Skip to main content

2022 | OriginalPaper | Buchkapitel

Computational Model of the Effects of Transcranial Magnetic Stimulation on Cortical Networks with Subject-Specific Neuroanatomy

verfasst von : V. V. Cuziol, L. O. Murta Jr.

Erschienen in: XXVII Brazilian Congress on Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Transcranial magnetic stimulation (TMS) is a noninvasive technique of brain stimulation that has been widely used in both cognitive function studies and clinical applications. However, the biophysical mechanisms by which TMS activates cortical neurons and networks are still poorly understood. The present work aimed to create a computational model of the neuronal effects of single-pulse TMS combining compartmental models of neurons and a subject-specific electric field solution. The model consists of neurons of cortical layers L2/3 and L5, transformed to conform to cortical curvature and subjected to extracellular quasipotentials following a monophasic current waveform. First, excitation thresholds and sites of action potential initiation are determined through simulation of membrane dynamics with neurons being synaptically isolated, then epidural response is simulated by connecting them in a feedforward network. Excitation occurred at morphological discontinuities such as axon terminals, and thresholds were mostly correlated with total electric field magnitude instead of the component normal to cortex. Coil orientations perpendicular to central sulcus presented lowest thresholds, with L5 neurons, in general, being more easily excitable than L2/3. The simulated epidural response of the network presented amplitude and duration in accord with experimental recordings, supporting the hypothesis of transsynaptic activation, with the time of propagation of action potentials in L2/3 axonal arbors suggesting a role in latency of I-waves. By incorporating neuroanatomical factors to a neuronal network, the current model offers a computational framework for exploring TMS parameters and advancing the personalized use of neurostimulation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Cătălin R, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7(3):401–414CrossRef Cătălin R, Murakami M, Ziemann U, Triesch J (2014) A model of TMS-induced I-waves in motor cortex. Brain Stimul 7(3):401–414CrossRef
2.
Zurück zum Zitat Schaworonkow N, Triesch J (2017) Ongoing brain rhythms shape I-wave properties in a computational model. bioRxiv Schaworonkow N, Triesch J (2017) Ongoing brain rhythms shape I-wave properties in a computational model. bioRxiv
3.
Zurück zum Zitat Aberra AS, Wang B, Grill WM, Peterchev AV (2020) Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul 13(1):175–189CrossRef Aberra AS, Wang B, Grill WM, Peterchev AV (2020) Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul 13(1):175–189CrossRef
4.
Zurück zum Zitat Markram H, Muller E, Ramaswamy S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492CrossRef Markram H, Muller E, Ramaswamy S et al (2015) Reconstruction and simulation of neocortical microcircuitry. Cell 163(2):456–492CrossRef
5.
Zurück zum Zitat Aberra AS, Peterchev AV, Grill WM (2018) Biophysically realistic neuron models for simulation of cortical stimulation. J Neural Eng 15(6):066023CrossRef Aberra AS, Peterchev AV, Grill WM (2018) Biophysically realistic neuron models for simulation of cortical stimulation. J Neural Eng 15(6):066023CrossRef
6.
Zurück zum Zitat Markram H (2010) Microcircuitry of the neocortex. In: Gordon S, Grillner S (eds) Handb Brain Microcircuits. Oxford University Press, New York, pp 22–30CrossRef Markram H (2010) Microcircuitry of the neocortex. In: Gordon S, Grillner S (eds) Handb Brain Microcircuits. Oxford University Press, New York, pp 22–30CrossRef
7.
Zurück zum Zitat Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. Exp Brain Res 118(4):489–500CrossRef Nowak LG, Bullier J (1998) Axons, but not cell bodies, are activated by electrical stimulation in cortical gray matter. Exp Brain Res 118(4):489–500CrossRef
8.
Zurück zum Zitat Fox P, Narayana S, Tandon N et al (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–14CrossRef Fox P, Narayana S, Tandon N et al (2004) Column-based model of electric field excitation of cerebral cortex. Hum Brain Mapp 22:1–14CrossRef
9.
Zurück zum Zitat Lazzaro VD, Restuccia D, Oliviero A et al (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(2):625–633CrossRef Lazzaro VD, Restuccia D, Oliviero A et al (1998) Effects of voluntary contraction on descending volleys evoked by transcranial stimulation in conscious humans. J Physiol 508(2):625–633CrossRef
10.
Zurück zum Zitat Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22(3–4):253–305 Roth BJ (1994) Mechanisms for electrical stimulation of excitable tissue. Crit Rev Biomed Eng 22(3–4):253–305
11.
Zurück zum Zitat Douglas RJ, Martin KA, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1(4):480–488CrossRef Douglas RJ, Martin KA, Whitteridge D (1989) A canonical microcircuit for neocortex. Neural Comput 1(4):480–488CrossRef
Metadaten
Titel
Computational Model of the Effects of Transcranial Magnetic Stimulation on Cortical Networks with Subject-Specific Neuroanatomy
verfasst von
V. V. Cuziol
L. O. Murta Jr.
Copyright-Jahr
2022
DOI
https://doi.org/10.1007/978-3-030-70601-2_338

Neuer Inhalt