef J.H. Wang, T.H. Young, D.J. Lin, M.K. Sun, H.S. Huag, L.P. Cheng, Preparation of clay/PMMA Nanocomposites with intercalated or exfoliated structure for bone cement synthesis. Macromol. Mater. Eng. 291, 661–669 (2006)CrossRef
346.
Zurück zum Zitat Y. Wang, W.C. Chen, Effect of clay modification on the dynamic mechanical and dielectric properties of PMMA nanocomposites via melt blending. Polymer 12, 128–144 (2013) Y. Wang, W.C. Chen, Effect of clay modification on the dynamic mechanical and dielectric properties of PMMA nanocomposites via melt blending. Polymer 12, 128–144 (2013)
347.
Zurück zum Zitat L. Shen, I.Y. Phang, L. Chen, T. Liu, K. Zeng, Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45, 3341–3349 (2004)CrossRef L. Shen, I.Y. Phang, L. Chen, T. Liu, K. Zeng, Nanoindentation and morphological studies on nylon 66 nanocomposites. I. Effect of clay loading. Polymer 45, 3341–3349 (2004)CrossRef
348.
Zurück zum Zitat K. Masenelli-Varlot, E. Reynaud, G. Vigier, J. Varlet, Mechanical properties of clay-reinforced polyamide. J. Polym. Sci. B Polym. Phys. 40, 272–283 (2002)CrossRef K. Masenelli-Varlot, E. Reynaud, G. Vigier, J. Varlet, Mechanical properties of clay-reinforced polyamide. J. Polym. Sci. B Polym. Phys. 40, 272–283 (2002)CrossRef
349.
Zurück zum Zitat J.W. Cho, D.R. Paul, Nylon 6 Nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)CrossRef J.W. Cho, D.R. Paul, Nylon 6 Nanocomposites by melt compounding. Polymer 42, 1083–1094 (2001)CrossRef
350.
Zurück zum Zitat H.A. Stretz, D.R. Paul, P.E. Cassidy, Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: A model systems for ABS nanocomposites. Polymer 46, 3818–3830 (2005)CrossRef H.A. Stretz, D.R. Paul, P.E. Cassidy, Poly(styrene-co-acrylonitrile)/montmorillonite organoclay mixtures: A model systems for ABS nanocomposites. Polymer 46, 3818–3830 (2005)CrossRef
351.
Zurück zum Zitat H. Ma, L. Tong, Z. Xu, Z. Fang, Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polym. Degrad. Stab. 92, 1439–1445 (2007)CrossRef H. Ma, L. Tong, Z. Xu, Z. Fang, Clay network in ABS-graft-MAH nanocomposites: Rheology and flammability. Polym. Degrad. Stab. 92, 1439–1445 (2007)CrossRef
352.
Zurück zum Zitat T.N. Abraham, D. Ratna, S. Siengchin, J. Karger-Kocsis, Structure and properties of polyethylene oxideorgano clay nanocomposite prepared via melt mixing. Polym. Eng. Sci. 49, 379–390 (2009)CrossRef T.N. Abraham, D. Ratna, S. Siengchin, J. Karger-Kocsis, Structure and properties of polyethylene oxideorgano clay nanocomposite prepared via melt mixing. Polym. Eng. Sci. 49, 379–390 (2009)CrossRef
353.
Zurück zum Zitat S. Choudhary, R.J. Sengwa, Dielectric properties and structures of melt-compounded poly(ethylene oxide)-montmorillonite nanocomposites. J. Appl. Polym. Sci. 124, 4847–4853 (2012) S. Choudhary, R.J. Sengwa, Dielectric properties and structures of melt-compounded poly(ethylene oxide)-montmorillonite nanocomposites. J. Appl. Polym. Sci. 124, 4847–4853 (2012)
354.
Zurück zum Zitat P. Aranda, E. Mosqueda, E. Pérez-Cappe, E. Ruiz-Hitzky, Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. J. Polym. Sci. B Polym. Phys. 41, 3249–3263 (2003)CrossRef P. Aranda, E. Mosqueda, E. Pérez-Cappe, E. Ruiz-Hitzky, Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. J. Polym. Sci. B Polym. Phys. 41, 3249–3263 (2003)CrossRef
355.
Zurück zum Zitat L. Liu, Z. Qi, X. Zhu, Studies on nylon 6/clay Nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138 (1999)CrossRef L. Liu, Z. Qi, X. Zhu, Studies on nylon 6/clay Nanocomposites by melt-intercalation process. J. Appl. Polym. Sci. 71, 1133–1138 (1999)CrossRef
356.
Zurück zum Zitat M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 6333–6338 (1997)CrossRef M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada, Preparation and mechanical properties of polypropylene-clay hybrids. Macromolecules 30, 6333–6338 (1997)CrossRef
357.
Zurück zum Zitat H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, D.R. Paul, Effect of melt processing conditions on the extent of the exfoliation in organoclay-based composites. Polymer 42, 9513–9522 (2001)CrossRef H.R. Dennis, D.L. Hunter, D. Chang, S. Kim, J.L. White, J.W. Cho, D.R. Paul, Effect of melt processing conditions on the extent of the exfoliation in organoclay-based composites. Polymer 42, 9513–9522 (2001)CrossRef
358.
Zurück zum Zitat M.S.P. Shaffer, A.H. Windle, Fabrication and characterization of CNT-PVA composites. Adv. Mater. 11, 937–941 (1999)CrossRef M.S.P. Shaffer, A.H. Windle, Fabrication and characterization of CNT-PVA composites. Adv. Mater. 11, 937–941 (1999)CrossRef
359.
Zurück zum Zitat L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)CrossRef L. Jin, C. Bower, O. Zhou, Alignment of carbon nanotubes in a polymer matrix by mechanical stretching. Appl. Phys. Lett. 73, 1197–1199 (1998)CrossRef
360.
Zurück zum Zitat B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 84, 2660–2669 (2002)CrossRef B. Safadi, R. Andrews, E.A. Grulke, Multiwalled carbon nanotube polymer composites: Synthesis and characterization of thin films. J. Appl. Polym. Sci. 84, 2660–2669 (2002)CrossRef
361.
Zurück zum Zitat R. Haggenmueller, J.E. Fischer, K.I. Winey, Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules 39, 2964–2971 (2006)CrossRef R. Haggenmueller, J.E. Fischer, K.I. Winey, Single wall carbon nanotube/polyethylene nanocomposites: Nucleating and templating polyethylene crystallites. Macromolecules 39, 2964–2971 (2006)CrossRef
362.
Zurück zum Zitat Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)CrossRef Y. Xu, W. Hong, H. Bai, C. Li, G. Shi, Strong and ductile poly(vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47, 3538–3543 (2009)CrossRef
363.
Zurück zum Zitat Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1247–1254 (2009)CrossRef Y.R. Lee, A.V. Raghu, H.M. Jeong, B.K. Kim, Properties of waterborne polyurethane/functionalized graphene sheet nanocomposites prepared by an in situ method. Macromol. Chem. Phys. 210, 1247–1254 (2009)CrossRef
364.
Zurück zum Zitat R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011)CrossRef R. Feng, G. Guan, W. Zhou, C. Li, D. Zhang, Y. Xiao, In situ synthesis of poly(ethylene terephthalate)/graphene composites using a catalyst supported on graphite oxide. J. Mater. Chem. 21, 3931–3939 (2011)CrossRef
365.
Zurück zum Zitat E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996)CrossRef E.J. Garboczi, K.A. Snyder, J.F. Douglas, M.F. Thorpe, Geometrical percolation threshold of overlapping ellipsoids. Phys. Rev. E 52, 819–828 (1996)CrossRef
366.
Zurück zum Zitat P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009)PubMedCrossRef P. Steurer, R. Wissert, R. Thomann, R. Mülhaupt, Functionalized Graphenes and thermoplastic Nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 30, 316–327 (2009)PubMedCrossRef
367.
Zurück zum Zitat J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003)CrossRef J.B. Bai, A. Allaoui, Effect of the length and the aggregate size of MWNTs on the improvement efficiency of the mechanical and electrical properties of nanocomposites – Experimental investigation. Compos. A: Appl. Sci. Manuf. 34, 689–694 (2003)CrossRef
368.
Zurück zum Zitat A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996)CrossRef A. Celzard, E. McRae, C. Deleuze, M. Dufort, G. Furdin, J.F. Marêché, Critical concentration in percolating systems containing a high-aspect-ratio filler. Phys. Rev. B 53, 6209–6214 (1996)CrossRef
369.
Zurück zum Zitat X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011)PubMedCrossRef X.Y. Qi, D. Yan, Z. Jiang, Y.K. Cao, Z.Z. Yu, F. Yavari, N. Koratkar, Enhanced electrical conductivity in polystyrene Nanocomposites at ultra-low graphene content. ACS Appl. Mater. Interfaces 3, 3130–3133 (2011)PubMedCrossRef
370.
Zurück zum Zitat J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRef J.K.W. Sandler, J.E. Kirk, I.A. Kinloch, M.S.P. Shaffer, A.H. Windle, Ultra-low electrical percolation threshold in carbon-nanotube-epoxy composites. Polymer 44, 5893–5899 (2003)CrossRef
371.
Zurück zum Zitat J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007)CrossRef J. Li, M.L. Sham, J.K. Kim, G. Marom, Morphology and properties of UV/ozone treated graphite nanoplatelet/epoxy nanocomposites. Compos. Sci. Technol. 67, 296–305 (2007)CrossRef
372.
Zurück zum Zitat W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)CrossRef W. Bauhofer, J.Z. Kovacs, A review and analysis of electrical percolation in carbon nanotube polymer composites. Compos. Sci. Technol. 69, 1486–1498 (2009)CrossRef
373.
Zurück zum Zitat L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)CrossRef L. Xie, F. Xu, F. Qiu, H. Lu, Y. Yang, Single-walled carbon nanotubes functionalized with high bonding density of polymer layers and enhanced mechanical properties of composites. Macromolecules 40, 3296–3305 (2007)CrossRef
374.
Zurück zum Zitat R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008)CrossRef R. Verdejo, F. Barroso-Bujans, M.A. Rodriguez-Perez, J.A.D. Saja, M.A. Lopez-Manchado, Functionalized graphene sheet filled silicone foam nanocomposites. J. Mater. Chem. 18, 2221–2226 (2008)CrossRef
375.
Zurück zum Zitat L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088–2092 (2009)CrossRef L.M. Veca, M.J. Meziani, W. Wang, X. Wang, F. Lu, P. Zhang, Y. Lin, R. Fee, J.W. Connell, Y.P. Sun, Carbon nanosheets for polymeric nanocomposites with high thermal conductivity. Adv. Mater. 21, 2088–2092 (2009)CrossRef
376.
Zurück zum Zitat S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Thermal expansion of graphene composites. Macromolecules 42, 5251–5255 (2009)CrossRef S. Wang, M. Tambraparni, J. Qiu, J. Tipton, D. Dean, Thermal expansion of graphene composites. Macromolecules 42, 5251–5255 (2009)CrossRef
377.
Zurück zum Zitat N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRef N. Liu, F. Luo, H. Wu, Y. Liu, C. Zhang, J. Chen, One-step ionic-liquid-assisted electrochemical synthesis of ionic-liquid-functionalized graphene sheets directly from graphite. Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRef
378.
Zurück zum Zitat Y. Kayano, H. Keskkula, D.R. Paul, Effect of polycarbonate molecular weight and processing conditions on mechanical behaviour of blends with a core-shell impact modifier. Polymer 37, 4505–4518 (1996)CrossRef Y. Kayano, H. Keskkula, D.R. Paul, Effect of polycarbonate molecular weight and processing conditions on mechanical behaviour of blends with a core-shell impact modifier. Polymer 37, 4505–4518 (1996)CrossRef
379.
Zurück zum Zitat H. Koerner, E. Hampton, D. Dean, Z. Turgut, L. Drummy, P. Mirau, R. Vaia, Generating Triaxial reinforced epoxy/Montmorillonite Nanocomposites with uniaxial magnetic fields. Chem. Mater. 17, 1990–1996 (2005)CrossRef H. Koerner, E. Hampton, D. Dean, Z. Turgut, L. Drummy, P. Mirau, R. Vaia, Generating Triaxial reinforced epoxy/Montmorillonite Nanocomposites with uniaxial magnetic fields. Chem. Mater. 17, 1990–1996 (2005)CrossRef
380.
Zurück zum Zitat H. Koerner, J.D. Jacobs, D.W. Tomlin, J.D. Busbee, R.A. Vaia, Tuning polymer Nanocomposite morphology: AC electric field manipulation of epoxy-Montmorillonite (clay) suspensions. Adv. Mater. 16, 297–302 (2004)CrossRef H. Koerner, J.D. Jacobs, D.W. Tomlin, J.D. Busbee, R.A. Vaia, Tuning polymer Nanocomposite morphology: AC electric field manipulation of epoxy-Montmorillonite (clay) suspensions. Adv. Mater. 16, 297–302 (2004)CrossRef
381.
Zurück zum Zitat T. Sasaki, A. Shimizu, T.H. Mourey, C.T. Thurau, M.D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions. J. Chem. Phys. 119, 8730–8735 (2003)CrossRef T. Sasaki, A. Shimizu, T.H. Mourey, C.T. Thurau, M.D. Ediger, Glass transition of small polystyrene spheres in aqueous suspensions. J. Chem. Phys. 119, 8730–8735 (2003)CrossRef
382.
Zurück zum Zitat J. Ding, G. Xue, Q. Dai, R. Cheng, Glass transition temperature of polystyrene microparticles. Polymer 34, 3325–3327 (1993)CrossRef J. Ding, G. Xue, Q. Dai, R. Cheng, Glass transition temperature of polystyrene microparticles. Polymer 34, 3325–3327 (1993)CrossRef
383.
Zurück zum Zitat J.A. Forrest, K.D. Veress, J.R. Stevens, J.R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996)PubMedCrossRef J.A. Forrest, K.D. Veress, J.R. Stevens, J.R. Dutcher, Effect of free surfaces on the glass transition temperature of thin polymer films. Phys. Rev. Lett. 77, 2002–2005 (1996)PubMedCrossRef
384.
Zurück zum Zitat P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6, 278–282 (2007)PubMedCrossRef P. Rittigstein, R.D. Priestley, L.J. Broadbelt, J.M. Torkelson, Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat. Mater. 6, 278–282 (2007)PubMedCrossRef
385.
Zurück zum Zitat K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)CrossRef K.H. Liao, S. Aoyama, A.A. Abdala, C.W. Macosko, Does graphene change Tg of Nanocomposites? Macromolecules 47, 8311–8319 (2014)CrossRef
386.
Zurück zum Zitat W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)CrossRef W. Yuan, M.B.C. Park, Covalent cum noncovalent Functionalizations of carbon nanotubes for effective reinforcement of a solution cast composite film. ACS Appl. Mater. Interf. 4, 2065–2073 (2012)CrossRef
387.
Zurück zum Zitat S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)CrossRef S. Aoyama, Y.T. Park, T. Ougizawa, C.W. Macosko, Melt crystallization of poly(ethylene terephthalate): Comparing addition of graphene vs. carbon nanotubes. Polymer 55, 2077–2085 (2014)CrossRef
388.
Zurück zum Zitat C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)CrossRef C.I.W. Calcagno, C.M. Mariani, S.R. Teixeira, R.S. Mauler, The effect of organic modifier of the clay on morphology and crystallization properties of PET nanocomposites. Polymer 48, 966–974 (2007)CrossRef
389.
Zurück zum Zitat Z. Guo, D. Zhang, S. Wei, Z. Wang, A.B.. Karki, Y. Li, P. Bernazzani, D.P. Young, J. Gomes, D. Cocke, T.C. Ho, Effects of iron oxide nanoparticles on polyvinyl alcohol: Interfacial layer and bulk nanocomposites thin film. J. Nanopart. Res. 12, 2415–2426 (2010)CrossRef Z. Guo, D. Zhang, S. Wei, Z. Wang, A.B.. Karki, Y. Li, P. Bernazzani, D.P. Young, J. Gomes, D. Cocke, T.C. Ho, Effects of iron oxide nanoparticles on polyvinyl alcohol: Interfacial layer and bulk nanocomposites thin film. J. Nanopart. Res. 12, 2415–2426 (2010)CrossRef
390.
Zurück zum Zitat W.E. Teo, S.A. Ramakrishna, Review on electrospinning design and nanofibre assemblies. Nanotechnology 17, 89–106 (2006)CrossRef W.E. Teo, S.A. Ramakrishna, Review on electrospinning design and nanofibre assemblies. Nanotechnology 17, 89–106 (2006)CrossRef
391.
Zurück zum Zitat J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160 (1995)CrossRef J. Doshi, D.H. Reneker, Electrospinning process and applications of electrospun fibers. J. Electrost. 35, 151–160 (1995)CrossRef
392.
Zurück zum Zitat S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: Solving global issues. Mater. Today 9, 40–50 (2006)CrossRef S. Ramakrishna, K. Fujihara, W.E. Teo, T. Yong, Z. Ma, R. Ramaseshan, Electrospun nanofibers: Solving global issues. Mater. Today 9, 40–50 (2006)CrossRef
393.
Zurück zum Zitat A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703 (2007)CrossRef A. Greiner, J.H. Wendorff, Electrospinning: A fascinating method for the preparation of ultrathin fibers. Angew. Chem. Int. Ed. 46, 5670–5703 (2007)CrossRef
394.
Zurück zum Zitat W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, Y. Zhang, Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 45, 704–709 (2005)CrossRef W. Zuo, M. Zhu, W. Yang, H. Yu, Y. Chen, Y. Zhang, Experimental study on relationship between jet instability and formation of beaded fibers during electrospinning. Polym. Eng. Sci. 45, 704–709 (2005)CrossRef
395.
Zurück zum Zitat J.M. Deitzel, J. Kleinmeyer, D. Harris, T.N.C. Beck, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261–272 (2001)CrossRef J.M. Deitzel, J. Kleinmeyer, D. Harris, T.N.C. Beck, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer 42, 261–272 (2001)CrossRef
396.
Zurück zum Zitat T. Lin, H. Wang, X. Wang, M.P. Brenner, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15, 1375–1381 (2004)CrossRef T. Lin, H. Wang, X. Wang, M.P. Brenner, The charge effect of cationic surfactants on the elimination of fibre beads in the electrospinning of polystyrene. Nanotechnology 15, 1375–1381 (2004)CrossRef
397.
Zurück zum Zitat Z. Yang, S. Chen, W. Hu, N. Yin, W. Zhang, C. Xiang, H. Wang, Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr. Polym. 88(1), 173–178 (2012)CrossRef Z. Yang, S. Chen, W. Hu, N. Yin, W. Zhang, C. Xiang, H. Wang, Flexible luminescent CdSe/bacterial cellulose nanocomoposite membranes. Carbohydr. Polym. 88(1), 173–178 (2012)CrossRef
398.
Zurück zum Zitat M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201–2220 (2001)CrossRef M.M. Hohman, M. Shin, G. Rutledge, M.P. Brenner, Electrospinning and electrically forced jets. I. Stability theory. Phys. Fluids 13, 2201–2220 (2001)CrossRef
399.
Zurück zum Zitat M.M. Hohman, M. Shin, G. Rutledge, Electrospinning and electrically forced jets. II. Appl. Phys. Fluid. 13, 2221–2236 (2001)CrossRef M.M. Hohman, M. Shin, G. Rutledge, Electrospinning and electrically forced jets. II. Appl. Phys. Fluid. 13, 2221–2236 (2001)CrossRef
400.
Zurück zum Zitat D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4547 (2000)CrossRef D.H. Reneker, A.L. Yarin, H. Fong, S. Koombhongse, Bending instability of electrically charged liquid jets of polymer solutions in electrospinning. J. Appl. Phys. 87, 4531–4547 (2000)CrossRef
401.
Zurück zum Zitat A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026 (2001)CrossRef A.L. Yarin, S. Koombhongse, D.H. Reneker, Bending instability in electrospinning of nanofibers. J. Appl. Phys. 89, 3018–3026 (2001)CrossRef
402.
Zurück zum Zitat G.M. Kim, R. Lach, G.H. Michler, P. Poetschke, K. Albrecht, Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process. Nanotechnology 17, 963–972 (2006)PubMedCrossRef G.M. Kim, R. Lach, G.H. Michler, P. Poetschke, K. Albrecht, Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process. Nanotechnology 17, 963–972 (2006)PubMedCrossRef
403.
Zurück zum Zitat R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J.H. Wendorff, Nanoprocessing of polymers: Applications in medicine, sensors, catalysis, photonics. Polym. Adv. Technol. 16, 276–282 (2005)CrossRef R. Dersch, M. Steinhart, U. Boudriot, A. Greiner, J.H. Wendorff, Nanoprocessing of polymers: Applications in medicine, sensors, catalysis, photonics. Polym. Adv. Technol. 16, 276–282 (2005)CrossRef
404.
Zurück zum Zitat H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Reinforcement and rupture behavior of carbon nanotubespolymer nanofibers. Appl. Phys. Lett. 85, 1775–1777 (2004)CrossRef H. Ye, H. Lam, N. Titchenal, Y. Gogotsi, F. Ko, Reinforcement and rupture behavior of carbon nanotubespolymer nanofibers. Appl. Phys. Lett. 85, 1775–1777 (2004)CrossRef
405.
Zurück zum Zitat Y.Q. Wan, J.H. He, J.Y. Yu, Carbon nanotube-reinforced polyacrylonitrile nanofibers by vibration-electrospinning. Polym. Intern. 56, 1367–1370 (2007)CrossRef Y.Q. Wan, J.H. He, J.Y. Yu, Carbon nanotube-reinforced polyacrylonitrile nanofibers by vibration-electrospinning. Polym. Intern. 56, 1367–1370 (2007)CrossRef
406.
Zurück zum Zitat C. Pan, L.Q. Ge, Z.Z. Gu, Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Compos. Sci. Technol. 67, 3271–3277 (2007)CrossRef C. Pan, L.Q. Ge, Z.Z. Gu, Fabrication of multi-walled carbon nanotube reinforced polyelectrolyte hollow nanofibers by electrospinning. Compos. Sci. Technol. 67, 3271–3277 (2007)CrossRef
407.
Zurück zum Zitat H. Lam, N. Titchenal, N. Naguib, H. Ye, Y. Gogotski, F. Ko, Electrospinning of carbon nanotubes reinforced nanocomposite fibrils and yarns. Mater. Res. Soc. Symp. Proc. 791, 353–358 (2004) H. Lam, N. Titchenal, N. Naguib, H. Ye, Y. Gogotski, F. Ko, Electrospinning of carbon nanotubes reinforced nanocomposite fibrils and yarns. Mater. Res. Soc. Symp. Proc. 791, 353–358 (2004)
408.
Zurück zum Zitat M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 22, 1672–1688 (2010)PubMedCrossRef M.T. Byrne, Y.K. Gun’ko, Recent advances in research on carbon nanotube-polymer composites. Adv. Mater. 22, 1672–1688 (2010)PubMedCrossRef
409.
Zurück zum Zitat Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112, 10692–10699 (2008)CrossRef Z. Sun, V. Nicolosi, D. Rickard, S.D. Bergin, D. Aherne, J.N. Coleman, Quantitative evaluation of surfactant-stabilized single-walled carbon nanotubes: Dispersion quality and its correlation with zeta potential. J. Phys. Chem. C 112, 10692–10699 (2008)CrossRef
410.
Zurück zum Zitat R.A. Vaia, K.D. Jandt, E.J. Kramer, E.P. Giannelis, Microstructural evolution of melt intercalated polymer-organically modified layered silicates Nanocomposites. Chem. Mater. 8, 2628–2635 (1996)CrossRef R.A. Vaia, K.D. Jandt, E.J. Kramer, E.P. Giannelis, Microstructural evolution of melt intercalated polymer-organically modified layered silicates Nanocomposites. Chem. Mater. 8, 2628–2635 (1996)CrossRef
411.
Zurück zum Zitat D. Wang, C.A. Wilkie, A stibonium-modified clay and its polystyrene nanocomposite. Polym. Degrad. Stab. 82, 309–315 (2003)CrossRef D. Wang, C.A. Wilkie, A stibonium-modified clay and its polystyrene nanocomposite. Polym. Degrad. Stab. 82, 309–315 (2003)CrossRef
412.
Zurück zum Zitat J. Zhang, C.A. Wilkie, A carbocation substituted clay and its styrene nanocomposite. Polym. Degrad. Stab. 83, 301–307 (2004)CrossRef J. Zhang, C.A. Wilkie, A carbocation substituted clay and its styrene nanocomposite. Polym. Degrad. Stab. 83, 301–307 (2004)CrossRef
413.
Zurück zum Zitat S. Su, D.D. Jiang, C.A. Wilkie, Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym. Degrad. Stab. 84, 321–331 (2004)CrossRef S. Su, D.D. Jiang, C.A. Wilkie, Poly(methyl methacrylate), polypropylene and polyethylene nanocomposite formation by melt blending using novel polymerically-modified clays. Polym. Degrad. Stab. 84, 321–331 (2004)CrossRef
414.
Zurück zum Zitat D.H. Kim, P.D. Fasulo, W.R. Rodgers, D.R. Paul, Structure and properties of polypropylene-based nanocomposies: Effect of PP-g-MA to organoclay ratio. Polymer 48, 5308–5323 (2007)CrossRef D.H. Kim, P.D. Fasulo, W.R. Rodgers, D.R. Paul, Structure and properties of polypropylene-based nanocomposies: Effect of PP-g-MA to organoclay ratio. Polymer 48, 5308–5323 (2007)CrossRef
415.
Zurück zum Zitat E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)CrossRef E. Manias, Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem. Mater. 13, 3516–3523 (2001)CrossRef
416.
Zurück zum Zitat B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011), p. 145CrossRef B.P. Grady, Carbon Nanotube-Polymer Composites Manufacture, Properties, and Applications (Wiley, New York, 2011), p. 145CrossRef
417.
Zurück zum Zitat C. McClory, S.J. Chin, T. McNally, Polymer/carbon nanotube composites. Aust. J. Chem. 62, 762–785 (2009)CrossRef C. McClory, S.J. Chin, T. McNally, Polymer/carbon nanotube composites. Aust. J. Chem. 62, 762–785 (2009)CrossRef
418.
Zurück zum Zitat R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8, 31–37 (2004)CrossRef R. Andrews, M.C. Weisenberger, Carbon nanotube polymer composites. Curr. Opin. Solid State Mater. Sci. 8, 31–37 (2004)CrossRef
419.
Zurück zum Zitat J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun’ko, W.J. Blau, High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004)CrossRef J.N. Coleman, M. Cadek, R. Blake, V. Nicolosi, K.P. Ryan, C. Belton, A. Fonseca, J.B. Nagy, Y.K. Gun’ko, W.J. Blau, High performance nanotube-reinforced plastics: Understanding the mechanism of strength increase. Adv. Funct. Mater. 14, 791–798 (2004)CrossRef
420.
Zurück zum Zitat T. Villmow, P. Potschke, S. Pegel, L. Haussler, B. Kretzschmar, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in poly(lactic acid) matrix. Polymer 49, 3500–3509 (2008)CrossRef T. Villmow, P. Potschke, S. Pegel, L. Haussler, B. Kretzschmar, Influence of twin-screw extrusion conditions on the dispersion of multi-walled carbon nanotubes in poly(lactic acid) matrix. Polymer 49, 3500–3509 (2008)CrossRef
421.
Zurück zum Zitat D. Wu, Y. Sun, M. Zhang, Kinetics study on melt compounding of carbon nanotube/polypropylene Nanocomposites. J. Polym. Sci. B Polym. Phys. 47, 608–618 (2009)CrossRef D. Wu, Y. Sun, M. Zhang, Kinetics study on melt compounding of carbon nanotube/polypropylene Nanocomposites. J. Polym. Sci. B Polym. Phys. 47, 608–618 (2009)CrossRef
422.
Zurück zum Zitat J.S. Hong, C. Kim, Extension-induced dispersion of multi-walled carbon nanotubes in non-Newtonian fluid. J. Rheol. 51, 833–850 (2007)CrossRef J.S. Hong, C. Kim, Extension-induced dispersion of multi-walled carbon nanotubes in non-Newtonian fluid. J. Rheol. 51, 833–850 (2007)CrossRef
423.
Zurück zum Zitat I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite Nanocomposites with enhanced thermal stability, mechanical Modulus, and electrical conductivity. J. Polym. Sci. B Polym. Phys. 48, 850–858 (2010)CrossRef I.H. Kim, Y.G. Jeong, Polylactide/exfoliated graphite Nanocomposites with enhanced thermal stability, mechanical Modulus, and electrical conductivity. J. Polym. Sci. B Polym. Phys. 48, 850–858 (2010)CrossRef
424.
Zurück zum Zitat H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, G.Y. Ji, Z.Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51, 1191–1196 (2010)CrossRef H.B. Zhang, W.G. Zheng, Q. Yan, Y. Yang, J.W. Wang, Z.H. Lu, G.Y. Ji, Z.Z. Yu, Electrically conductive polyethylene terephthalate/graphene nanocomposites prepared by melt compounding. Polymer 51, 1191–1196 (2010)CrossRef
425.
Zurück zum Zitat K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)CrossRef K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)CrossRef
426.
Zurück zum Zitat W. Weng, G. Chen, D. Wu, Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer 46, 6250–6257 (2005)CrossRef W. Weng, G. Chen, D. Wu, Transport properties of electrically conducting nylon 6/foliated graphite nanocomposites. Polymer 46, 6250–6257 (2005)CrossRef
427.
Zurück zum Zitat H. Kim, C.W. Macosko, Processing-property relationship of polycarbonate/graphene composites. Polymer 50, 3797–3809 (2009)CrossRef H. Kim, C.W. Macosko, Processing-property relationship of polycarbonate/graphene composites. Polymer 50, 3797–3809 (2009)CrossRef
428.
Zurück zum Zitat G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Preparation of polystyrene/graphite nanosheet composites. Polymer 44, 1781–1784 (2003)CrossRef G. Chen, C. Wu, W. Weng, D. Wu, W. Yan, Preparation of polystyrene/graphite nanosheet composites. Polymer 44, 1781–1784 (2003)CrossRef
429.
Zurück zum Zitat H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane Nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef H. Kim, Y. Miura, C.W. Macosko, Graphene/polyurethane Nanocomposites for improved gas barrier and electrical conductivity. Chem. Mater. 22, 3441–3450 (2010)CrossRef
430.
Zurück zum Zitat R.A. Vaia, E.P. Giannelis, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 8000–8009 (1997)CrossRef R.A. Vaia, E.P. Giannelis, Polymer melt intercalation in organically-modified layered silicates: Model predictions and experiment. Macromolecules 30, 8000–8009 (1997)CrossRef
431.
Zurück zum Zitat R.A. Vaia, H. Ishii, E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)CrossRef R.A. Vaia, H. Ishii, E.P. Giannelis, Synthesis and properties of two-dimensional nanostructures by direct intercalation of polymer melts in layered silicates. Chem. Mater. 5, 1694–1696 (1993)CrossRef
432.
Zurück zum Zitat E. Bugnicourt, T. Kehoe, M. Latorre, C. Serrano, S. Philippe, M. Schmid, Recent prospects in the inline monitoring of Nanocomposites and Nanocoatings by optical technologies. Nano 6(150), 1–19 (2016) E. Bugnicourt, T. Kehoe, M. Latorre, C. Serrano, S. Philippe, M. Schmid, Recent prospects in the inline monitoring of Nanocomposites and Nanocoatings by optical technologies. Nano 6(150), 1–19 (2016)
433.
Zurück zum Zitat P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer 44, 5323–5339 (2003)CrossRef P.J. Yoon, D.L. Hunter, D.R. Paul, Polycarbonate nanocomposites. Part 1. Effect of organoclay structure on morphology and properties. Polymer 44, 5323–5339 (2003)CrossRef
434.
Zurück zum Zitat I. Siro, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3), 459–494 (2010)CrossRef I. Siro, D. Plackett, Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 17(3), 459–494 (2010)CrossRef
435.
436.
Zurück zum Zitat A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329–1336 (1996)CrossRef A.K. Bledzki, S. Reihmane, J. Gassan, Properties and modification methods for vegetable fibers for natural fiber composites. J. Appl. Polym. Sci. 59(8), 1329–1336 (1996)CrossRef
437.
Zurück zum Zitat P.R. Hornsby, E. Hinrichsen, K. Tarverdi, Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II analysis of composite microstructure and mechanical properties. J. Mater. Sci. 32(4), 1009–1015 (1996)CrossRef P.R. Hornsby, E. Hinrichsen, K. Tarverdi, Preparation and properties of polypropylene composites reinforced with wheat and flax straw fibres: Part II analysis of composite microstructure and mechanical properties. J. Mater. Sci. 32(4), 1009–1015 (1996)CrossRef
438.
Zurück zum Zitat K. Oksman, L. Wallstrom, L.A. Berglund, R.D.T. Filho, Morphology and mechanical properties of unidirectional sisal-epoxy composites. J. Appl. Polym. Sci. 84(13), 2358–2365 (2002)CrossRef K. Oksman, L. Wallstrom, L.A. Berglund, R.D.T. Filho, Morphology and mechanical properties of unidirectional sisal-epoxy composites. J. Appl. Polym. Sci. 84(13), 2358–2365 (2002)CrossRef
439.
Zurück zum Zitat D.N. Saheb, J.P. Jog, Natural fiber polymer composites: A review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef D.N. Saheb, J.P. Jog, Natural fiber polymer composites: A review. Adv. Polym. Technol. 18(4), 351–363 (1999)CrossRef
440.
Zurück zum Zitat S.T. Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. Andreopoulos, E.G. Koukios, Thermoplastic polymers reinforced with fibrous agricultural residues. Polym. Degrad. Stab. 90(2), 303–312 (2005)CrossRef S.T. Georgopoulos, P.A. Tarantili, E. Avgerinos, A.G. Andreopoulos, E.G. Koukios, Thermoplastic polymers reinforced with fibrous agricultural residues. Polym. Degrad. Stab. 90(2), 303–312 (2005)CrossRef
441.
Zurück zum Zitat A. Alemdar, M. Sain, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008)CrossRef A. Alemdar, M. Sain, Biocomposites from wheat straw nanofibers: Morphology, thermal and mechanical properties. Compos. Sci. Technol. 68(2), 557–565 (2008)CrossRef
442.
Zurück zum Zitat A. Alemdar, M. Sain, Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)PubMedCrossRef A. Alemdar, M. Sain, Isolation and characterization of nanofibers from agricultural residues – Wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)PubMedCrossRef
443.
Zurück zum Zitat T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79(4), 1086–1093 (2010)CrossRef T. Zimmermann, N. Bordeanu, E. Strub, Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr. Polym. 79(4), 1086–1093 (2010)CrossRef
444.
Zurück zum Zitat B. Wang, M. Sain, Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. 56(4), 538–546 (2007)CrossRef B. Wang, M. Sain, Dispersion of soybean stock-based nanofiber in a plastic matrix. Polym. Int. 56(4), 538–546 (2007)CrossRef
445.
Zurück zum Zitat E. Doelker, Cellulose derivatives. Adv. Polym. Sci. 107, 199–265 (1993)CrossRef E. Doelker, Cellulose derivatives. Adv. Polym. Sci. 107, 199–265 (1993)CrossRef
446.
Zurück zum Zitat A.K. Bledzki, I.J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)CrossRef A.K. Bledzki, I.J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)CrossRef
447.
Zurück zum Zitat S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym. Eng. Sci. 49, 1253–1272 (2009)CrossRef S. Kalia, B.S. Kaith, I. Kaur, Pretreatments of natural fibers and their application as reinforcing material in polymer composites – A review. Polym. Eng. Sci. 49, 1253–1272 (2009)CrossRef
448.
Zurück zum Zitat M. Mashkour, M. Tajvidi, T. Kimura, F. Kimura, G. Ebrahimi, Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticale coveres natural cellulose fibers. BioResources 6, 4731–4738 (2011) M. Mashkour, M. Tajvidi, T. Kimura, F. Kimura, G. Ebrahimi, Fabricating unidirectional magnetic papers using permanent magnets to align magnetic nanoparticale coveres natural cellulose fibers. BioResources 6, 4731–4738 (2011)
449.
Zurück zum Zitat M.N. Belgacem, A. Gandini, The surface modification of cellulose fibers for use as reinforcing elements in compostite materials. Compos. Interf. 12, 41–75 (2005)CrossRef M.N. Belgacem, A. Gandini, The surface modification of cellulose fibers for use as reinforcing elements in compostite materials. Compos. Interf. 12, 41–75 (2005)CrossRef
450.
Zurück zum Zitat A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)CrossRef A.K. Bledzki, J. Gassan, Composites reinforced with cellulose based fibers. Prog. Polym. Sci. 24, 221–274 (1999)CrossRef
451.
Zurück zum Zitat M.L. Reid, M.B. Brown, G.P. Moss, S.A. Jones, An investigation into solvent- membrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J. Pharm. Pharmacol. 60, 1139–1147 (2008)PubMedCrossRef M.L. Reid, M.B. Brown, G.P. Moss, S.A. Jones, An investigation into solvent- membrane interactions when assessing drug release from organic vehicles using regenerated cellulose membranes. J. Pharm. Pharmacol. 60, 1139–1147 (2008)PubMedCrossRef
452.
Zurück zum Zitat K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Advances in cellulose ester performance and application. Prog. Polym. Sci. 26, 1605–1688 (2001)CrossRef K.J. Edgar, C.M. Buchanan, J.S. Debenham, P.A. Rundquist, B.D. Seiler, M.C. Shelton, D. Tindall, Advances in cellulose ester performance and application. Prog. Polym. Sci. 26, 1605–1688 (2001)CrossRef
453.
Zurück zum Zitat D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)CrossRef D. Klemm, B. Heublein, H.P. Fink, A. Bohn, Cellulose: Fascinating biopolymer and sustainable raw material. Angew. Chem. Int. Ed. 44, 3358–3393 (2005)CrossRef
454.
Zurück zum Zitat E. Kontturi, T. Tammelin, M. Österberg, Cellulose – Model films and the fundamental approach. Chem. Soc. Rev. 35, 1287–1304 (2006)PubMedCrossRef E. Kontturi, T. Tammelin, M. Österberg, Cellulose – Model films and the fundamental approach. Chem. Soc. Rev. 35, 1287–1304 (2006)PubMedCrossRef
455.
Zurück zum Zitat K.L. Spence, R.A. Venditti, O.J. Rojas, J.J. Pawlak, M.A. Hubbe, Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6, 4370–4388 (2011) K.L. Spence, R.A. Venditti, O.J. Rojas, J.J. Pawlak, M.A. Hubbe, Water vapor barrier properties of coated and filled microfibrillated cellulose composite films. Bioresources 6, 4370–4388 (2011)
456.
Zurück zum Zitat (a) F.L. MAatthews, R.D. Rawlings, Composite Materials: Engineering and Science (Chapman & Hall, London, 1993); (b) A. Pegoretti, Editorial corner – A personal view. Trends in composite materials: The challenge of single-polymer composites. Express Polym. Lett. 1, 710 (2007) (a) F.L. MAatthews, R.D. Rawlings, Composite Materials: Engineering and Science (Chapman & Hall, London, 1993); (b) A. Pegoretti, Editorial corner – A personal view. Trends in composite materials: The challenge of single-polymer composites. Express Polym. Lett. 1, 710 (2007)
457.
Zurück zum Zitat (a) K.P. Matabola, A.R. De Vries, F.S. Moolman, A.S. Luyt, Single polymer composites: A review. J. Mater. Sci. 44, 6213–6222 (2009); (b) A. Kelley, Concise Encyclopedia of Composites Materials (Pergamon Press, New York, 1995) (a) K.P. Matabola, A.R. De Vries, F.S. Moolman, A.S. Luyt, Single polymer composites: A review. J. Mater. Sci. 44, 6213–6222 (2009); (b) A. Kelley, Concise Encyclopedia of Composites Materials (Pergamon Press, New York, 1995)
458.
Zurück zum Zitat R. Seymour, The role of fillers and reinforcements in plastic chemistry, in Fillers and Reinforcements for Plastic. Advances in Chemistry Series, ed. by R. D. Deanin, N. R. Schott, vol. 134, (ACS, Washington, DC, 1974), pp. 1–6CrossRef R. Seymour, The role of fillers and reinforcements in plastic chemistry, in Fillers and Reinforcements for Plastic. Advances in Chemistry Series, ed. by R. D. Deanin, N. R. Schott, vol. 134, (ACS, Washington, DC, 1974), pp. 1–6CrossRef
459.
Zurück zum Zitat M.R. Piggot, The effect of the Interface/interphase on Fiber composite properties. Polym. Compos. 8(5), 291–287 (1987)CrossRef M.R. Piggot, The effect of the Interface/interphase on Fiber composite properties. Polym. Compos. 8(5), 291–287 (1987)CrossRef
460.
Zurück zum Zitat M.R. Piggot, A. Sanadi, P.S. Chua, D. Anderson, Mechanical interactions in the Interphasial region of fibre reinforced thermosets, in Composite Interfaces, ed. by H. Ishida, J. L. Koenig, (North-Holland, New York, 1986), pp. 109–121 M.R. Piggot, A. Sanadi, P.S. Chua, D. Anderson, Mechanical interactions in the Interphasial region of fibre reinforced thermosets, in Composite Interfaces, ed. by H. Ishida, J. L. Koenig, (North-Holland, New York, 1986), pp. 109–121
461.
Zurück zum Zitat C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)CrossRef C. Sanchez, B. Julian, P. Belleville, M. Popall, Applications of hybrid organic–inorganic nanocomposites. J. Mater. Chem. 15, 3559–3592 (2005)CrossRef
462.
Zurück zum Zitat T.G. Gopakumar, D.J.Y.S. Page, Polypropylene/graphite Nanocomposites by ThermoKinetic mixing. Polym. Eng. Sci. 44(6), 1162–1169 (2004)CrossRef T.G. Gopakumar, D.J.Y.S. Page, Polypropylene/graphite Nanocomposites by ThermoKinetic mixing. Polym. Eng. Sci. 44(6), 1162–1169 (2004)CrossRef
463.
Zurück zum Zitat F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix Nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 40(17), 1511–1575 (2006)CrossRef F. Hussain, M. Hojjati, M. Okamoto, R.E. Gorga, Review article: Polymer-matrix Nanocomposites, processing, manufacturing, and application: An overview. J. Compos. Mater. 40(17), 1511–1575 (2006)CrossRef
464.
Zurück zum Zitat X. Jiang, L.T. Drzal, Multifunctional high density polyethylene Nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 31, 1091–1098 (2010) X. Jiang, L.T. Drzal, Multifunctional high density polyethylene Nanocomposites produced by incorporation of exfoliated graphite nanoplatelets 1: Morphology and mechanical properties. Polym. Compos. 31, 1091–1098 (2010)
465.
Zurück zum Zitat K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for xfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007)CrossRef K. Kalaitzidou, H. Fukushima, L.T. Drzal, A new compounding method for xfoliated graphite-polypropylene nanocomposites with enhanced flexural properties and lower percolation threshold. Compos. Sci. Technol. 67, 2045–2051 (2007)CrossRef
466.
Zurück zum Zitat K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)CrossRef K. Kalaitzidou, H. Fukushima, L.T. Drzal, Multifunctional polypropylene composites produced by incorporation of exfoliated graphite nanoplatelets. Carbon 45, 1446–1452 (2007)CrossRef
467.
Zurück zum Zitat Shah Mohammed, Reduwan Billah, Ibrahim Hossain Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of External Stimuli-Responsive Hydrogels based CMC and Other Cellulose Derivatives for Advanced Applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, Nova Science Publishers, New York, USA, ISBN: 978-1-53614-752-0 (eBook), 43–75 (2019) Shah Mohammed, Reduwan Billah, Ibrahim Hossain Mondal, Sazzad Hossain Somoal, M. Nahid Pervez, Md. Obaidul Haque, Synthesis of External Stimuli-Responsive Hydrogels based CMC and Other Cellulose Derivatives for Advanced Applications, in Carboxymethylcellulose. Volume II. Pharmaceutical and Industrial Applications, ed. by I. H. Mondal, Nova Science Publishers, New York, USA, ISBN: 978-1-53614-752-0 (eBook), 43–75 (2019)
Metadaten
Titel
Composites and Nanocomposites
verfasst von
Shah Mohammed Reduwan Billah
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95987-0_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.