Skip to main content
Erschienen in: Optical and Quantum Electronics 12/2018

01.12.2018

Computational analysis of metamaterial–aluminum–silicon solar cell model

verfasst von: Houria Hamouche, Mohammed M. Shabat

Erschienen in: Optical and Quantum Electronics | Ausgabe 12/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the optical parameters of an improved waveguide structure for a more efficient silicon solar cell are studied. Despite its favorable electronic, physical, and chemical properties, silicon remains a poor absorber of light. The optical losses due to the reflection at the air/glass interface of the cell and the transmission at its back are other factors, which limit the cell conversion efficiency. Consequently, several mechanisms for light trapping capable to increase the collection of the incident photons as electrical current and to decrease the transmission loss, have been developed. In this context, we propose a multilayer waveguide structure in which the sunlight is guided by a metamaterial layer and the transmission loss is eliminated by an aluminum back reflector. The reflection and transmission coefficients are derived by using the Generalized Transfer Matrix Method. The application of the law of conservation of energy allowed the determination of the absorption coefficient. These optical parameters are examined for several angles of incidence for s-polarized light, p-polarized light and unpolarized light. Simulation results show a significant reduction of reflection and a complete suppression of transmission.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aberle, A.: Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt: Res. Appl. 8, 473–487 (2000)CrossRef Aberle, A.: Surface passivation of crystalline silicon solar cells: a review. Prog. Photovolt: Res. Appl. 8, 473–487 (2000)CrossRef
Zurück zum Zitat Banerjee, B.: An Introduction to Metamaterials and Waves in Composites. Taylor and Francis Group, London (2011)CrossRef Banerjee, B.: An Introduction to Metamaterials and Waves in Composites. Taylor and Francis Group, London (2011)CrossRef
Zurück zum Zitat Barnes, W., Dereux, A., Ebbesen, T.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRef Barnes, W., Dereux, A., Ebbesen, T.: Surface plasmon subwavelength optics. Nature 424, 824–830 (2003)ADSCrossRef
Zurück zum Zitat Biro, D., Mack, S., Wolf, A., Lemke, A., Belledin, U., Erath, D., Holzinger, B., Wotke, E., Hofmann, M., Gautero, L., Rentsch, J., Preu, R.: Thermal Oxidation As a Key Technology for High Efficiency Screen Printed Industrial Silicon Solar Cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 1594–1599 (2009) Biro, D., Mack, S., Wolf, A., Lemke, A., Belledin, U., Erath, D., Holzinger, B., Wotke, E., Hofmann, M., Gautero, L., Rentsch, J., Preu, R.: Thermal Oxidation As a Key Technology for High Efficiency Screen Printed Industrial Silicon Solar Cells. In: Proceedings of the 34th IEEE Photovoltaic Specialists Conference, pp. 1594–1599 (2009)
Zurück zum Zitat Boukennous, Y., Benyahia, B., Charif, M.R., Chikouche, A.: Antireflection coating of TiO2 study and deposition by the screen printing method. J. Phys. 5, 1297–1305 (1995) Boukennous, Y., Benyahia, B., Charif, M.R., Chikouche, A.: Antireflection coating of TiO2 study and deposition by the screen printing method. J. Phys. 5, 1297–1305 (1995)
Zurück zum Zitat Cai, W., Shalaev, V.: Optical Metamaterials Fundamentals and Applications. Springer, Berlin (2010) Cai, W., Shalaev, V.: Optical Metamaterials Fundamentals and Applications. Springer, Berlin (2010)
Zurück zum Zitat Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44, 7532–7539 (2005)ADSCrossRef Centurioni, E.: Generalized matrix method for calculation of internal light energy flux in mixed coherent and incoherent multilayers. Appl. Opt. 44, 7532–7539 (2005)ADSCrossRef
Zurück zum Zitat Chopra, K.L., Das, S.R.: Thin Film Solar Cell. Springer, Berlin (1983)CrossRef Chopra, K.L., Das, S.R.: Thin Film Solar Cell. Springer, Berlin (1983)CrossRef
Zurück zum Zitat El-Amassi, D., El-Khozondar, H., Shabat, M.: Efficiency enhancement of solar cell using metamaterials. Int. J. Nano Stud. Technol. 4, 84–87 (2015)CrossRef El-Amassi, D., El-Khozondar, H., Shabat, M.: Efficiency enhancement of solar cell using metamaterials. Int. J. Nano Stud. Technol. 4, 84–87 (2015)CrossRef
Zurück zum Zitat Garcia-Meca, C., Hurtado, J., Marti, J., Martinez, A.: Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Phys. Rev. Lett. 106, 1–4 (2011)CrossRef Garcia-Meca, C., Hurtado, J., Marti, J., Martinez, A.: Low-loss multilayered metamaterial exhibiting a negative index of refraction at visible wavelengths. Phys. Rev. Lett. 106, 1–4 (2011)CrossRef
Zurück zum Zitat Goetzberger, A., Hoffmann, V.: Photovoltaic Solar Energy Generation. Springer, Berlin (2005) Goetzberger, A., Hoffmann, V.: Photovoltaic Solar Energy Generation. Springer, Berlin (2005)
Zurück zum Zitat Hamouche, H., Shabat, M.: Enhanced absorption in silicon metamaterials waveguide structure. Appl. Phys. A 122, 1–7 (2016)CrossRef Hamouche, H., Shabat, M.: Enhanced absorption in silicon metamaterials waveguide structure. Appl. Phys. A 122, 1–7 (2016)CrossRef
Zurück zum Zitat Hamouche, H., Shabat, M., Schaadt, D.: Multilayer solar cell waveguide structures containing metamaterials. Superlattices Microstruct. 101, 633–640 (2017)ADSCrossRef Hamouche, H., Shabat, M., Schaadt, D.: Multilayer solar cell waveguide structures containing metamaterials. Superlattices Microstruct. 101, 633–640 (2017)ADSCrossRef
Zurück zum Zitat Hezel, R., Schroner, R.: Plasma Si nitride—a promising dielectric to achieve high-quality silicon MIS/IL solar cells. J. Appl. Phys. 52, 3076–3079 (1981)ADSCrossRef Hezel, R., Schroner, R.: Plasma Si nitride—a promising dielectric to achieve high-quality silicon MIS/IL solar cells. J. Appl. Phys. 52, 3076–3079 (1981)ADSCrossRef
Zurück zum Zitat Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14, 11318–11323 (2006)ADSCrossRef Hosseini, A., Massoud, Y.: A low-loss metal-insulator-metal plasmonic bragg reflector. Opt. Express 14, 11318–11323 (2006)ADSCrossRef
Zurück zum Zitat Katsidis, C., Siapkas, D.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41, 3978–3987 (2002)ADSCrossRef Katsidis, C., Siapkas, D.: General transfer-matrix method for optical multilayer systems with coherent, partially coherent, and incoherent interference. Appl. Opt. 41, 3978–3987 (2002)ADSCrossRef
Zurück zum Zitat Kogelnik, H.: Theory of Dielectric Waveguides. Springer, Berlin (1979) Kogelnik, H.: Theory of Dielectric Waveguides. Springer, Berlin (1979)
Zurück zum Zitat Lavoie, B., Leung, P., Sanders, B.: Low-loss surface modes and lossy hybrid modes in metamaterial waveguides. Photon. Nanostruct. 10, 602–614 (2012)ADSCrossRef Lavoie, B., Leung, P., Sanders, B.: Low-loss surface modes and lossy hybrid modes in metamaterial waveguides. Photon. Nanostruct. 10, 602–614 (2012)ADSCrossRef
Zurück zum Zitat Liu, Y., Chen, Y., Li, J., Hung, T., Li, J.: Study of energy absorption on solar cell using metamaterials. Sol. Energy 86, 1586–1599 (2012)ADSCrossRef Liu, Y., Chen, Y., Li, J., Hung, T., Li, J.: Study of energy absorption on solar cell using metamaterials. Sol. Energy 86, 1586–1599 (2012)ADSCrossRef
Zurück zum Zitat Markvart, T., Castafier, L.: Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, Amsterdam (2003) Markvart, T., Castafier, L.: Practical Handbook of Photovoltaics: Fundamentals and Applications. Elsevier, Amsterdam (2003)
Zurück zum Zitat Mitsas, C., Siapkas, D.: Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. Appl. Opt. 34, 1678–1683 (1995)ADSCrossRef Mitsas, C., Siapkas, D.: Generalized matrix method for analysis of coherent and incoherent reflectance and transmittance of multilayer structures with rough surfaces, interfaces, and finite substrates. Appl. Opt. 34, 1678–1683 (1995)ADSCrossRef
Zurück zum Zitat Moys, B.: The theory of double-layer antireflection coatings. Thin Solid Films 21, 145–157 (1974)ADSCrossRef Moys, B.: The theory of double-layer antireflection coatings. Thin Solid Films 21, 145–157 (1974)ADSCrossRef
Zurück zum Zitat Mulligan, W., Rose, D., Cudzinovic, M., De Ceuster. D., McIntosh, K., Smith, D., Swanson, R.: Manufacture of solar cells with 21% efficiency. In: Proceedings of 19th EPVSEC, pp. 3–6 (2004) Mulligan, W., Rose, D., Cudzinovic, M., De Ceuster. D., McIntosh, K., Smith, D., Swanson, R.: Manufacture of solar cells with 21% efficiency. In: Proceedings of 19th EPVSEC, pp. 3–6 (2004)
Zurück zum Zitat Palik, E.: Handbook of Optical Constants of Solids, pp. 398–399. Academic Press, London (1985) Palik, E.: Handbook of Optical Constants of Solids, pp. 398–399. Academic Press, London (1985)
Zurück zum Zitat Saeta, P., Ferry, V., Pacifici, D., Munday, J., Atwater, H.: How much can guided modes enhance absorption in thin solar cells? Opt. Express 17, 20976–20990 (2009)CrossRef Saeta, P., Ferry, V., Pacifici, D., Munday, J., Atwater, H.: How much can guided modes enhance absorption in thin solar cells? Opt. Express 17, 20976–20990 (2009)CrossRef
Zurück zum Zitat Sardi, L., Bargioni, S., Canali, C., Davoli, P., Prudenziata, M., Valbusa, V.: Some features of thick film technology for the back metallization of solar cells. Sol. Cells. 11, 51–67 (1984)ADSCrossRef Sardi, L., Bargioni, S., Canali, C., Davoli, P., Prudenziata, M., Valbusa, V.: Some features of thick film technology for the back metallization of solar cells. Sol. Cells. 11, 51–67 (1984)ADSCrossRef
Zurück zum Zitat Tanner, D.: Optical Effects in Solids, University of Florida, Lecture notes (2013) Tanner, D.: Optical Effects in Solids, University of Florida, Lecture notes (2013)
Zurück zum Zitat Tong, X.C.: Advanced Materials for Integrated Optical Waveguides. Springer, Berlin (2014)CrossRef Tong, X.C.: Advanced Materials for Integrated Optical Waveguides. Springer, Berlin (2014)CrossRef
Zurück zum Zitat Yin, G., Merschjann, C., Schmid, M.: The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films. Appl. Phys. 113, 213510-1–213510-6 (2013) Yin, G., Merschjann, C., Schmid, M.: The effect of surface roughness on the determination of optical constants of CuInSe2 and CuGaSe2 thin films. Appl. Phys. 113, 213510-1–213510-6 (2013)
Zurück zum Zitat Yuan, H., Page, M., Iwaniczko, E., Xu, Y., Roybal, L., Wang, Q., Branz, H., Meier, D.: Silicon solar cells with front hetero-contact and aluminum alloy back junction. In: Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 8–11 (2008) Yuan, H., Page, M., Iwaniczko, E., Xu, Y., Roybal, L., Wang, Q., Branz, H., Meier, D.: Silicon solar cells with front hetero-contact and aluminum alloy back junction. In: Conference Record of the IEEE Photovoltaic Specialists Conference, pp. 8–11 (2008)
Zurück zum Zitat Zhao, J., Green, M.: Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Dev. 38, 1925–1934 (1991)ADSCrossRef Zhao, J., Green, M.: Optimized antireflection coatings for high-efficiency silicon solar cells. IEEE Trans. Electron Dev. 38, 1925–1934 (1991)ADSCrossRef
Metadaten
Titel
Computational analysis of metamaterial–aluminum–silicon solar cell model
verfasst von
Houria Hamouche
Mohammed M. Shabat
Publikationsdatum
01.12.2018
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 12/2018
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-018-1705-8

Weitere Artikel der Ausgabe 12/2018

Optical and Quantum Electronics 12/2018 Zur Ausgabe

Neuer Inhalt