Skip to main content

2019 | OriginalPaper | Buchkapitel

2. Scaling Procedures in Vibrational Spectroscopy

verfasst von : Olga Bąk, Piotr Borowski

Erschienen in: Molecular Spectroscopy—Experiment and Theory

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter contains a brief review of the up-to-date scaling procedures that are used in the computational vibrational spectroscopy to improve agreement between the calculated harmonic frequencies and the observed fundamentals. Initially, the basics of vibrational spectroscopy are reminded. This includes the concept of potential energy surface, harmonic approximation, and a basic quantum chemistry treatment of the anharmonicity for a diatomic molecule. Brief description of the Wilson–Decius–Cross method for polyatomic molecules is also presented. Then the commonly used scaling procedures are discussed. The distinction between single- and multi-parameter scaling procedures is made. Four scaling procedures are reviewed. First, Pople’s uniform scaling is presented. Second, Yoshida’s wavenumber linear scaling method is discussed. Both methods are simple single-parameter frequency scaling methods. Then basics of two multi-parameter scaling methods, which are much more accurate but less straightforward to use, are given. Thus, Pulay’s scaled quantum mechanical force field method, in which scaling factors are applied directly to the calculated force constants is reviewed. Finally, introduction to quite recently proposed multi-parameter frequency scaling method, called effective scaling frequency factor method, is provided. The relevant sections start with a short description of the theory for a given method. Then a brief literature review on the historical background of methodology development is given.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Fußnoten
1
In fact, this is not the case. Inclusion of fifth-order term to Hamiltonian (2.11) with the estimated value of f(5) = -5.2 a.u. lowers the predicted by variation method transition frequency from 2936 cm−1 down to 2911 cm−1 (which is mostly due to substantial lowering of energy for  υ= 1). This value is only 25 cm−1 higher as compared with the fundamental (25 cm−1 is also the difference between the calculated and experimental harmonic frequencies).
 
2
This behavior was also observed in the case of multi-parameter scaling procedures. Although MP2 is known to predict very accurate molecular geometries, it does not provide accurate vibrational spectra.
 
3
As mentioned in the introductory section in the following we will not cite papers, where only applications are presented.
 
4
Note that the requirements of the MP2 and other correlated ab initio approaches with respect to the basis set are higher as compared with DFT, due to the necessity of the adequate description of the correlating orbitals, not only the electron density.
 
5
They were calculated in earlier works devoted to ESFF procedure, but due to a mistake in data handling they were incorrect.
 
Literatur
1.
Zurück zum Zitat Pulay P, Fogarasi G, Pang F, Boggs JE (1979) Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole-moment derivatives. J Am Chem Soc 101:2550–2560CrossRef Pulay P, Fogarasi G, Pang F, Boggs JE (1979) Systematic ab initio gradient calculation of molecular geometries, force constants, and dipole-moment derivatives. J Am Chem Soc 101:2550–2560CrossRef
2.
Zurück zum Zitat Lide DR, Frederikse HPR (eds) (1994) CRC handbook of chemistry and physics. CRC Press, London Lide DR, Frederikse HPR (eds) (1994) CRC handbook of chemistry and physics. CRC Press, London
3.
Zurück zum Zitat Atkins PW (1993) Molecular quantum mechanics. Oxford University Press, New York Atkins PW (1993) Molecular quantum mechanics. Oxford University Press, New York
4.
Zurück zum Zitat Wilson EB Jr, Decius JC, Cross PC (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra. Dover Publications Inc., New York Wilson EB Jr, Decius JC, Cross PC (1955) Molecular vibrations. The theory of infrared and Raman vibrational spectra. Dover Publications Inc., New York
5.
Zurück zum Zitat Califano S (1976) Vibrational states. Wiley, London Califano S (1976) Vibrational states. Wiley, London
6.
Zurück zum Zitat Pulay P (1969) Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I Theory Mol Phys 17:197–204 Pulay P (1969) Ab initio calculation of force constants and equilibrium geometries in polyatomic molecules. I Theory Mol Phys 17:197–204
7.
Zurück zum Zitat Pulay P, Meyer W (1974) Comparison of ab initio force constants of ethane, ethylene and acetylene. Mol Phys 27:473–490CrossRef Pulay P, Meyer W (1974) Comparison of ab initio force constants of ethane, ethylene and acetylene. Mol Phys 27:473–490CrossRef
8.
Zurück zum Zitat Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in Hartree-Fock and Moller-Plesset theories. Int J Quantum Chem 16:225–241CrossRef Pople JA, Krishnan R, Schlegel HB, Binkley JS (1979) Derivative studies in Hartree-Fock and Moller-Plesset theories. Int J Quantum Chem 16:225–241CrossRef
9.
Zurück zum Zitat Willetts A, Handy NC, Green WH, Jayatilaka D (1990) Anharmonic corrections to vibrational transition intensities. J Phys Chem 94:5608–5616CrossRef Willetts A, Handy NC, Green WH, Jayatilaka D (1990) Anharmonic corrections to vibrational transition intensities. J Phys Chem 94:5608–5616CrossRef
10.
Zurück zum Zitat Barone V, Bloino J, Guido CA, Lipparini F (2010) A fully automated implementation of VPT2 Infrared intensities. Chem Phys Lett 496:157–161CrossRef Barone V, Bloino J, Guido CA, Lipparini F (2010) A fully automated implementation of VPT2 Infrared intensities. Chem Phys Lett 496:157–161CrossRef
11.
Zurück zum Zitat Pulay P, Fogarasi G, Boggs JE (1981) Force field, dipole moment derivatives, and vibronic constants of benzene from a combination of experimental and ab initio quantum chemical information. J Chem Phys 74:3999–4014CrossRef Pulay P, Fogarasi G, Boggs JE (1981) Force field, dipole moment derivatives, and vibronic constants of benzene from a combination of experimental and ab initio quantum chemical information. J Chem Phys 74:3999–4014CrossRef
12.
Zurück zum Zitat Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force-constants—scaled quantum-mechanical (SQM) force-fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105:7037–7047CrossRef Pulay P, Fogarasi G, Pongor G, Boggs JE, Vargha A (1983) Combination of theoretical ab initio and experimental information to obtain reliable harmonic force-constants—scaled quantum-mechanical (SQM) force-fields for glyoxal, acrolein, butadiene, formaldehyde, and ethylene. J Am Chem Soc 105:7037–7047CrossRef
13.
Zurück zum Zitat Borowski P, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T, Quesada Rincón M (2009) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: application to toluene, styrene and its 4-methyl derivative. J Mol Struct 924:493–503CrossRef Borowski P, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T, Quesada Rincón M (2009) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: application to toluene, styrene and its 4-methyl derivative. J Mol Struct 924:493–503CrossRef
14.
Zurück zum Zitat McQuarrie DA (1976) Statistical mechanics. HarperCollinsPublishers, New York McQuarrie DA (1976) Statistical mechanics. HarperCollinsPublishers, New York
15.
Zurück zum Zitat Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700CrossRef Merrick JP, Moran D, Radom L (2007) An evaluation of harmonic vibrational frequency scale factors. J Phys Chem A 111:11683–11700CrossRef
16.
Zurück zum Zitat Pople JA, Schlegel HB, Krishnan R, Defrees DJ, Binkley JS, Frisch MJ, Whiteside RA, Hout RF, Hehre WJ (1981) Molecular-orbital studies of vibrational frequencies. Int J Quantum Chem 15:269–278 Pople JA, Schlegel HB, Krishnan R, Defrees DJ, Binkley JS, Frisch MJ, Whiteside RA, Hout RF, Hehre WJ (1981) Molecular-orbital studies of vibrational frequencies. Int J Quantum Chem 15:269–278
17.
Zurück zum Zitat Hout RF, Levi BA, Hehre WJ (1982) Effect of electron correlation on theoretical vibrational frequencies. J Comput Chem 3:234–250CrossRef Hout RF, Levi BA, Hehre WJ (1982) Effect of electron correlation on theoretical vibrational frequencies. J Comput Chem 3:234–250CrossRef
18.
Zurück zum Zitat Pople JA, Scott AP, Wong MW, Radom L (1993) Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31 g-asterisk and MP2/6-31 g-asterisk harmonic frequencies. Isr J Chem 33:345–350CrossRef Pople JA, Scott AP, Wong MW, Radom L (1993) Scaling factors for obtaining fundamental vibrational frequencies and zero-point energies from HF/6-31 g-asterisk and MP2/6-31 g-asterisk harmonic frequencies. Isr J Chem 33:345–350CrossRef
19.
Zurück zum Zitat Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513CrossRef Scott AP, Radom L (1996) Harmonic vibrational frequencies: an evaluation of Hartree-Fock, Moller-Plesset, quadratic configuration interaction, density functional theory, and semiempirical scale factors. J Phys Chem 100:16502–16513CrossRef
20.
Zurück zum Zitat Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256:391–399CrossRef Wong MW (1996) Vibrational frequency prediction using density functional theory. Chem Phys Lett 256:391–399CrossRef
21.
Zurück zum Zitat Patton LF, Corchado J, Sanchez ML, Truhlar DG (1999) Optimized parameters for scaling correlation energy. J Phys Chem A 103:3139–3143CrossRef Patton LF, Corchado J, Sanchez ML, Truhlar DG (1999) Optimized parameters for scaling correlation energy. J Phys Chem A 103:3139–3143CrossRef
22.
Zurück zum Zitat Lynch BJ, Truhlar DG (2001) How well can hybrid density functional methods predict transition state geometries and barrier heights? J Phys Chem A 105:2936–2941CrossRef Lynch BJ, Truhlar DG (2001) How well can hybrid density functional methods predict transition state geometries and barrier heights? J Phys Chem A 105:2936–2941CrossRef
23.
Zurück zum Zitat Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: new multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A 108:4786–4791CrossRef Zhao Y, Lynch BJ, Truhlar DG (2004) Doubly hybrid meta DFT: new multi-coefficient correlation and density functional methods for thermochemistry and thermochemical kinetics. J Phys Chem A 108:4786–4791CrossRef
24.
Zurück zum Zitat Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108:2715–2719CrossRef Zhao Y, Lynch BJ, Truhlar DG (2004) Development and assessment of a new hybrid density functional model for thermochemical kinetics. J Phys Chem A 108:2715–2719CrossRef
25.
Zurück zum Zitat Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918CrossRef Zhao Y, Truhlar DG (2004) Hybrid meta density functional theory methods for thermochemistry, thermochemical kinetics, and noncovalent interactions: the MPW1B95 and MPWB1K models and comparative assessments for hydrogen bonding and van der Waals interactions. J Phys Chem A 108:6908–6918CrossRef
26.
Zurück zum Zitat Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal–metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A 109:4388–4403CrossRefPubMedCentral Schultz NE, Zhao Y, Truhlar DG (2005) Databases for transition element bonding: metal–metal bond energies and bond lengths and their use to test hybrid, hybrid meta, and meta density functionals and generalized gradient approximations. J Phys Chem A 109:4388–4403CrossRefPubMedCentral
27.
Zurück zum Zitat Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J Chem Phys 114:108–117CrossRef Curtiss LA, Redfern PC, Raghavachari K, Pople JA (2001) Gaussian-3X (G3X) theory: use of improved geometries, zero-point energies, and Hartree-Fock basis sets. J Chem Phys 114:108–117CrossRef
28.
Zurück zum Zitat Halls M, Velkovski J, Schlegel H (2001) Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc 105:413–421CrossRef Halls M, Velkovski J, Schlegel H (2001) Harmonic frequency scaling factors for Hartree-Fock, S-VWN, B-LYP, B3-LYP, B3-PW91 and MP2 with the Sadlej pVTZ electric property basis set. Theor Chem Acc 105:413–421CrossRef
29.
Zurück zum Zitat Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. J Phys Chem A 108:9213–9217CrossRef Sinha P, Boesch SE, Gu C, Wheeler RA, Wilson AK (2004) Harmonic vibrational frequencies: scaling factors for HF, B3LYP, and MP2 methods in combination with correlation consistent basis sets. J Phys Chem A 108:9213–9217CrossRef
30.
Zurück zum Zitat Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6–311 + G(d, p). J Phys Chem A 109:2937–2941CrossRefPubMedCentral Andersson MP, Uvdal P (2005) New scale factors for harmonic vibrational frequencies using the B3LYP density functional method with the triple-ζ basis set 6–311 + G(d, p). J Phys Chem A 109:2937–2941CrossRefPubMedCentral
31.
Zurück zum Zitat Csonka GI, Ruzsinszky A, Perdew JP (2005) Estimation, computation, and experimental correction of molecular zero-point vibrational energies. J Phys Chem A 109:6779–6789CrossRefPubMedCentral Csonka GI, Ruzsinszky A, Perdew JP (2005) Estimation, computation, and experimental correction of molecular zero-point vibrational energies. J Phys Chem A 109:6779–6789CrossRefPubMedCentral
32.
Zurück zum Zitat Tantirungrotechai Y, Phanasant K, Roddecha S, Surawatanawong P, Sutthikhum V, Limtrakul J (2006) Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals. J Mol Struc-THEOCHEM 760:189–192CrossRef Tantirungrotechai Y, Phanasant K, Roddecha S, Surawatanawong P, Sutthikhum V, Limtrakul J (2006) Scaling factors for vibrational frequencies and zero-point vibrational energies of some recently developed exchange-correlation functionals. J Mol Struc-THEOCHEM 760:189–192CrossRef
33.
Zurück zum Zitat Chan B, Radom L (2016) Frequency scale factors for some double-hybrid density functional theory procedures: accurate thermochemical components for high-level composite protocols. J Chem Theory Comput 12:3774–3780CrossRefPubMedCentral Chan B, Radom L (2016) Frequency scale factors for some double-hybrid density functional theory procedures: accurate thermochemical components for high-level composite protocols. J Chem Theory Comput 12:3774–3780CrossRefPubMedCentral
34.
Zurück zum Zitat Chan B (2017) Use of low-cost quantum chemistry procedures for geometry optimization and vibrational frequency calculations: determination of frequency scale factors and application to reactions of large systems. J Chem Theory Comput 13:6052–6060CrossRefPubMedCentral Chan B (2017) Use of low-cost quantum chemistry procedures for geometry optimization and vibrational frequency calculations: determination of frequency scale factors and application to reactions of large systems. J Chem Theory Comput 13:6052–6060CrossRefPubMedCentral
35.
Zurück zum Zitat Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387CrossRefPubMedCentral Laury ML, Carlson MJ, Wilson AK (2012) Vibrational frequency scale factors for density functional theory and the polarization consistent basis sets. J Comput Chem 33:2380–2387CrossRefPubMedCentral
36.
Zurück zum Zitat Krasnoshchekov SV, Stepanov NF (2007) Scale factors as effective parameters for correcting nonempirical force fields. Russ J Phys Chem A 81:585–592CrossRef Krasnoshchekov SV, Stepanov NF (2007) Scale factors as effective parameters for correcting nonempirical force fields. Russ J Phys Chem A 81:585–592CrossRef
37.
Zurück zum Zitat Andrade SG, Gonçalves LCS, Jorge FE (2008) Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. J Mol Struc-THEOCHEM 864:20–25CrossRef Andrade SG, Gonçalves LCS, Jorge FE (2008) Scaling factors for fundamental vibrational frequencies and zero-point energies obtained from HF, MP2, and DFT/DZP and TZP harmonic frequencies. J Mol Struc-THEOCHEM 864:20–25CrossRef
38.
Zurück zum Zitat Sierraalta A, Martorell G, Ehrmann E, Añez R (2008) Improvement of scale factors for harmonic vibrational frequency calculations using new polarization functions. Int J Quantum Chem 108:1036–1043CrossRef Sierraalta A, Martorell G, Ehrmann E, Añez R (2008) Improvement of scale factors for harmonic vibrational frequency calculations using new polarization functions. Int J Quantum Chem 108:1036–1043CrossRef
39.
Zurück zum Zitat Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887CrossRef Alecu IM, Zheng J, Zhao Y, Truhlar DG (2010) Computational thermochemistry: scale factor databases and scale factors for vibrational frequencies obtained from electronic model chemistries. J Chem Theory Comput 6:2872–2887CrossRef
40.
Zurück zum Zitat Basire M, Parneix P, Calvo F (2010) Finite-temperature IR spectroscopy of polyatomic molecules: a theoretical assessment of scaling factors. J Phys Chem A 114:3139–3146CrossRefPubMedCentral Basire M, Parneix P, Calvo F (2010) Finite-temperature IR spectroscopy of polyatomic molecules: a theoretical assessment of scaling factors. J Phys Chem A 114:3139–3146CrossRefPubMedCentral
41.
Zurück zum Zitat Friese DH, Törk L, Hättig C (2014) Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants. J Chem Phys 141:194106CrossRefPubMedCentral Friese DH, Törk L, Hättig C (2014) Vibrational frequency scaling factors for correlation consistent basis sets and the methods CC2 and MP2 and their spin-scaled SCS and SOS variants. J Chem Phys 141:194106CrossRefPubMedCentral
42.
Zurück zum Zitat Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119:1701–1714CrossRef Kesharwani MK, Brauer B, Martin JML (2015) Frequency and zero-point vibrational energy scale factors for double-hybrid density functionals (and other selected methods): can anharmonic force fields be avoided? J Phys Chem A 119:1701–1714CrossRef
43.
Zurück zum Zitat Kashinski DO, Chase GM, Nelson RG, Di Nallo OE, Scales AN, VanderLey DL, Byrd EFC (2017) Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J Phys Chem A 121:2265–2273CrossRefPubMedCentral Kashinski DO, Chase GM, Nelson RG, Di Nallo OE, Scales AN, VanderLey DL, Byrd EFC (2017) Harmonic vibrational frequencies: approximate global scaling factors for TPSS, M06, and M11 functional families using several common basis sets. J Phys Chem A 121:2265–2273CrossRefPubMedCentral
44.
Zurück zum Zitat Irikura KK, Johnson RD III, Kacker RN (2005) Uncertainties in scaling factors for ab initio vibrational frequencies. J Phys Chem A 109:8430–8437CrossRefPubMedCentral Irikura KK, Johnson RD III, Kacker RN (2005) Uncertainties in scaling factors for ab initio vibrational frequencies. J Phys Chem A 109:8430–8437CrossRefPubMedCentral
45.
Zurück zum Zitat Irikura KK, Johnson RD III, Kacker RN, Kessel R (2009) Uncertainties in scaling factors for ab initio vibrational zero-point energies. J Chem Phys 130:114102CrossRefPubMedCentral Irikura KK, Johnson RD III, Kacker RN, Kessel R (2009) Uncertainties in scaling factors for ab initio vibrational zero-point energies. J Chem Phys 130:114102CrossRefPubMedCentral
46.
Zurück zum Zitat Irikura KK, Johnson RD III, Kacker RN, Kessel R (2009) Erratum: “Uncertainties in scaling factors for ab initio vibrational zero-point energies” [J. Chem. Phys. 130, 114102 (2009)]. J Chem Phys 131:169902CrossRef Irikura KK, Johnson RD III, Kacker RN, Kessel R (2009) Erratum: “Uncertainties in scaling factors for ab initio vibrational zero-point energies” [J. Chem. Phys. 130, 114102 (2009)]. J Chem Phys 131:169902CrossRef
47.
Zurück zum Zitat Teixeira F, Melo A, Cordeiro MNDS (2010) Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional. J Chem Phys 133:114109CrossRefPubMedCentral Teixeira F, Melo A, Cordeiro MNDS (2010) Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional. J Chem Phys 133:114109CrossRefPubMedCentral
48.
Zurück zum Zitat Pernot P, Cailliez F (2011) Comment on “Uncertainties in scaling factors for ab initio vibrational zero-point energies” [J. Chem. Phys. 130, 114102 (2009)] and “Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional” [J. Chem. Phys. 133, 114109 (2010)]. J Chem Phys 134:167101CrossRefPubMedCentral Pernot P, Cailliez F (2011) Comment on “Uncertainties in scaling factors for ab initio vibrational zero-point energies” [J. Chem. Phys. 130, 114102 (2009)] and “Calibration sets and the accuracy of vibrational scaling factors: a case study with the X3LYP hybrid functional” [J. Chem. Phys. 133, 114109 (2010)]. J Chem Phys 134:167101CrossRefPubMedCentral
49.
Zurück zum Zitat Irikura KK, Johnson RD III, Kacker RN, Kessel R (2011) Response to “Comment on ‘Uncertainties in scaling factors for ab initio vibrational zero-point energies’ and ‘Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional’” [J. Chem. Phys. 134, 167101 (2011)]. J Chem Phys 134:167102CrossRef Irikura KK, Johnson RD III, Kacker RN, Kessel R (2011) Response to “Comment on ‘Uncertainties in scaling factors for ab initio vibrational zero-point energies’ and ‘Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional’” [J. Chem. Phys. 134, 167101 (2011)]. J Chem Phys 134:167102CrossRef
50.
Zurück zum Zitat Teixeira F, Melo A, Cordeiro MNDS (2011) Response to “Comment on ‘Uncertainties in scaling factors for ab initio vibrational zero-point energies’ and ‘Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional’” [J. Chem. Phys. 134, 167101 (2011)]. J Chem Phys 134:167103CrossRef Teixeira F, Melo A, Cordeiro MNDS (2011) Response to “Comment on ‘Uncertainties in scaling factors for ab initio vibrational zero-point energies’ and ‘Calibration sets and the accuracy of vibrational scaling factors: A case study with the X3LYP hybrid functional’” [J. Chem. Phys. 134, 167101 (2011)]. J Chem Phys 134:167103CrossRef
51.
Zurück zum Zitat Yoshida H, Ehara A, Matsuura H (2000) Density functional vibrational analysis using wavenumber-linear scale factors. Chem Phys Lett 325:477–483CrossRef Yoshida H, Ehara A, Matsuura H (2000) Density functional vibrational analysis using wavenumber-linear scale factors. Chem Phys Lett 325:477–483CrossRef
52.
Zurück zum Zitat Yoshida H, Takeda K, Okamura J, Ehara A, Matsuura H (2002) A new approach to vibrational analysis of large molecules by density functional theory: wavenumber-linear scaling method. J Phys Chem A 106:3580–3586CrossRef Yoshida H, Takeda K, Okamura J, Ehara A, Matsuura H (2002) A new approach to vibrational analysis of large molecules by density functional theory: wavenumber-linear scaling method. J Phys Chem A 106:3580–3586CrossRef
53.
Zurück zum Zitat Kudoh S, Takayanagi M, Nakata M (2000) Infrared spectra of Dewar 4-picoline in low-temperature argon matrices and vibrational analysis by DFT calculation. Chem Phys Lett 322:363–370CrossRef Kudoh S, Takayanagi M, Nakata M (2000) Infrared spectra of Dewar 4-picoline in low-temperature argon matrices and vibrational analysis by DFT calculation. Chem Phys Lett 322:363–370CrossRef
54.
Zurück zum Zitat Baker J, Jarzecki AA, Pulay P (1998) Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields. J Phys Chem A 102:1412–1424CrossRef Baker J, Jarzecki AA, Pulay P (1998) Direct scaling of primitive valence force constants: an alternative approach to scaled quantum mechanical force fields. J Phys Chem A 102:1412–1424CrossRef
55.
Zurück zum Zitat Mills IM (1960) Vibrational perturbation theory. J Mol Spectrosc 5:334–340CrossRef Mills IM (1960) Vibrational perturbation theory. J Mol Spectrosc 5:334–340CrossRef
56.
Zurück zum Zitat Blom CE, Slingerland PJ, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. I. Equilibrium structure and force constants of hydrocarbons. Mol Phys 31:1359–1376CrossRef Blom CE, Slingerland PJ, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. I. Equilibrium structure and force constants of hydrocarbons. Mol Phys 31:1359–1376CrossRef
57.
Zurück zum Zitat Blom CE, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. II. Scale factor method for calculation of vibrational frequencies from ab-initio force constants—ethane, propane and cyclopropane. Mol Phys 31:1377–1391CrossRef Blom CE, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. II. Scale factor method for calculation of vibrational frequencies from ab-initio force constants—ethane, propane and cyclopropane. Mol Phys 31:1377–1391CrossRef
58.
Zurück zum Zitat Blom CE, Otto LP, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. III. Equilibrium structure of water, methanol and dimethyl ether, general valence force-field of water and methanol scaled on experimental frequencies. Mol Phys 32:1137–1149CrossRef Blom CE, Otto LP, Altona C (1976) Application of self-consistent-field ab-initio calculations to organic-molecules. III. Equilibrium structure of water, methanol and dimethyl ether, general valence force-field of water and methanol scaled on experimental frequencies. Mol Phys 32:1137–1149CrossRef
59.
Zurück zum Zitat Blom CE, Altona C (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. IV. Force constants of propene scaled on experimental frequencies. Mol Phys 33:875–885CrossRef Blom CE, Altona C (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. IV. Force constants of propene scaled on experimental frequencies. Mol Phys 33:875–885CrossRef
60.
Zurück zum Zitat Blom CE, Altona C (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. V. Ethene—general valence force-field scaled on harmonic and anharmonic data, infra-red and Raman intensities. Mol Phys 34:177–192CrossRef Blom CE, Altona C (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. V. Ethene—general valence force-field scaled on harmonic and anharmonic data, infra-red and Raman intensities. Mol Phys 34:177–192CrossRef
61.
Zurück zum Zitat Blom CE, Altona C, Oskam A (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. VI. Dimethylether—general valence force-field scaled on experimental frequencies, infra-red and Raman intensities. Mol Phys 34:557–571CrossRef Blom CE, Altona C, Oskam A (1977) Application of self-consistent-field ab-initio calculations to organic-molecules. VI. Dimethylether—general valence force-field scaled on experimental frequencies, infra-red and Raman intensities. Mol Phys 34:557–571CrossRef
62.
Zurück zum Zitat Rauhut G, Pulay P (1995) Transferable scaling factors for density-functional derived vibrational force-fields. J Phys Chem 99:3093–3100CrossRef Rauhut G, Pulay P (1995) Transferable scaling factors for density-functional derived vibrational force-fields. J Phys Chem 99:3093–3100CrossRef
63.
Zurück zum Zitat Rauhut G, Pulay P (1995) Transferable scaling factors for density-functional derived vibrational force-fields. J Phys Chem 99:14572CrossRef Rauhut G, Pulay P (1995) Transferable scaling factors for density-functional derived vibrational force-fields. J Phys Chem 99:14572CrossRef
64.
Zurück zum Zitat Rauhut G, Pulay P (1995) Identification of isomers from calculated vibrational-spectra—a density-functional study of tetrachlorinated dibenzodioxins. J Am Chem Soc 117:4167–4172CrossRef Rauhut G, Pulay P (1995) Identification of isomers from calculated vibrational-spectra—a density-functional study of tetrachlorinated dibenzodioxins. J Am Chem Soc 117:4167–4172CrossRef
65.
Zurück zum Zitat Fogarasi G, Zhou X, Taylor PW, Pulay P (1992) The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. J Am Chem Soc 114:8191–8201CrossRef Fogarasi G, Zhou X, Taylor PW, Pulay P (1992) The calculation of ab initio molecular geometries: efficient optimization by natural internal coordinates and empirical correction by offset forces. J Am Chem Soc 114:8191–8201CrossRef
66.
Zurück zum Zitat Borowski P (2012) An evaluation of scaling factors for multiparameter scaling procedures based on DFT force fields. J Phys Chem A 116:3866–3880CrossRefPubMedCentral Borowski P (2012) An evaluation of scaling factors for multiparameter scaling procedures based on DFT force fields. J Phys Chem A 116:3866–3880CrossRefPubMedCentral
67.
Zurück zum Zitat Kalincsák F, Pongor G (2002) Extension of the density functional derived scaled quantum mechanical force field procedure. Spectrochim Acta A 58:999–1011CrossRef Kalincsák F, Pongor G (2002) Extension of the density functional derived scaled quantum mechanical force field procedure. Spectrochim Acta A 58:999–1011CrossRef
68.
Zurück zum Zitat Borowski P, Drzewiecka A, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2008) An effective scaling frequency factor method for harmonic vibrational frequencies: the factors’ transferability problem. Chem Phys Lett 465:290–294CrossRef Borowski P, Drzewiecka A, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2008) An effective scaling frequency factor method for harmonic vibrational frequencies: the factors’ transferability problem. Chem Phys Lett 465:290–294CrossRef
69.
Zurück zum Zitat Borowski P, Drzewiecka A, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2010) A new, reduced set of scaling factors for both SQM and ESFF calculations. Vib Spect 52:16–21CrossRef Borowski P, Drzewiecka A, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2010) A new, reduced set of scaling factors for both SQM and ESFF calculations. Vib Spect 52:16–21CrossRef
70.
Zurück zum Zitat Borowski P, Peña Ruiz T, Barczak M, Pilorz K, Pasieczna-Patkowska S (2012) Application of the multi-parameter SQM harmonic force field, and ESFF harmonic frequencies scaling procedures to the determination of the vibrational spectra of silicon- and sulfur(II)-containing compounds. Spectrochim Acta A 86:571–585CrossRef Borowski P, Peña Ruiz T, Barczak M, Pilorz K, Pasieczna-Patkowska S (2012) Application of the multi-parameter SQM harmonic force field, and ESFF harmonic frequencies scaling procedures to the determination of the vibrational spectra of silicon- and sulfur(II)-containing compounds. Spectrochim Acta A 86:571–585CrossRef
71.
Zurück zum Zitat Borowski P, Pilorz K, Pitucha M (2010) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: application to 1,2,4-triazole derivatives. Spectrochim Acta A 75:1470–1475CrossRef Borowski P, Pilorz K, Pitucha M (2010) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: application to 1,2,4-triazole derivatives. Spectrochim Acta A 75:1470–1475CrossRef
72.
Zurück zum Zitat Fábri C, Szidarovszky T, Magyarfalvi G, Tarczay G (2011) Gas-phase and Ar-matrix SQM scaling factors for various DFT functionals with basis sets including polarization and diffuse functions. J Phys Chem A 115:4640–4649CrossRefPubMedCentral Fábri C, Szidarovszky T, Magyarfalvi G, Tarczay G (2011) Gas-phase and Ar-matrix SQM scaling factors for various DFT functionals with basis sets including polarization and diffuse functions. J Phys Chem A 115:4640–4649CrossRefPubMedCentral
73.
Zurück zum Zitat Morino Y, Kuchitsu K (1952) A note on the classification of normal vibrations of molecules. J Chem Phys 20:1809–1810CrossRef Morino Y, Kuchitsu K (1952) A note on the classification of normal vibrations of molecules. J Chem Phys 20:1809–1810CrossRef
74.
Zurück zum Zitat Borowski P, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2007) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: theory and preliminary application to toluene. Chem Phys Lett 446:191–198CrossRef Borowski P, Fernández-Gómez M, Fernández-Liencres M-P, Peña Ruiz T (2007) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: theory and preliminary application to toluene. Chem Phys Lett 446:191–198CrossRef
75.
Zurück zum Zitat Borowski P (2010) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: the use of redundant primitive coordinates. J Mol Spectr 264:66–74CrossRef Borowski P (2010) An effective scaling frequency factor method for scaling of harmonic vibrational frequencies: the use of redundant primitive coordinates. J Mol Spectr 264:66–74CrossRef
76.
Zurück zum Zitat Martı́nez-Torres E (2000) Formulation of the vibrational theory in terms of redundant internal coordinates. J Mol Struct 520:53–61CrossRef Martı́nez-Torres E (2000) Formulation of the vibrational theory in terms of redundant internal coordinates. J Mol Struct 520:53–61CrossRef
77.
Zurück zum Zitat Borowski P, Pasieczna-Patkowska S, Barczak M, Pilorz K (2012) Theoretical determination of the infrared spectra of amorphous polymers. J Phys Chem A 116:7424–7435CrossRefPubMedCentral Borowski P, Pasieczna-Patkowska S, Barczak M, Pilorz K (2012) Theoretical determination of the infrared spectra of amorphous polymers. J Phys Chem A 116:7424–7435CrossRefPubMedCentral
78.
Zurück zum Zitat Reiher M, Neugebauer J (2003) A mode-selective quantum chemical method for tracking molecular vibrations applied to functionalized carbon nanotubes. J Chem Phys 118:1634–1641CrossRef Reiher M, Neugebauer J (2003) A mode-selective quantum chemical method for tracking molecular vibrations applied to functionalized carbon nanotubes. J Chem Phys 118:1634–1641CrossRef
79.
Zurück zum Zitat Herrmann C, Neugebauer J, Reiher M (2007) Finding a needle in a haystack: direct determination of vibrational signatures in complex systems. New J Chem 31:818–831CrossRef Herrmann C, Neugebauer J, Reiher M (2007) Finding a needle in a haystack: direct determination of vibrational signatures in complex systems. New J Chem 31:818–831CrossRef
80.
Zurück zum Zitat Luber S, Neugebauer J, Reiher M (2009) Intensity tracking for theoretical infrared spectroscopy of large molecules. J Chem Phys 130:064105CrossRefPubMedCentral Luber S, Neugebauer J, Reiher M (2009) Intensity tracking for theoretical infrared spectroscopy of large molecules. J Chem Phys 130:064105CrossRefPubMedCentral
81.
Zurück zum Zitat Kiewisch K, Luber S, Neugebauer J, Reiher M (2009) Intensity tracking for vibrational spectra of large molecules. Chimia 63:270–274CrossRef Kiewisch K, Luber S, Neugebauer J, Reiher M (2009) Intensity tracking for vibrational spectra of large molecules. Chimia 63:270–274CrossRef
Metadaten
Titel
Scaling Procedures in Vibrational Spectroscopy
verfasst von
Olga Bąk
Piotr Borowski
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-01355-4_2

Neuer Inhalt