Skip to main content

2012 | OriginalPaper | Buchkapitel

6. Computational Approaches and Simulation

verfasst von : Steven W. Cranford, Markus J. Buehler

Erschienen in: Biomateriomics

Verlag: Springer Netherlands

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computation and simulation provides a means to investigate complex materiomic systems with unparalleled control and accuracy. At the same time, a holistic description of a material system necessitates knowledge of the lowest possible scale—atomistic and molecular interactions. While quantum level resolution provides a means to understand atom-to-atom interactions, molecular interactions provides the foundation for deterministic (or predictable) mechanistic behavior. In recent years, molecular dynamics has developed into a powerful tool to investigate biological systems such as the stretching of proteins and other macromolecules. The advent of reactive molecular dynamics (wherein chemical bonds can be formed or ruptured) has extended the range of applications at the nanoscale. Being said, the limitations of full atomistic simulation (in terms of accessible time and length scales) has necessitated coarse-grain and other multiscale methods, in a bottom-up “fine-trains-coarse” paradigm. Not unlike the reduction of engineering analysis to critical components, such multiscale methods can be used to bridge each structural hierarchy, characterize performance and behavior, and successfully explore the entire materiome via simulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
We note that the computational and simulation techniques discussed herein are by no means intended to be exhaustive, presented in full depth, or canonical. Focus is particularly given to molecular dynamics approaches and coarse-grain methodologies insofar as they are relevant to biological materials. The intent is to illustrate a multiscale paradigm necessary to a materiomic perspective, and not provide a robust technical guide or resource. Interested readers are directed to the suggested readings at the end of the chapter.
 
2
This does not imply that all models are useful, merely the fact that models are more akin to a theory or piece of knowledge—abstract and nonphysical—than a tangible experimental specimen. At times “failed models” are most useful as they teach us what is missing but other models, like failed theories, are best forgotten.
 
3
They can, however, be inferred by clever modeling.
 
Literatur
1.
Zurück zum Zitat W. Goddard, A perspective of materials modeling, in Handbook of Materials Modeling, ed. by S. Yip (Springer, Berlin, 2006) W. Goddard, A perspective of materials modeling, in Handbook of Materials Modeling, ed. by S. Yip (Springer, Berlin, 2006)
2.
Zurück zum Zitat N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)CrossRef N. Metropolis, S. Ulam, The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)CrossRef
3.
Zurück zum Zitat N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRef N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, Equation of state calculations by fast computing machines. J. Chem. Phys. 21(6), 1087–1092 (1953)CrossRef
4.
Zurück zum Zitat B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRef B.J. Alder, T.E. Wainwright, Phase transition for a hard sphere system. J. Chem. Phys. 27(5), 1208–1209 (1957)CrossRef
5.
Zurück zum Zitat B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. 1. General method. J. Chem. Phys. 31(2), 459–466 (1959)CrossRef B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. 1. General method. J. Chem. Phys. 31(2), 459–466 (1959)CrossRef
6.
Zurück zum Zitat B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres. J. Chem. Phys. 33(5), 1439–1451 (1960)CrossRef B.J. Alder, T.E. Wainwright, Studies in molecular dynamics. 2. Behavior of a small number of elastic spheres. J. Chem. Phys. 33(5), 1439–1451 (1960)CrossRef
7.
Zurück zum Zitat A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, 405–411 (1964)CrossRef A. Rahman, Correlations in the motion of atoms in liquid argon. Phys. Rev. 136, 405–411 (1964)CrossRef
8.
Zurück zum Zitat A. Rahman, Fh. Stilling, Molecular dynamics study of liquid water. J. Chem. Phys. 55(7), 3336 (1971)CrossRef A. Rahman, Fh. Stilling, Molecular dynamics study of liquid water. J. Chem. Phys. 55(7), 3336 (1971)CrossRef
9.
Zurück zum Zitat P.Y. Chou, G.D. Fasman, Prediction of protein conformation. Biochemistry 13(2), 222–245 (1974)CrossRef P.Y. Chou, G.D. Fasman, Prediction of protein conformation. Biochemistry 13(2), 222–245 (1974)CrossRef
10.
Zurück zum Zitat M. Levitt, A. Warshel, Computer-simulation of protein folding. Nature 253(5494), 694–698 (1975)CrossRef M. Levitt, A. Warshel, Computer-simulation of protein folding. Nature 253(5494), 694–698 (1975)CrossRef
11.
Zurück zum Zitat B.R. Gelin, M. Karplus, Sidechain torsional potentials and motion of amino-acids in proteins—bovine pancreatic trypsin-inhibitor. Proc. Natl. Acad. Sci. USA 72(6), 2002–2006 (1975)CrossRef B.R. Gelin, M. Karplus, Sidechain torsional potentials and motion of amino-acids in proteins—bovine pancreatic trypsin-inhibitor. Proc. Natl. Acad. Sci. USA 72(6), 2002–2006 (1975)CrossRef
12.
Zurück zum Zitat J.A. Mccammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef J.A. Mccammon, B.R. Gelin, M. Karplus, Dynamics of folded proteins. Nature 267(5612), 585–590 (1977)CrossRef
13.
Zurück zum Zitat D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, Gromacs: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)CrossRef D. Van der Spoel, E. Lindahl, B. Hess, G. Groenhof, A.E. Mark, H.J.C. Berendsen, Gromacs: fast, flexible, and free. J. Comput. Chem. 26(16), 1701–1718 (2005)CrossRef
14.
Zurück zum Zitat M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kale, R.D. Skeel, K. Schulten, Namd: a parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 10(4), 251–268 (1996) M.T. Nelson, W. Humphrey, A. Gursoy, A. Dalke, L.V. Kale, R.D. Skeel, K. Schulten, Namd: a parallel, object oriented molecular dynamics program. Int. J. Supercomput. Appl. High Perform. Comput. 10(4), 251–268 (1996)
15.
Zurück zum Zitat S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef S. Plimpton, Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117(1), 1–19 (1995)CrossRef
16.
Zurück zum Zitat M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987) M.P. Allen, D.J. Tildesley, Computer Simulation of Liquids (Oxford University Press, Oxford, 1987)
17.
Zurück zum Zitat P.M. Morse, Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev. 34(1), 57–64 (1929)CrossRef P.M. Morse, Diatomic molecules according to the wave mechanics. ii. vibrational levels. Phys. Rev. 34(1), 57–64 (1929)CrossRef
18.
Zurück zum Zitat J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous-carbon. Phys. Rev. Lett. 61(25), 2879–2882 (1988)CrossRef J. Tersoff, Empirical interatomic potential for carbon, with applications to amorphous-carbon. Phys. Rev. Lett. 61(25), 2879–2882 (1988)CrossRef
19.
Zurück zum Zitat F.H. Stillinger, T.A. Weber, Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262–5271 (1985)CrossRef F.H. Stillinger, T.A. Weber, Computer-simulation of local order in condensed phases of silicon. Phys. Rev. B 31(8), 5262–5271 (1985)CrossRef
20.
Zurück zum Zitat D.J. Oh, R.A. Johnson, Simple embedded atom method model for fcc and hcp metals. J. Mater. Res. 3(3), 471–478 (1988)CrossRef D.J. Oh, R.A. Johnson, Simple embedded atom method model for fcc and hcp metals. J. Mater. Res. 3(3), 471–478 (1988)CrossRef
21.
Zurück zum Zitat J.E. Angelo, M.I. Baskes, Interfacial studies using the eam and meam. Interface Sci. 4(1–2), 47–63 (1996) J.E. Angelo, M.I. Baskes, Interfacial studies using the eam and meam. Interface Sci. 4(1–2), 47–63 (1996)
22.
Zurück zum Zitat M.S. Daw, M.I. Baskes, Embedded-atom method—derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRef M.S. Daw, M.I. Baskes, Embedded-atom method—derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29(12), 6443–6453 (1984)CrossRef
23.
Zurück zum Zitat Z. Qin, M.J. Buehler, Molecular dynamics simulation of the alpha-helix to beta-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys. Rev. Lett. 104(19) (2010) Z. Qin, M.J. Buehler, Molecular dynamics simulation of the alpha-helix to beta-sheet transition in coiled protein filaments: evidence for a critical filament length scale. Phys. Rev. Lett. 104(19) (2010)
24.
Zurück zum Zitat A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wirkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRef A.D. MacKerell, D. Bashford, M. Bellott, R.L. Dunbrack, J.D. Evanseck, M.J. Field, S. Fischer, J. Gao, H. Guo, S. Ha, D. Joseph-McCarthy, L. Kuchnir, K. Kuczera, F.T.K. Lau, C. Mattos, S. Michnick, T. Ngo, D.T. Nguyen, B. Prodhom, W.E. Reiher, B. Roux, M. Schlenkrich, J.C. Smith, R. Stote, J. Straub, M. Watanabe, J. Wirkiewicz-Kuczera, D. Yin, M. Karplus, All-atom empirical potential for molecular modeling and dynamics studies of proteins. J. Phys. Chem. B 102(18), 3586–3616 (1998)CrossRef
25.
Zurück zum Zitat J.W. Ponder, D.A. Case, Force fields for protein simulations. Protein Simul. 66, 27 (2003)CrossRef J.W. Ponder, D.A. Case, Force fields for protein simulations. Protein Simul. 66, 27 (2003)CrossRef
26.
Zurück zum Zitat A.D. Mackerell, Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25(13), 1584–1604 (2004)CrossRef A.D. Mackerell, Empirical force fields for biological macromolecules: overview and issues. J. Comput. Chem. 25(13), 1584–1604 (2004)CrossRef
27.
Zurück zum Zitat A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)CrossRef A.K. Rappe, C.J. Casewit, K.S. Colwell, W.A. Goddard, W.M. Skiff, Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 114(25), 10024–10035 (1992)CrossRef
28.
Zurück zum Zitat D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, I. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91(1), 1–41 (1995)CrossRef D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, I. Cheatham, S. DeBolt, D. Ferguson, G. Seibel, P. Kollman, Amber, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput. Phys. Commun. 91(1), 1–41 (1995)CrossRef
29.
Zurück zum Zitat W. Wang, O. Donini, C.M. Reyes, P.A. Kollman, Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001)CrossRef W. Wang, O. Donini, C.M. Reyes, P.A. Kollman, Biomolecular simulations: recent developments in force fields, simulations of enzyme catalysis, protein-ligand, protein-protein, and protein-nucleic acid noncovalent interactions. Annu. Rev. Biophys. Biomol. Struct. 30, 211–243 (2001)CrossRef
30.
Zurück zum Zitat H.A. Scheraga, M. Khalili, A. Liwo, Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Biophys. Bioeng. 58, 57–83 (2007) H.A. Scheraga, M. Khalili, A. Liwo, Protein-folding dynamics: overview of molecular simulation techniques. Annu. Rev. Biophys. Bioeng. 58, 57–83 (2007)
31.
Zurück zum Zitat A.A. Deniz, S. Mukhopadhyay, E.A. Lemke, Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface 5(18), 15–45 (2008)CrossRef A.A. Deniz, S. Mukhopadhyay, E.A. Lemke, Single-molecule biophysics: at the interface of biology, physics and chemistry. J. R. Soc. Interface 5(18), 15–45 (2008)CrossRef
32.
Zurück zum Zitat M.J. Buehler, S. Keten, Colloquium: failure of molecules, bones, and the earth itself. Rev. Mod. Phys. 82(2), 1459 (2010)CrossRef M.J. Buehler, S. Keten, Colloquium: failure of molecules, bones, and the earth itself. Rev. Mod. Phys. 82(2), 1459 (2010)CrossRef
33.
Zurück zum Zitat H.J. Gao, A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44(9), 1453–1474 (1996)CrossRef H.J. Gao, A theory of local limiting speed in dynamic fracture. J. Mech. Phys. Solids 44(9), 1453–1474 (1996)CrossRef
34.
Zurück zum Zitat M.J. Buehler, F.F. Abraham, H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426(6963), 141–146 (2003)CrossRef M.J. Buehler, F.F. Abraham, H.J. Gao, Hyperelasticity governs dynamic fracture at a critical length scale. Nature 426(6963), 141–146 (2003)CrossRef
35.
Zurück zum Zitat A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef A.C.T. van Duin, S. Dasgupta, F. Lorant, W.A. Goddard, Reaxff: a reactive force field for hydrocarbons. J. Phys. Chem. A 105(41), 9396–9409 (2001)CrossRef
36.
Zurück zum Zitat A.C.T. van Duin, A. Strachan, S. Stewman, Q.S. Zhang, X. Xu, W.A. Goddard, Reaxff(sio) reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803–3811 (2003)CrossRef A.C.T. van Duin, A. Strachan, S. Stewman, Q.S. Zhang, X. Xu, W.A. Goddard, Reaxff(sio) reactive force field for silicon and silicon oxide systems. J. Phys. Chem. A 107(19), 3803–3811 (2003)CrossRef
37.
Zurück zum Zitat D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys., Condens. Matter 14(4), 783–802 (2002)CrossRef D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, S.B. Sinnott, A second-generation reactive empirical bond order (rebo) potential energy expression for hydrocarbons. J. Phys., Condens. Matter 14(4), 783–802 (2002)CrossRef
38.
Zurück zum Zitat S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)CrossRef S.J. Stuart, A.B. Tutein, J.A. Harrison, A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 112(14), 6472–6486 (2000)CrossRef
39.
Zurück zum Zitat A. Strachan, E.M. Kober, A.C.T. van Duin, J. Oxgaard, W.A. Goddard, Thermal decomposition of rdx from reactive molecular dynamics. J. Chem. Phys. 122(5), (2005)CrossRef A. Strachan, E.M. Kober, A.C.T. van Duin, J. Oxgaard, W.A. Goddard, Thermal decomposition of rdx from reactive molecular dynamics. J. Chem. Phys. 122(5), (2005)CrossRef
40.
Zurück zum Zitat K. Chenoweth, S. Cheung, A.C.T. van Duin, W.A. Goddard, E.M. Kober, Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the reaxff reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)CrossRef K. Chenoweth, S. Cheung, A.C.T. van Duin, W.A. Goddard, E.M. Kober, Simulations on the thermal decomposition of a poly(dimethylsiloxane) polymer using the reaxff reactive force field. J. Am. Chem. Soc. 127(19), 7192–7202 (2005)CrossRef
41.
Zurück zum Zitat K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, Development of the reaxff reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109(3), 493–499 (2005)CrossRef K.D. Nielson, A.C.T. van Duin, J. Oxgaard, W.Q. Deng, W.A. Goddard, Development of the reaxff reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. J. Phys. Chem. A 109(3), 493–499 (2005)CrossRef
42.
Zurück zum Zitat S.S. Han, A.C.T. van Duin, W.A. Goddard, H.M. Lee, Optimization and application of lithium parameters for the reactive force field, reaxff. J. Phys. Chem. A 109(20), 4575–4582 (2005)CrossRef S.S. Han, A.C.T. van Duin, W.A. Goddard, H.M. Lee, Optimization and application of lithium parameters for the reactive force field, reaxff. J. Phys. Chem. A 109(20), 4575–4582 (2005)CrossRef
43.
Zurück zum Zitat S. Cheung, W.Q. Deng, A.C.T. van Duin, W.A. Goddard, Reaxff(mgh) reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005)CrossRef S. Cheung, W.Q. Deng, A.C.T. van Duin, W.A. Goddard, Reaxff(mgh) reactive force field for magnesium hydride systems. J. Phys. Chem. A 109(5), 851–859 (2005)CrossRef
44.
Zurück zum Zitat M.J. Buehler, Hierarchical chemo-nanomechanics of proteins: entropic elasticity, protein unfolding and molecular fracture. J. Mech. Mater. Struct. 2(6), 1019–1057 (2007)CrossRef M.J. Buehler, Hierarchical chemo-nanomechanics of proteins: entropic elasticity, protein unfolding and molecular fracture. J. Mech. Mater. Struct. 2(6), 1019–1057 (2007)CrossRef
45.
Zurück zum Zitat A.N. Parbhu, W.G. Bryson, R. Lal, Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an afm. Biochemistry 38(36), 11755–11761 (1999)CrossRef A.N. Parbhu, W.G. Bryson, R. Lal, Disulfide bonds in the outer layer of keratin fibers confer higher mechanical rigidity: correlative nano-indentation and elasticity measurement with an afm. Biochemistry 38(36), 11755–11761 (1999)CrossRef
46.
Zurück zum Zitat H. Wang, D.A.D. Parry, L.N. Jones, W.W. Idler, L.N. Marekov, P.M. Steinert, In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J. Cell Biol. 151(7), 1459–1468 (2000)CrossRef H. Wang, D.A.D. Parry, L.N. Jones, W.W. Idler, L.N. Marekov, P.M. Steinert, In vitro assembly and structure of trichocyte keratin intermediate filaments: a novel role for stabilization by disulfide bonding. J. Cell Biol. 151(7), 1459–1468 (2000)CrossRef
47.
Zurück zum Zitat O. Mayans, J. Wuerges, S. Canela, M. Gautel, M. Wilmanns, Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9(4), 331–340 (2001)CrossRef O. Mayans, J. Wuerges, S. Canela, M. Gautel, M. Wilmanns, Structural evidence for a possible role of reversible disulphide bridge formation in the elasticity of the muscle protein titin. Structure 9(4), 331–340 (2001)CrossRef
48.
Zurück zum Zitat N. Mucke, L. Kreplak, R. Kirmse, T. Wedig, H. Herrmann, U. Aebi, J. Langowski, Assessing the flexibility of intermediate filaments by atomic force microscopy. J. Mol. Biol. 335(5), 1241–1250 (2004)CrossRef N. Mucke, L. Kreplak, R. Kirmse, T. Wedig, H. Herrmann, U. Aebi, J. Langowski, Assessing the flexibility of intermediate filaments by atomic force microscopy. J. Mol. Biol. 335(5), 1241–1250 (2004)CrossRef
49.
Zurück zum Zitat F. Aslund, J. Beckwith, Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96(6), 751–753 (1999)CrossRef F. Aslund, J. Beckwith, Bridge over troubled waters: sensing stress by disulfide bond formation. Cell 96(6), 751–753 (1999)CrossRef
50.
Zurück zum Zitat P.J. Hogg, Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28(4), 210–214 (2003)CrossRef P.J. Hogg, Disulfide bonds as switches for protein function. Trends Biochem. Sci. 28(4), 210–214 (2003)CrossRef
51.
Zurück zum Zitat S. Keten, C.-C. Chou, A.C.T. van Duin, M.J. Buehler, Tunable nanomechanics of protein disulfide bonds in redox microenvironments. J. Mech. Behav. Biomed. Mater. 5(1), 32–40 (2012)CrossRef S. Keten, C.-C. Chou, A.C.T. van Duin, M.J. Buehler, Tunable nanomechanics of protein disulfide bonds in redox microenvironments. J. Mech. Behav. Biomed. Mater. 5(1), 32–40 (2012)CrossRef
52.
Zurück zum Zitat A.P. Wiita, S.R.K. Ainavarapu, H.H. Huang, J.M. Fernandez, Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 103(19), 7222–7227 (2006)CrossRef A.P. Wiita, S.R.K. Ainavarapu, H.H. Huang, J.M. Fernandez, Force-dependent chemical kinetics of disulfide bond reduction observed with single-molecule techniques. Proc. Natl. Acad. Sci. USA 103(19), 7222–7227 (2006)CrossRef
53.
Zurück zum Zitat M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, M. Parrinello, Plumed: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180(10), 1961–1972 (2009)CrossRef M. Bonomi, D. Branduardi, G. Bussi, C. Camilloni, D. Provasi, P. Raiteri, D. Donadio, F. Marinelli, F. Pietrucci, R.A. Broglia, M. Parrinello, Plumed: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180(10), 1961–1972 (2009)CrossRef
54.
Zurück zum Zitat M. Bonomi, M. Parrinello, Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104(19), 190601 (2010)CrossRef M. Bonomi, M. Parrinello, Enhanced sampling in the well-tempered ensemble. Phys. Rev. Lett. 104(19), 190601 (2010)CrossRef
55.
Zurück zum Zitat J. Kubelka, J. Hofrichter, W.A. Eaton, The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14(1), 76–88 (2004)CrossRef J. Kubelka, J. Hofrichter, W.A. Eaton, The protein folding ‘speed limit’. Curr. Opin. Struct. Biol. 14(1), 76–88 (2004)CrossRef
56.
Zurück zum Zitat A. Laio, M. Parrinello, Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562–12566 (2002)CrossRef A. Laio, M. Parrinello, Escaping free-energy minima. Proc. Natl. Acad. Sci. USA 99(20), 12562–12566 (2002)CrossRef
57.
Zurück zum Zitat A.F. Voter, F. Montalenti, T.C. Germann, Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321–346 (2002)CrossRef A.F. Voter, F. Montalenti, T.C. Germann, Extending the time scale in atomistic simulation of materials. Annu. Rev. Mater. Res. 32, 321–346 (2002)CrossRef
58.
Zurück zum Zitat A. Kushima, X. Lin, J. Li, J. Eapen, J.C. Mauro, X.F. Qian, P. Diep, S. Yip, Computing the viscosity of supercooled liquids. J. Chem. Phys. 130(22), (2009) A. Kushima, X. Lin, J. Li, J. Eapen, J.C. Mauro, X.F. Qian, P. Diep, S. Yip, Computing the viscosity of supercooled liquids. J. Chem. Phys. 130(22), (2009)
59.
Zurück zum Zitat M.J. Alava, P.K.V.V. Nukalaz, S. Zapperi, Statistical models of fracture. Adv. Phys. 55(3–4), 349–476 (2006)CrossRef M.J. Alava, P.K.V.V. Nukalaz, S. Zapperi, Statistical models of fracture. Adv. Phys. 55(3–4), 349–476 (2006)CrossRef
60.
Zurück zum Zitat Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRef Y. Sugita, Y. Okamoto, Replica-exchange molecular dynamics method for protein folding. Chem. Phys. Lett. 314, 141–151 (1999)CrossRef
61.
Zurück zum Zitat A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011)CrossRef A. Gautieri, S. Vesentini, A. Redaelli, M.J. Buehler, Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11(2), 757–766 (2011)CrossRef
62.
Zurück zum Zitat K.Y. Sanbonmatsu, C.S. Tung, High performance computing in biology: multimillion atom simulations of nanoscale systems. J. Struct. Biol. 157(3), 470–480 (2007)CrossRef K.Y. Sanbonmatsu, C.S. Tung, High performance computing in biology: multimillion atom simulations of nanoscale systems. J. Struct. Biol. 157(3), 470–480 (2007)CrossRef
63.
Zurück zum Zitat K. Kadau, T.C. Germann, P.S. Lomdahl, Molecular dynamics comes of age: 320 billion atom simulation on bluegene/l. Int. J. Mod. Phys. C 17(12), 1755–1761 (2006)CrossRef K. Kadau, T.C. Germann, P.S. Lomdahl, Molecular dynamics comes of age: 320 billion atom simulation on bluegene/l. Int. J. Mod. Phys. C 17(12), 1755–1761 (2006)CrossRef
64.
Zurück zum Zitat V. Tozzini, Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144–150 (2005)CrossRef V. Tozzini, Coarse-grained models for proteins. Curr. Opin. Struct. Biol. 15, 144–150 (2005)CrossRef
65.
Zurück zum Zitat D.W. Brenner, The art and science of an analytic potential. Phys. Status Solidi B 217(1), 23–40 (2000)CrossRef D.W. Brenner, The art and science of an analytic potential. Phys. Status Solidi B 217(1), 23–40 (2000)CrossRef
66.
Zurück zum Zitat R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functionaly theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)CrossRef R. Car, M. Parrinello, Unified approach for molecular dynamics and density-functionaly theory. Phys. Rev. Lett. 55(22), 2471–2474 (1985)CrossRef
67.
Zurück zum Zitat B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRef B.R. Brooks, R.E. Bruccoleri, B.D. Olafson, D.J. States, S. Swaminathan, M. Karplus, Charmm: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4(2), 187–217 (1983)CrossRef
68.
Zurück zum Zitat P. Sherwood, B.R. Brooks, M.S.P. Sansom, Multiscale methods for macromolecular simulations. Curr. Opin. Struct. Biol. 18, 630–640 (2008)CrossRef P. Sherwood, B.R. Brooks, M.S.P. Sansom, Multiscale methods for macromolecular simulations. Curr. Opin. Struct. Biol. 18, 630–640 (2008)CrossRef
69.
Zurück zum Zitat F. Tama, I.C.L. Brooks, Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35, 115–133 (2006)CrossRef F. Tama, I.C.L. Brooks, Symmetry, form, and shape: guiding principles for robustness in macromolecular machines. Annu. Rev. Biophys. Biomol. Struct. 35, 115–133 (2006)CrossRef
70.
Zurück zum Zitat I. Bahar, A.J. Rader, Coarse-grain normal model analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)CrossRef I. Bahar, A.J. Rader, Coarse-grain normal model analysis in structural biology. Curr. Opin. Struct. Biol. 15, 586–592 (2005)CrossRef
71.
Zurück zum Zitat M.M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77(9), 1905–1908 (1996)CrossRef M.M. Tirion, Large amplitude elastic motions in proteins from a single-parameter, atomic analysis. Phys. Rev. Lett. 77(9), 1905–1908 (1996)CrossRef
72.
Zurück zum Zitat T. Haliloglu, I. Bahar, B. Erman, Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79(16), 3090–3093 (1997)CrossRef T. Haliloglu, I. Bahar, B. Erman, Gaussian dynamics of folded proteins. Phys. Rev. Lett. 79(16), 3090–3093 (1997)CrossRef
73.
Zurück zum Zitat S. Hayward, N. Go, Collective variable description of native protein dynamics. Annu. Rev. Biophys. Bioeng. 46, 223–250 (1995) S. Hayward, N. Go, Collective variable description of native protein dynamics. Annu. Rev. Biophys. Bioeng. 46, 223–250 (1995)
74.
Zurück zum Zitat L. Meireles, M. Gur, A. Bakan, I. Bahar, Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20(10), 1645–1658 (2011)CrossRef L. Meireles, M. Gur, A. Bakan, I. Bahar, Pre-existing soft modes of motion uniquely defined by native contact topology facilitate ligand binding to proteins. Protein Sci. 20(10), 1645–1658 (2011)CrossRef
75.
Zurück zum Zitat A.R. Atilgan, S.R. Durell, R.L. Jernigan, M.C. Demirel, O. Keskin, I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)CrossRef A.R. Atilgan, S.R. Durell, R.L. Jernigan, M.C. Demirel, O. Keskin, I. Bahar, Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys. J. 80, 505–515 (2001)CrossRef
76.
Zurück zum Zitat P. Doruker, R.L. Jernigan, I. Bahar, Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comput. Chem. 23(1), 119–127 (2002)CrossRef P. Doruker, R.L. Jernigan, I. Bahar, Dynamics of large proteins through hierarchical levels of coarse-grained structures. J. Comput. Chem. 23(1), 119–127 (2002)CrossRef
77.
Zurück zum Zitat I. Navizet, R. Lavery, R.L. Jernigan, Myosin flexibility: structural domains and collective vibrations. Protein. Struct. Funct. Bioinform. 54, 384–393 (2004)CrossRef I. Navizet, R. Lavery, R.L. Jernigan, Myosin flexibility: structural domains and collective vibrations. Protein. Struct. Funct. Bioinform. 54, 384–393 (2004)CrossRef
78.
Zurück zum Zitat W. Zheng, S. Doniach, A comparative study of motor-protein motions by using a simple elastic-network model. Proc. Natl. Acad. Sci. USA 100(23), 13253–13258 (2003)CrossRef W. Zheng, S. Doniach, A comparative study of motor-protein motions by using a simple elastic-network model. Proc. Natl. Acad. Sci. USA 100(23), 13253–13258 (2003)CrossRef
79.
Zurück zum Zitat H. Dietz, M. Rief, Elastic bond network model for protein unfolding mechanics. Phys. Rev. Lett. 100, 098101 (2008)CrossRef H. Dietz, M. Rief, Elastic bond network model for protein unfolding mechanics. Phys. Rev. Lett. 100, 098101 (2008)CrossRef
80.
Zurück zum Zitat D.K. West, D.J. Brockwell, P.D. Olmsted, S.E. Radford, E. Paci, Mechanical resistance of proteins explained using simple molecular models. Biophys. J. 90(1), 287–297 (2006)CrossRef D.K. West, D.J. Brockwell, P.D. Olmsted, S.E. Radford, E. Paci, Mechanical resistance of proteins explained using simple molecular models. Biophys. J. 90(1), 287–297 (2006)CrossRef
81.
Zurück zum Zitat J.I. Sulkowska, M. Cieplak, Mechanical stretching of proteins—a theoretical survey of the protein data bank. J. Phys., Condens. Matter 19, 283201 (2007)CrossRef J.I. Sulkowska, M. Cieplak, Mechanical stretching of proteins—a theoretical survey of the protein data bank. J. Phys., Condens. Matter 19, 283201 (2007)CrossRef
82.
Zurück zum Zitat M. Bathe, A finite element framework for computation of protein normal modes and mechanical response. Protein. Struct. Funct. Bioinform. 70(4), 1595–1609 (2007)CrossRef M. Bathe, A finite element framework for computation of protein normal modes and mechanical response. Protein. Struct. Funct. Bioinform. 70(4), 1595–1609 (2007)CrossRef
83.
Zurück zum Zitat I. Bahar, R.L. Jernigan, Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J. Mol. Biol. 266(1), 195–214 (1997)CrossRef I. Bahar, R.L. Jernigan, Inter-residue potentials in globular proteins and the dominance of highly specific hydrophilic interactions at close separation. J. Mol. Biol. 266(1), 195–214 (1997)CrossRef
84.
Zurück zum Zitat H.D. Nguyen, C.K. Hall, Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. USA 101(46), 16180–16185 (2004)CrossRef H.D. Nguyen, C.K. Hall, Molecular dynamics simulations of spontaneous fibril formation by random-coil peptides. Proc. Natl. Acad. Sci. USA 101(46), 16180–16185 (2004)CrossRef
85.
Zurück zum Zitat H.D. Nguyen, C.K. Hall, Spontaneous fibril formation by polyalanines; discontinuous molecular dynamic simulations. J. Am. Chem. Soc. 128(6), 1890–1901 (2006)CrossRef H.D. Nguyen, C.K. Hall, Spontaneous fibril formation by polyalanines; discontinuous molecular dynamic simulations. J. Am. Chem. Soc. 128(6), 1890–1901 (2006)CrossRef
86.
Zurück zum Zitat A. Arkhipov, P.L. Freddolino, K. Imada, K. Namba, K. Schulten, Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys. J. 91, 4589–4597 (2006)CrossRef A. Arkhipov, P.L. Freddolino, K. Imada, K. Namba, K. Schulten, Coarse-grained molecular dynamics simulations of a rotating bacterial flagellum. Biophys. J. 91, 4589–4597 (2006)CrossRef
87.
Zurück zum Zitat M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)CrossRef M.J. Buehler, Nature designs tough collagen: explaining the nanostructure of collagen fibrils. Proc. Natl. Acad. Sci. USA 103(33), 12285–12290 (2006)CrossRef
88.
Zurück zum Zitat M.J. Buehler, Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18, 295102 (2007)CrossRef M.J. Buehler, Molecular nanomechanics of nascent bone: fibrillar toughening by mineralization. Nanotechnology 18, 295102 (2007)CrossRef
89.
Zurück zum Zitat S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The martini force filed: coarse grained model for biomolecular structures. J. Phys. Chem. B 111, 7812–7824 (2007)CrossRef S.J. Marrink, H.J. Risselada, S. Yefimov, D.P. Tieleman, A.H. de Vries, The martini force filed: coarse grained model for biomolecular structures. J. Phys. Chem. B 111, 7812–7824 (2007)CrossRef
90.
Zurück zum Zitat S.J. Marrink, A.H. de Vries, A.E. Mark, Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004)CrossRef S.J. Marrink, A.H. de Vries, A.E. Mark, Coarse grained model for semiquantitative lipid simulations. J. Phys. Chem. B 108, 750–760 (2004)CrossRef
91.
Zurück zum Zitat L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, The martini coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)CrossRef L. Monticelli, S.K. Kandasamy, X. Periole, R.G. Larson, D.P. Tieleman, S.J. Marrink, The martini coarse-grained force field: extension to proteins. J. Chem. Theory Comput. 4, 819–834 (2008)CrossRef
92.
Zurück zum Zitat J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105, 4464–4470 (2001)CrossRef J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, M.L. Klein, A coarse grain model for phospholipid simulations. J. Phys. Chem. B 105, 4464–4470 (2001)CrossRef
93.
Zurück zum Zitat J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, P.B. Moore, M.L. Klein, Simulations of phospholipids using a coarse-grain model. J. Phys. Chem. B 105, 9785–9792 (2001)CrossRef J.C. Shelley, M.Y. Shelley, R.C. Reeder, S. Bandyopadhyay, P.B. Moore, M.L. Klein, Simulations of phospholipids using a coarse-grain model. J. Phys. Chem. B 105, 9785–9792 (2001)CrossRef
94.
Zurück zum Zitat S.O. Nielson, C.F. Lopez, G. Srinivas, M.L. Klein, Coarse grain models and the computer simulation of soft materials. J. Phys., Condens. Matter 16, 481–512 (2004)CrossRef S.O. Nielson, C.F. Lopez, G. Srinivas, M.L. Klein, Coarse grain models and the computer simulation of soft materials. J. Phys., Condens. Matter 16, 481–512 (2004)CrossRef
95.
Zurück zum Zitat M. Venturoli, M.M. Sperotto, M. Kranenburg, B. Smit, Mesoscopic models of biological membranes. Phys. Rep. 437, 1–54 (2006)CrossRef M. Venturoli, M.M. Sperotto, M. Kranenburg, B. Smit, Mesoscopic models of biological membranes. Phys. Rep. 437, 1–54 (2006)CrossRef
96.
Zurück zum Zitat A.B. Liel, C.B. Haselton, G.G. Deierlein, J.W. Baker, Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct. Saf. 31, 197–211 (2009)CrossRef A.B. Liel, C.B. Haselton, G.G. Deierlein, J.W. Baker, Incorporating modeling uncertainties in the assessment of seismic collapse risk of buildings. Struct. Saf. 31, 197–211 (2009)CrossRef
97.
Zurück zum Zitat T. Ackbarow, D. Sen, C. Thaulow, M.J. Buehler, Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4(6), e6015 (2009)CrossRef T. Ackbarow, D. Sen, C. Thaulow, M.J. Buehler, Alpha-helical protein networks are self-protective and flaw-tolerant. PLoS ONE 4(6), e6015 (2009)CrossRef
98.
Zurück zum Zitat Z. Qin, L. Kreplak, M.J. Buehler, Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10), e7294 (2009)CrossRef Z. Qin, L. Kreplak, M.J. Buehler, Hierarchical structure controls nanomechanical properties of vimentin intermediate filaments. PLoS ONE 4(10), e7294 (2009)CrossRef
99.
Zurück zum Zitat M. Neri, C. Anselmi, M. Cascella, A. Maritan, P. Carloni, Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys. Rev. Lett. 95(21), 218102 (2005)CrossRef M. Neri, C. Anselmi, M. Cascella, A. Maritan, P. Carloni, Coarse-grained model of proteins incorporating atomistic detail of the active site. Phys. Rev. Lett. 95(21), 218102 (2005)CrossRef
100.
Zurück zum Zitat G. Stefanou, M. Fragiadakis, Nonlinear dynamic analysis of frames with stochastic non-gaussian material properties. Eng. Struct. 31(8), 1841–1850 (2009)CrossRef G. Stefanou, M. Fragiadakis, Nonlinear dynamic analysis of frames with stochastic non-gaussian material properties. Eng. Struct. 31(8), 1841–1850 (2009)CrossRef
Metadaten
Titel
Computational Approaches and Simulation
verfasst von
Steven W. Cranford
Markus J. Buehler
Copyright-Jahr
2012
Verlag
Springer Netherlands
DOI
https://doi.org/10.1007/978-94-007-1611-7_6

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.