Skip to main content
Erschienen in:
Buchtitelbild

2019 | OriginalPaper | Buchkapitel

1. Computational Methods in Spectroscopy

verfasst von : Andrzej Koleżyński

Erschienen in: Molecular Spectroscopy—Experiment and Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Spectroscopy investigates the interaction of electromagnetic radiation with matter. Along with the development of theoretical methods, increasingly effective numerical algorithms and computational methods as well as computer technologies and resulting growing computer power available for scientists, the so-called in silico experiments—computer simulations of materials and their properties in computer—have become an irreplaceable tool supporting experimental research, often allowing a better understanding of phenomena taking place during these interactions, and associated material properties. As a result, it becomes possible in growing number of cases to effectively design new materials with desired properties and to modify existing ones, to improve their properties. This chapter is devoted to a brief introduction to issues related to theoretical foundations of quantum mechanics and density functional theory, both in stationary and time-dependent form. The key assumptions of these theories are presented, together with the description of various approximations and simplifications necessary for their practical application to the calculation of properties examined by spectroscopic methods. The most important practical problems encountered during calculations, resulting from the complexity of real materials and typical ways of dealing with these problems by means of various simplifications, idealizations, and abstractions in designed structural models corresponding to real materials, are also presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lambert JB, Mazzola EP (2018) Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods, 2nd edn. Wiley Lambert JB, Mazzola EP (2018) Nuclear magnetic resonance spectroscopy: an introduction to principles, applications, and experimental methods, 2nd edn. Wiley
2.
Zurück zum Zitat Chan JCC (ed) (2012) Solid state NMR. Topics in current chemistry, vol 316. Springer-Verlag, Berlin Chan JCC (ed) (2012) Solid state NMR. Topics in current chemistry, vol 316. Springer-Verlag, Berlin
3.
Zurück zum Zitat Buhl M, van Mourik T (2011) NMR spectroscopy: quantumchemical calculations. WIREs Comput Mol Sci 1:634–647CrossRef Buhl M, van Mourik T (2011) NMR spectroscopy: quantumchemical calculations. WIREs Comput Mol Sci 1:634–647CrossRef
4.
Zurück zum Zitat Shukla AK (ed) (2017) EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Advanced structured materials, vol 62. Springer, India Shukla AK (ed) (2017) EMR/ESR/EPR spectroscopy for characterization of nanomaterials. Advanced structured materials, vol 62. Springer, India
5.
Zurück zum Zitat van Doorslaer S, Murphy DM (2012) EPR spectroscopy: applications in chemistry and biology. Topics in current chemistry, vol 321. Springer, Berlin van Doorslaer S, Murphy DM (2012) EPR spectroscopy: applications in chemistry and biology. Topics in current chemistry, vol 321. Springer, Berlin
6.
Zurück zum Zitat Diem M (2015) Modern vibrational spectroscopy and micro-spectroscopy: theory, instrumentation, and biomedical applications. Wiley, ChichesterCrossRef Diem M (2015) Modern vibrational spectroscopy and micro-spectroscopy: theory, instrumentation, and biomedical applications. Wiley, ChichesterCrossRef
7.
Zurück zum Zitat Perkampus HH (1992) UV-Vis spectroscopy and its applications. Springer, BerlinCrossRef Perkampus HH (1992) UV-Vis spectroscopy and its applications. Springer, BerlinCrossRef
8.
Zurück zum Zitat Kumar C (ed) (2013) UV-Vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, Berlin Kumar C (ed) (2013) UV-Vis and photoluminescence spectroscopy for nanomaterials characterization. Springer, Berlin
9.
Zurück zum Zitat Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester, England Hollas JM (2004) Modern spectroscopy, 4th edn. Wiley, Chichester, England
10.
Zurück zum Zitat Kuzmany H (2009) Solid-state spectroscopy. An introduction, 2nd edn. Springer, BerlinCrossRef Kuzmany H (2009) Solid-state spectroscopy. An introduction, 2nd edn. Springer, BerlinCrossRef
11.
Zurück zum Zitat Briggs D, Seah MP (1990) Auger and X-ray photoelectron. Practical surface analysis spectroscopy, vol 1. Wiley, Chichester Briggs D, Seah MP (1990) Auger and X-ray photoelectron. Practical surface analysis spectroscopy, vol 1. Wiley, Chichester
12.
Zurück zum Zitat Eland JHD (1984) Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Butterworth-Heinemann, Oxford Eland JHD (1984) Photoelectron spectroscopy. An introduction to ultraviolet photoelectron spectroscopy in the gas phase. Butterworth-Heinemann, Oxford
13.
Zurück zum Zitat Siegbahn K (1973) Electron spectroscopy for chemical analysis. In: Smith SJ, Walters GK (eds) Atomic physics, vol 3. Springer, Boston, MA Siegbahn K (1973) Electron spectroscopy for chemical analysis. In: Smith SJ, Walters GK (eds) Atomic physics, vol 3. Springer, Boston, MA
14.
Zurück zum Zitat Wolstenholme J (2015) Auger electron spectroscopy: practical application to materials analysis and characterization of surfaces, interfaces, and thin films. Momentum Press Wolstenholme J (2015) Auger electron spectroscopy: practical application to materials analysis and characterization of surfaces, interfaces, and thin films. Momentum Press
15.
Zurück zum Zitat Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, industry, and nanotechnology. Wiley Sharma VK, Klingelhofer G, Nishida T (eds) (2013) Mossbauer spectroscopy: applications in chemistry, biology, industry, and nanotechnology. Wiley
16.
Zurück zum Zitat Gütlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, HeidelbergCrossRef Gütlich P, Bill E, Trautwein AX (2011) Mossbauer spectroscopy and transition metal chemistry: fundamentals and applications. Springer, HeidelbergCrossRef
17.
Zurück zum Zitat Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge, UKCrossRef Marx D, Hutter J (2009) Ab initio molecular dynamics: basic theory and advanced methods. Cambridge University Press, Cambridge, UKCrossRef
18.
Zurück zum Zitat Gatti F (2014) Molecular quantum dynamics: from theory to applications. Springer, BerlinCrossRef Gatti F (2014) Molecular quantum dynamics: from theory to applications. Springer, BerlinCrossRef
19.
Zurück zum Zitat Nightingale MP, Umrigar CJ (eds) (1998) Quantum Monte Carlo methods in physics and chemistry. Kluwer Academic Publishers, Dordrecht Nightingale MP, Umrigar CJ (eds) (1998) Quantum Monte Carlo methods in physics and chemistry. Kluwer Academic Publishers, Dordrecht
20.
Zurück zum Zitat Mitas L, Roy PN, Tanaka S (eds) (2016) Recent progress in quantum Monte Carlo. In: ACS symposium series, American Chemical Society, Washington, DC, USA Mitas L, Roy PN, Tanaka S (eds) (2016) Recent progress in quantum Monte Carlo. In: ACS symposium series, American Chemical Society, Washington, DC, USA
21.
Zurück zum Zitat Anderson JB (2007) Quantum Monte-Carlo: origins, development, applications. Oxford University Press, USA Anderson JB (2007) Quantum Monte-Carlo: origins, development, applications. Oxford University Press, USA
22.
Zurück zum Zitat Schrödinger E (1926) Quantisierung als eigenwertproblem. Erste mittteilung. Ann D Physik 79:361–376CrossRef Schrödinger E (1926) Quantisierung als eigenwertproblem. Erste mittteilung. Ann D Physik 79:361–376CrossRef
23.
Zurück zum Zitat Schrödinger E (1926) Quantisierung als eigenwertproblem. Zweite mittteilung. Ann D Physik 79:489–527CrossRef Schrödinger E (1926) Quantisierung als eigenwertproblem. Zweite mittteilung. Ann D Physik 79:489–527CrossRef
24.
Zurück zum Zitat Schrödinger E (1926) Quantisierung als eigenwertproblem. Dritte mittteilung. Ann D Physik 80:437–490CrossRef Schrödinger E (1926) Quantisierung als eigenwertproblem. Dritte mittteilung. Ann D Physik 80:437–490CrossRef
25.
Zurück zum Zitat Schrödinger E (1926) Quantisierung als eigenwertproblem, Vierte mittteilung. Ann D Physik 81:109–139CrossRef Schrödinger E (1926) Quantisierung als eigenwertproblem, Vierte mittteilung. Ann D Physik 81:109–139CrossRef
26.
Zurück zum Zitat Schrödinger E (1926) Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14:664–666CrossRef Schrödinger E (1926) Der stetige übergang von der Mikro- zur Makromechanik. Naturwissenschaften 14:664–666CrossRef
27.
Zurück zum Zitat Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070CrossRef Schrödinger E (1926) An undulatory theory of the mechanics of atoms and molecules. Phys Rev 28:1049–1070CrossRef
28.
Zurück zum Zitat Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. Math Proc Cambridge Phil Soc 24:89–110CrossRef Hartree DR (1928) The wave mechanics of an atom with a non-Coulomb central field. Math Proc Cambridge Phil Soc 24:89–110CrossRef
29.
Zurück zum Zitat Nemoškalenko VV, Antonov NV (1999) Computational methods in solid state physics. CRC Press Nemoškalenko VV, Antonov NV (1999) Computational methods in solid state physics. CRC Press
30.
Zurück zum Zitat Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489CrossRef Löwdin PO (1955) Quantum theory of many-particle systems. I. Physical interpretations by means of density matrices, natural spin-orbitals, and convergence problems in the method of configurational interaction. Phys Rev 97:1474–1489CrossRef
31.
Zurück zum Zitat Löwdin PO (1959) Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv Chem Phys 2:207 Löwdin PO (1959) Correlation problem in many-electron quantum mechanics I. Review of different approaches and discussion of some current ideas. Adv Chem Phys 2:207
32.
Zurück zum Zitat Sherrill CD, Schaefer HF III (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in quantum chemistry, vol 34. Academic Press, San Diego, pp 143–269 Sherrill CD, Schaefer HF III (1999) The configuration interaction method: advances in highly correlated approaches. In: Löwdin PO (ed) Advances in quantum chemistry, vol 34. Academic Press, San Diego, pp 143–269
33.
Zurück zum Zitat Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRef Møller C, Plesset MS (1934) Note on an approximation treatment for many-electron systems. Phys Rev 46:618–622CrossRef
34.
Zurück zum Zitat Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Letters 153:503–506CrossRef Head-Gordon M, Pople JA, Frisch MJ (1988) MP2 energy evaluation by direct methods. Chem Phys Letters 153:503–506CrossRef
35.
Zurück zum Zitat Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation theory. Int J Quantum Chem 12:149–163CrossRef Pople JA, Seeger R, Krishnan R (1977) Variational configuration interaction methods and comparison with perturbation theory. Int J Quantum Chem 12:149–163CrossRef
36.
Zurück zum Zitat Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19CrossRef Pople JA, Binkley JS, Seeger R (1976) Theoretical models incorporating electron correlation. Int J Quantum Chem 10:1–19CrossRef
37.
Zurück zum Zitat Raghavachari K, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100CrossRef Raghavachari K, Pople JA (1978) Approximate fourth-order perturbation theory of the electron correlation energy. Int J Quantum Chem 14:91–100CrossRef
38.
Zurück zum Zitat Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1919CrossRef Purvis GD, Bartlett RJ (1982) A full coupled-cluster singles and doubles model: the inclusion of disconnected triples. J Chem Phys 76:1910–1919CrossRef
39.
Zurück zum Zitat van Voorhis T, Head-Gordon M (2001) Two-body coupled cluster expansions. J Chem Phys 115:5033–5041CrossRef van Voorhis T, Head-Gordon M (2001) Two-body coupled cluster expansions. J Chem Phys 115:5033–5041CrossRef
40.
Zurück zum Zitat Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–35975CrossRef Pople JA, Head-Gordon M, Raghavachari K (1987) Quadratic configuration interaction. A general technique for determining electron correlation energies. J Chem Phys 87:5968–35975CrossRef
41.
Zurück zum Zitat Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173CrossRef Roos BO, Taylor PR, Siegbahn PEM (1980) A complete active space SCF method (CASSCF) using a density matrix formulated super-CI approach. Chem Phys 48:157–173CrossRef
42.
Zurück zum Zitat Olsen J (2011) The CASSCF method: a perspective and commentary. Int J Quantum Chem 111:3267–3272CrossRef Olsen J (2011) The CASSCF method: a perspective and commentary. Int J Quantum Chem 111:3267–3272CrossRef
43.
Zurück zum Zitat Buenker RJ, Peyerimhoff SD (1975) Energy extrapolation in CI calculations. Theor Chim Acta 39:217–228CrossRef Buenker RJ, Peyerimhoff SD (1975) Energy extrapolation in CI calculations. Theor Chim Acta 39:217–228CrossRef
44.
Zurück zum Zitat Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629CrossRef Pople JA, Head-Gordon M, Fox DJ, Raghavachari K, Curtiss LA (1989) Gaussian-1 theory: a general procedure for prediction of molecular energies. J Chem Phys 90:5622–5629CrossRef
45.
Zurück zum Zitat Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) Gaussian-1 theory of molecular energies for second-row compounds. J Chem Phys 4:2537–2545CrossRef Curtiss LA, Jones C, Trucks GW, Raghavachari K, Pople JA (1990) Gaussian-1 theory of molecular energies for second-row compounds. J Chem Phys 4:2537–2545CrossRef
46.
Zurück zum Zitat Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230CrossRef Curtiss LA, Raghavachari K, Trucks GW, Pople JA (1991) Gaussian-2 theory for molecular energies of first- and second-row compounds. J Chem Phys 94:7221–7230CrossRef
47.
Zurück zum Zitat Curtiss LA, Rachavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 18:7764–7776CrossRef Curtiss LA, Rachavachari K, Redfern PC, Rassolov V, Pople JA (1998) Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem Phys 18:7764–7776CrossRef
48.
49.
Zurück zum Zitat Feller D, Peterson KA, Dixon DA (2008) A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J Chem Phys 129:204105PubMedCrossRef Feller D, Peterson KA, Dixon DA (2008) A survey of factors contributing to accurate theoretical predictions of atomization energies and molecular structures. J Chem Phys 129:204105PubMedCrossRef
50.
Zurück zum Zitat Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131: 1079–5 Peterson KA, Feller D, Dixon DA (2012) Chemical accuracy in ab initio thermochemistry and spectroscopy: current strategies and future challenges. Theor Chem Acc 131: 1079–5
51.
Zurück zum Zitat Deyonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. J Chem Phys 124(11):114104PubMedCrossRef Deyonker NJ, Cundari TR, Wilson AK (2006) The correlation consistent composite approach (ccCA): an alternative to the Gaussian-n methods. J Chem Phys 124(11):114104PubMedCrossRef
52.
Zurück zum Zitat Petersson G (2002) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. In: Cioslowski J (ed) Quantum-mechanical prediction of thermochemical data, vol 22. Springer, Netherlands, pp 99–130CrossRef Petersson G (2002) Complete basis set models for chemical reactivity: from the helium atom to enzyme kinetics. In: Cioslowski J (ed) Quantum-mechanical prediction of thermochemical data, vol 22. Springer, Netherlands, pp 99–130CrossRef
53.
Zurück zum Zitat Thomas LH (1927) The calculation of atomic fields. Proc Camb Phil Soc 23:542–548CrossRef Thomas LH (1927) The calculation of atomic fields. Proc Camb Phil Soc 23:542–548CrossRef
54.
Zurück zum Zitat Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79CrossRef Fermi E (1928) Eine statistische Methode zur Bestimmung einiger Eigenschaften des Atoms und ihre Anwendung auf die Theorie des periodischen Systems der Elemente. Z Phys 48:73–79CrossRef
55.
Zurück zum Zitat Dirac PAM (1930) Note on exchange phenomena in the thomas atom. Proc Camb Phil Soc 26:376–385CrossRef Dirac PAM (1930) Note on exchange phenomena in the thomas atom. Proc Camb Phil Soc 26:376–385CrossRef
56.
Zurück zum Zitat Weizsäcker CF (1935) Zur theorie der Kernmassen. Z Phys 96:431–458CrossRef Weizsäcker CF (1935) Zur theorie der Kernmassen. Z Phys 96:431–458CrossRef
57.
Zurück zum Zitat Teller E (1962) On the stability of molecules in Thomas-Fermi theory. Rev Mod Phys 34:627–631CrossRef Teller E (1962) On the stability of molecules in Thomas-Fermi theory. Rev Mod Phys 34:627–631CrossRef
58.
Zurück zum Zitat Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRef Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev B 136:864–871CrossRef
59.
Zurück zum Zitat Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138CrossRef Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev A 140:1133–1138CrossRef
60.
Zurück zum Zitat Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRef Ceperley DM, Alder BJ (1980) Ground state of the electron gas by a stochastic method. Phys Rev Lett 45:566–569CrossRef
61.
Zurück zum Zitat Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRef Perdew JP, Zunger A (1981) Self-interaction correction to density-functional approximations for many-electron systems. Phys Rev B 23:5048–5079CrossRef
62.
Zurück zum Zitat Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C (1992) Atoms, molecules, solids, and surfaces: applications of the generalized gradient approximation for exchange and correlation. Phys Rev B 46:6671–6687CrossRef
63.
Zurück zum Zitat Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRef Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868PubMedCrossRef
64.
Zurück zum Zitat Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRef Vosko SH, Wilk L, Nusair M (1980) Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can J Phys 58:1200–1211CrossRef
65.
Zurück zum Zitat Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRef Perdew JP, Wang Y (1992) Accurate and simple analytic representation of the electron-gas correlation energy. Phys Rev B 45:13244–13249CrossRef
66.
Zurück zum Zitat Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406–136409PubMedCrossRef Perdew JP, Ruzsinszky A, Csonka GI, Vydrov OA, Scuseria GE, Constantin LA, Zhou X, Burke K (2008) Restoring the density-gradient expansion for exchange in solids and surfaces. Phys Rev Lett 100:136406–136409PubMedCrossRef
67.
Zurück zum Zitat Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098–3100CrossRef
68.
Zurück zum Zitat Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789CrossRef
69.
Zurück zum Zitat Wu Z, Cohen RE (2006) More accurate gradient approximation for solids. Phys Rev B 73:235116–235121CrossRef Wu Z, Cohen RE (2006) More accurate gradient approximation for solids. Phys Rev B 73:235116–235121CrossRef
70.
Zurück zum Zitat Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401–146404PubMedCrossRef Tao J, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91:146401–146404PubMedCrossRef
71.
Zurück zum Zitat Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241CrossRef Zhao Y, Truhlar DG (2008) The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functional. Theor Chem Acc 120:215–241CrossRef
72.
Zurück zum Zitat Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103PubMedCrossRef Swart M, Solà M, Bickelhaupt FM (2009) A new all-round DFT functional based on spin states and SN2 barriers. J Chem Phys 131:094103PubMedCrossRef
73.
Zurück zum Zitat Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Nat Acad Sci 112:685–689PubMedCrossRefPubMedCentral Sun J, Perdew JP, Ruzsinszky A (2015) Semilocal density functional obeying a strongly tightened bound for exchange. Proc Nat Acad Sci 112:685–689PubMedCrossRefPubMedCentral
74.
Zurück zum Zitat Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476PubMedCrossRef Peverati R, Truhlar DG (2014) Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics. Phil Trans R Soc A 372:20120476PubMedCrossRef
75.
Zurück zum Zitat Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRef Becke AD (1993) A new mixing of Hartree-Fock and local density-functional theories. J Chem Phys 98:1372–1377CrossRef
76.
Zurück zum Zitat Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652CrossRef
77.
Zurück zum Zitat Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRef Perdew JP, Ernzerhof M, Burke K (1996) Rationale for mixing exact exchange with density functional approximations. J Chem Phys 105:9982–9985CrossRef
78.
Zurück zum Zitat Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRef Adamo C, Barone V (1999) Toward reliable density functional methods without adjustable parameters: the PBE0 model. J Chem Phys 110:6158–6170CrossRef
79.
Zurück zum Zitat Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef Heyd J, Scuseria GE, Ernzerhof M (2003) Hybrid functionals based on a screened Coulomb potential. J Chem Phys 118:8207–8215CrossRef
80.
Zurück zum Zitat Gunnarsson O, Jonson M, Lundqvist BI (1976) Exchange and correlation in atoms, molecules and solids. Phys Lett A 59:177–179CrossRef Gunnarsson O, Jonson M, Lundqvist BI (1976) Exchange and correlation in atoms, molecules and solids. Phys Lett A 59:177–179CrossRef
81.
Zurück zum Zitat Alonso JA, Girifalco LA (1978) Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas. Phys Rev B 17:3735–3743CrossRef Alonso JA, Girifalco LA (1978) Nonlocal approximation to the exchange potential and kinetic energy of an inhomogeneous electron gas. Phys Rev B 17:3735–3743CrossRef
82.
Zurück zum Zitat Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954CrossRef Anisimov VI, Zaanen J, Andersen OK (1991) Band theory and Mott insulators: Hubbard U instead of Stoner I. Phys Rev B 44:943–954CrossRef
83.
Zurück zum Zitat Koleżyński A, Król M, Żychowicz M (2018) The structure of geopolymers—theoretical studies. J Mol Struct 1163:465–471CrossRef Koleżyński A, Król M, Żychowicz M (2018) The structure of geopolymers—theoretical studies. J Mol Struct 1163:465–471CrossRef
84.
Zurück zum Zitat Groenhof G (2013) Introduction to QM/MM simulations. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer Science+Business Media, New York Groenhof G (2013) Introduction to QM/MM simulations. In: Monticelli L, Salonen E (eds) Biomolecular simulations: methods and protocols, methods in molecular biology, vol 924. Springer Science+Business Media, New York
85.
Zurück zum Zitat Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Spectroscopy in complex environments from QM–MM simulations. Chem Rev 118:4071–4113PubMedCrossRef Morzan UN, Alonso de Armiño DJ, Foglia NO, Ramírez F, González Lebrero MC, Scherlis DA, Estrin DA (2018) Spectroscopy in complex environments from QM–MM simulations. Chem Rev 118:4071–4113PubMedCrossRef
86.
Zurück zum Zitat Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25CrossRef Koleżyński A, Mikuła A, Król M (2016) Periodic model of LTA framework containing various non-tetrahedral cations. Spectrochim Acta A 157:17–25CrossRef
87.
Zurück zum Zitat Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15:6608–6622PubMedCrossRef Thomas M, Brehm M, Fligg R, Vöhringer P, Kirchner B (2013) Computing vibrational spectra from ab initio molecular dynamics. Phys Chem Chem Phys 15:6608–6622PubMedCrossRef
88.
Zurück zum Zitat DickinsonJA Hockridge MR, Kroemer RT, Robertson EG, Simons JP, McCombie J, Walker M (1998) Conformational choice, hydrogen bonding, and rotation of the S1 ← S0 electronic transition moment in 2-Phenylethyl Alcohol, 2-Phenylethylamine, and their water clusters. J Am Chem Soc 120:2622–2632CrossRef DickinsonJA Hockridge MR, Kroemer RT, Robertson EG, Simons JP, McCombie J, Walker M (1998) Conformational choice, hydrogen bonding, and rotation of the S1 ← S0 electronic transition moment in 2-Phenylethyl Alcohol, 2-Phenylethylamine, and their water clusters. J Am Chem Soc 120:2622–2632CrossRef
89.
Zurück zum Zitat Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058PubMedCrossRef Kubelka J, Keiderling TA (2001) Differentiation of β-sheet-forming structures: Ab initio-based simulations of IR absorption and vibrational CD for model peptide and protein β-sheets. J Am Chem Soc 123:12048–12058PubMedCrossRef
90.
Zurück zum Zitat Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and Raman vibrational spectra. McGraw-Hill co., New York, USA Wilson EB, Decius JC, Cross PC (1955) Molecular vibrations: the theory of infrared and Raman vibrational spectra. McGraw-Hill co., New York, USA
91.
Zurück zum Zitat Nafie LA, Polavarapu PL (1981) Localized molecular orbital calculations of vibrational circular dichroism. I. General theoretical formalism and CNDO results for the carbon-deuterium stretching vibration in neopentyl-1-d-chloride. J Chem Phys 75:2935–2944CrossRef Nafie LA, Polavarapu PL (1981) Localized molecular orbital calculations of vibrational circular dichroism. I. General theoretical formalism and CNDO results for the carbon-deuterium stretching vibration in neopentyl-1-d-chloride. J Chem Phys 75:2935–2944CrossRef
92.
Zurück zum Zitat Nafie LA, Freedman TB (1981) A unified approach to the determination of infrared and Raman vibrational optical activity intensities using localized molecular orbitals. J Chem Phys 75:4847–4851CrossRef Nafie LA, Freedman TB (1981) A unified approach to the determination of infrared and Raman vibrational optical activity intensities using localized molecular orbitals. J Chem Phys 75:4847–4851CrossRef
93.
Zurück zum Zitat Kormornicki A, McIver JW Jr (1979) An efficient ab initio method for computing infrared and Raman intensities: application to ethylene. J Chem Phys 70:2014–2016CrossRef Kormornicki A, McIver JW Jr (1979) An efficient ab initio method for computing infrared and Raman intensities: application to ethylene. J Chem Phys 70:2014–2016CrossRef
94.
Zurück zum Zitat King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47: 1651–1564CrossRef King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47: 1651–1564CrossRef
95.
Zurück zum Zitat Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915CrossRef Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915CrossRef
96.
Zurück zum Zitat Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865CrossRef Marzari N, Vanderbilt D (1997) Maximally localized generalized Wannier functions for composite energy bands. Phys Rev B 56:12847–12865CrossRef
97.
Zurück zum Zitat Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82:3308–3311CrossRef Silvestrelli PL, Parrinello M (1999) Water molecule dipole in the gas and in the liquid phase. Phys Rev Lett 82:3308–3311CrossRef
98.
Zurück zum Zitat Maschio L, Kirtman B, Orlando R, Rèrat M (2012) Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. J Chem Phys 137:204113PubMedCrossRef Maschio L, Kirtman B, Orlando R, Rèrat M (2012) Ab initio analytical infrared intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method. J Chem Phys 137:204113PubMedCrossRef
99.
Zurück zum Zitat Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101PubMedCrossRef Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. I. Theory. J Chem Phys 139:164101PubMedCrossRef
100.
Zurück zum Zitat Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J Chem Phys 139:164102PubMedCrossRef Maschio L, Kirtman B, Rérat M, Orlando R, Dovesi R (2013) Ab initio analytical Raman intensities for periodic systems through a coupled perturbed Hartree-Fock/Kohn-Sham method in an atomic orbital basis. II. Validation and comparison with experiments. J Chem Phys 139:164102PubMedCrossRef
101.
Zurück zum Zitat Grimme S (2004) Calculation of the electronic spectra of large molecules. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry. Wiley Grimme S (2004) Calculation of the electronic spectra of large molecules. In: Lipkowitz KB, Larter R, Cundari TR (eds) Reviews in computational chemistry. Wiley
102.
Zurück zum Zitat Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037CrossRefPubMed Dreuw A, Head-Gordon M (2005) Single-reference ab initio methods for the calculation of excited states of large molecules. Chem Rev 105:4009–4037CrossRefPubMed
103.
Zurück zum Zitat Olivucci M, Sinicropi A (2005) Computational photochemistry. In: Olivucci M (ed) Computational photochemistry, vol 16. Elsevier, Amsterdam Olivucci M, Sinicropi A (2005) Computational photochemistry. In: Olivucci M (ed) Computational photochemistry, vol 16. Elsevier, Amsterdam
104.
Zurück zum Zitat Gagliardia L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903CrossRef Gagliardia L, Roos BO (2007) Multiconfigurational quantum chemical methods for molecular systems containing actinides. Chem Soc Rev 36:893–903CrossRef
105.
Zurück zum Zitat Burke K, Werschnik J, Gross EK (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:62206PubMedCrossRef Burke K, Werschnik J, Gross EK (2005) Time-dependent density functional theory: past, present, and future. J Chem Phys 123:62206PubMedCrossRef
106.
Zurück zum Zitat Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856PubMedCrossRef Adamo C, Jacquemin D (2013) The calculations of excited-state properties with time-dependent density functional theory. Chem Soc Rev 42:845–856PubMedCrossRef
107.
Zurück zum Zitat Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRef Casida ME, Huix-Rotllant M (2012) Progress in time-dependent density-functional theory. Annu Rev Phys Chem 63:287–323PubMedCrossRef
108.
Zurück zum Zitat Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039CrossRef Laurent AD, Jacquemin D (2013) TD-DFT benchmarks: a review. Int J Quantum Chem 113:2019–2039CrossRef
109.
Zurück zum Zitat Marques MAL, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, vol 837. Springer-Verlag, Heidelberg Marques MAL, Nogueira FMS, Gross EKU, Rubio A (eds) (2012) Fundamentals of time-dependent density functional theory, vol 837. Springer-Verlag, Heidelberg
110.
Zurück zum Zitat Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll–spheroidene complexes. J Am Chem Soc 126:4007–4016PubMedCrossRef Dreuw A, Head-Gordon M (2004) Failure of time-dependent density functional theory for long-range charge-transfer excited states: the zincbacteriochlorin–bacteriochlorin and bacteriochlorophyll–spheroidene complexes. J Am Chem Soc 126:4007–4016PubMedCrossRef
111.
Zurück zum Zitat Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRef Runge E, Gross EKU (1984) Density-functional theory for time-dependent systems. Phys Rev Lett 52:997–1000CrossRef
112.
Zurück zum Zitat Langhoff PW, Epstein ST, Karplus M (1972) Aspects of time-dependent perturbation theory. Rev Mod Phys 44:602–644CrossRef Langhoff PW, Epstein ST, Karplus M (1972) Aspects of time-dependent perturbation theory. Rev Mod Phys 44:602–644CrossRef
113.
Zurück zum Zitat Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRef Bauernschmitt R, Ahlrichs R (1996) Treatment of electronic excitations within the adiabatic approximation of time dependent density functional theory. Chem Phys Lett 256:454–464CrossRef
114.
Zurück zum Zitat Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. Topics in chemistry. In: Nalewajski RF (ed) Density functional theory. Topics in current chemistry, vol 181. Springer-Verlag, Berlin Gross EKU, Dobson JF, Petersilka M (1996) Density functional theory of time-dependent phenomena. Topics in chemistry. In: Nalewajski RF (ed) Density functional theory. Topics in current chemistry, vol 181. Springer-Verlag, Berlin
115.
Zurück zum Zitat Improta R (2012) UV-visible absorption and emission energies in condensed phase by PCM/TD-DFT methods. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nano systems. Wiley, Hoboken, New Jersey Improta R (2012) UV-visible absorption and emission energies in condensed phase by PCM/TD-DFT methods. In: Barone V (ed) Computational strategies for spectroscopy: from small molecules to nano systems. Wiley, Hoboken, New Jersey
116.
Zurück zum Zitat Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224CrossRef Stratmann RE, Scuseria GE, Frisch MJ (1998) An efficient implementation of time-dependent density-functional theory for the calculation of excitation energies of large molecules. J Chem Phys 109(19):8218–8224CrossRef
117.
Zurück zum Zitat Mennucci B, Cammi R (eds) (2008) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester, England Mennucci B, Cammi R (eds) (2008) Continuum solvation models in chemical physics: from theory to applications. Wiley, Chichester, England
118.
Zurück zum Zitat Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMed Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681CrossRefPubMed
119.
Zurück zum Zitat Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113CrossRef Mennucci B, Tomasi J, Cammi R, Cheeseman JR, Frisch MJ, Devlin FJ, Gabriel S, Stephens PJ (2002) Polarizable continuum model (PCM) calculations of solvent effects on optical rotations of chiral molecules. J Phys Chem A 106:6102–6113CrossRef
120.
Zurück zum Zitat Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2:799–805CrossRef Klamt A, Schüürmann G (1993) COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient. J Chem Soc, Perkin Trans 2:799–805CrossRef
121.
Zurück zum Zitat Klamt A (2005) From quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Boston, USA Klamt A (2005) From quantum chemistry to fluid phase thermodynamics and drug design. Elsevier, Boston, USA
122.
Zurück zum Zitat Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 17:6174–6191PubMedCrossRef Skyner RE, McDonagh JL, Groom CR, van Mourik T, Mitchell JBO (2015) A review of methods for the calculation of solution free energies and the modelling of systems in solution. Phys Chem Chem Phys 17:6174–6191PubMedCrossRef
123.
Zurück zum Zitat Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chem Phys Chem 10:1125–1134PubMedCrossRef Kamerlin SCL, Haranczyk M, Warshel A (2009) Are mixed explicit/implicit solvation models reliable for studying phosphate hydrolysis? A comparative study of continuum, explicit and mixed solvation models. Chem Phys Chem 10:1125–1134PubMedCrossRef
125.
Zurück zum Zitat Ikeda T, Izumi F, Kodaira T, Kamiyama T (1998) Structural study of sodium-type zeolite LTA by combination of Rietveld and maximum-entropy methods. J Chem Mat 10:3996–4004CrossRef Ikeda T, Izumi F, Kodaira T, Kamiyama T (1998) Structural study of sodium-type zeolite LTA by combination of Rietveld and maximum-entropy methods. J Chem Mat 10:3996–4004CrossRef
126.
Zurück zum Zitat Pluth JJ, Smith JV (1980) Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of silicon, aluminum-ordered superstructure. Am Chem Soc 102:4704–4708CrossRef Pluth JJ, Smith JV (1980) Accurate redetermination of crystal structure of dehydrated zeolite A. Absence of near zero coordination of sodium. Refinement of silicon, aluminum-ordered superstructure. Am Chem Soc 102:4704–4708CrossRef
127.
Zurück zum Zitat Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882CrossRef Bellaiche L, Vanderbilt D (2000) Virtual crystal approximation revisited: application to dielectric and piezoelectric properties of perovskites. Phys Rev B 61:7877–7882CrossRef
128.
Zurück zum Zitat Íñiguez J, Vanderbilt D, Bellaiche L (2003) First-principles study of (BiScO3)1-x–(PbTiO3)x piezoelectric alloys. Phys Rev B 67:224107CrossRef Íñiguez J, Vanderbilt D, Bellaiche L (2003) First-principles study of (BiScO3)1-x–(PbTiO3)x piezoelectric alloys. Phys Rev B 67:224107CrossRef
129.
Zurück zum Zitat Winkler B, Pickard C, Milman V (2002) Applicability of a quantum mechanical “virtual crystal approximation” to study Al/Si-disorder. Chem Phys Lett 362:266–270CrossRef Winkler B, Pickard C, Milman V (2002) Applicability of a quantum mechanical “virtual crystal approximation” to study Al/Si-disorder. Chem Phys Lett 362:266–270CrossRef
130.
Zurück zum Zitat Soven P (1966) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813CrossRef Soven P (1966) Coherent-potential model of substitutional disordered alloys. Phys Rev 156:809–813CrossRef
131.
Zurück zum Zitat Velický B, Kirkpatrick S, Ehrenreich H (1968) Single-site approximations in the electronic theory of simple binary alloys. Phys Rev 175:747–766CrossRef Velický B, Kirkpatrick S, Ehrenreich H (1968) Single-site approximations in the electronic theory of simple binary alloys. Phys Rev 175:747–766CrossRef
132.
Zurück zum Zitat Velický B (1969) Theory of electronic transport in disordered binary alloys: coherent-potential approximation. Phys Rev 184:614–627CrossRef Velický B (1969) Theory of electronic transport in disordered binary alloys: coherent-potential approximation. Phys Rev 184:614–627CrossRef
133.
Zurück zum Zitat Drożdż E, Koleżyński A (2017) The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3—experimental and theoretical studies. RSC Adv 7:28898–28908CrossRef Drożdż E, Koleżyński A (2017) The structure, electrical properties and chemical stability of porous Nb-doped SrTiO3—experimental and theoretical studies. RSC Adv 7:28898–28908CrossRef
134.
Zurück zum Zitat Mikuła A, Drożdż E, Koleżyński A (2018) Electronic structure and structural properties of Cr-doped SrTiO3. Theoretical investigation. J Alloys Compd 749:931–938CrossRef Mikuła A, Drożdż E, Koleżyński A (2018) Electronic structure and structural properties of Cr-doped SrTiO3. Theoretical investigation. J Alloys Compd 749:931–938CrossRef
135.
Zurück zum Zitat Kupwade-Patil K, Soto F, Kunjumon A, Allouche E, Mainardi D (2013) Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Comp Struct 122:164–177CrossRef Kupwade-Patil K, Soto F, Kunjumon A, Allouche E, Mainardi D (2013) Multi-scale modeling and experimental investigations of geopolymeric gels at elevated temperatures. Comp Struct 122:164–177CrossRef
136.
Zurück zum Zitat Kroll P (2003) Modelling and simulation of amorphous silicon oxycarbide. J Mater Chem 13:1657–1668CrossRef Kroll P (2003) Modelling and simulation of amorphous silicon oxycarbide. J Mater Chem 13:1657–1668CrossRef
137.
Zurück zum Zitat Tian KV, Mahmoud MZ, Cozza P, Licoccia S, Fang D, Di Tommaso D, Chass GA, Greaves N (2016) Periodic vs. molecular cluster approaches to resolving glass structure and properties: anorthite a case study. J Non-Cryst Solids 451:138–145CrossRef Tian KV, Mahmoud MZ, Cozza P, Licoccia S, Fang D, Di Tommaso D, Chass GA, Greaves N (2016) Periodic vs. molecular cluster approaches to resolving glass structure and properties: anorthite a case study. J Non-Cryst Solids 451:138–145CrossRef
138.
Zurück zum Zitat White CE, Provis JL, Proffen T, Riley DP, van Deventer JS (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12:3239–3245PubMedCrossRef White CE, Provis JL, Proffen T, Riley DP, van Deventer JS (2010) Combining density functional theory (DFT) and pair distribution function (PDF) analysis to solve the structure of metastable materials: the case of metakaolin. Phys Chem Chem Phys 12:3239–3245PubMedCrossRef
139.
Zurück zum Zitat Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, D L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796PubMedCrossRef Chung LW, Sameera WMC, Ramozzi R, Page AJ, Hatanaka M, Petrova GP, Harris TV, Li X, Ke Z, Liu F, Li HB, D L, Morokuma K (2015) The ONIOM method and its applications. Chem Rev 115:5678–5796PubMedCrossRef
140.
Zurück zum Zitat Asthagiri A, Janik MJ (eds) (2013) Computational catalysis: RSC (Catalysis series). Roy Soc Chem, UK Asthagiri A, Janik MJ (eds) (2013) Computational catalysis: RSC (Catalysis series). Roy Soc Chem, UK
141.
Zurück zum Zitat van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH Verlag GmbH & Co., Weinheim, GermanyCrossRef van Santen RA, Neurock M (2006) Molecular heterogeneous catalysis: a conceptual and computational approach. Wiley-VCH Verlag GmbH & Co., Weinheim, GermanyCrossRef
142.
Zurück zum Zitat van Santen RA, Sautet P (eds) (2009) Computational methods in catalysis and materials science: an introduction for scientists and engineers. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany van Santen RA, Sautet P (eds) (2009) Computational methods in catalysis and materials science: an introduction for scientists and engineers. Wiley-VCH Verlag GmbH & Co., Weinheim, Germany
143.
Zurück zum Zitat Thiel W (2014) Computational catalysis—past, present, and future. Angew Chem Int Ed 53:8605–8613CrossRef Thiel W (2014) Computational catalysis—past, present, and future. Angew Chem Int Ed 53:8605–8613CrossRef
Metadaten
Titel
Computational Methods in Spectroscopy
verfasst von
Andrzej Koleżyński
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-01355-4_1

Neuer Inhalt