Skip to main content

2010 | OriginalPaper | Buchkapitel

16. Computational Modeling of Aortic Heart Valve Mechanics Across Multiple Scales

verfasst von : Laura R. Croft, Mohammad R. Kaazempur Mofrad

Erschienen in: Computational Cardiovascular Mechanics

Verlag: Springer US

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Computational modeling is an excellent tool with which to investigate the mechanics of the aortic heart valve. The setting of the heart valve presents complex dynamics and mechanical behavior in which solid structures interact with a fluid domain. There currently exists no standard approach; a variety of strategies have been used to address the different aspects of modeling the heart valve. Simplifications reduce computational costs, but could compromise accuracy. As advancements in modeling techniques are made and utilized, more physiologically relevant models are possible. Computational studies of the aortic valve have contributed to an improved understanding of the mechanics of the normal valve, and insights into the progression of diseased valves.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rosamund W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y. Heart disease and stroke statistics – 2007 update. Circulation. 2007;115:e69–e171.CrossRef Rosamund W, Flegal K, Friday G, Furie K, Go A, Greenlund K, Haase N, Ho M, Howard V, Kissela B, Kittner S, Lloyd-Jones D, McDermott M, Meigs J, Moy C, Nichol G, O’Donnell CJ, Roger V, Rumsfeld J, Sorlie P, Steinberger J, Thom T, Wasserthiel-Smoller S, Hong Y. Heart disease and stroke statistics – 2007 update. Circulation. 2007;115:e69–e171.CrossRef
2.
Zurück zum Zitat Yacoub MH, Takkenberg JJ. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2:60–1.CrossRef Yacoub MH, Takkenberg JJ. Will heart valve tissue engineering change the world? Nat Clin Pract Cardiovasc Med. 2005;2:60–1.CrossRef
3.
Zurück zum Zitat Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Phil Trans R Soc B. 2007;362:1369–91.CrossRef Sacks MS, Yoganathan AP. Heart valve function: a biomechanical perspective. Phil Trans R Soc B. 2007;362:1369–91.CrossRef
4.
Zurück zum Zitat Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Phil Trans R Soc B. 2007;362:1445–57.CrossRef Butcher JT, Nerem RM. Valvular endothelial cells and the mechanoregulation of valvular pathology. Phil Trans R Soc B. 2007;362:1445–57.CrossRef
5.
Zurück zum Zitat Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129:757–66.CrossRef Stella JA, Sacks MS. On the biaxial mechanical properties of the layers of the aortic valve leaflet. J Biomech Eng. 2007;129:757–66.CrossRef
6.
Zurück zum Zitat Yoganathan AP, Woo YR, Sung HW, Jones M. Advances in prosthetic heart valves: fluid mechanics of aortic valve designs. J Biomater Appl. 1988;2:579–614.CrossRef Yoganathan AP, Woo YR, Sung HW, Jones M. Advances in prosthetic heart valves: fluid mechanics of aortic valve designs. J Biomater Appl. 1988;2:579–614.CrossRef
7.
Zurück zum Zitat Yang G, Merrifield R, Masood S, Kilner PJ. Flow and myocardial interaction: an imaging perspective. Phil Trans R Soc B. 2007;362:1329–41.CrossRef Yang G, Merrifield R, Masood S, Kilner PJ. Flow and myocardial interaction: an imaging perspective. Phil Trans R Soc B. 2007;362:1329–41.CrossRef
8.
Zurück zum Zitat Thubrikar MJ. Geometry of the aortic valve. In: The Aortic Valve. Boca Raton, FL: CRC Press, 1990. Thubrikar MJ. Geometry of the aortic valve. In: The Aortic Valve. Boca Raton, FL: CRC Press, 1990.
9.
Zurück zum Zitat Misfeld M, Sievers HH. Heart valve macro- and microstructure. Phil Trans R Soc B. 2007;362:1421–36.CrossRef Misfeld M, Sievers HH. Heart valve macro- and microstructure. Phil Trans R Soc B. 2007;362:1421–36.CrossRef
10.
Zurück zum Zitat Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg. 2006;5:373–8.CrossRef Ranga A, Bouchot O, Mongrain R, Ugolini P, Cartier R. Computational simulations of the aortic valve validated by imaging data: evaluation of valve-sparing techniques. Interact Cardiovasc Thorac Surg. 2006;5:373–8.CrossRef
11.
Zurück zum Zitat Howard IC, Patterson EA, Yoxall A. On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol. 2003;27:259–66.CrossRef Howard IC, Patterson EA, Yoxall A. On the opening mechanism of the aortic valve: some observations from simulations. J Med Eng Technol. 2003;27:259–66.CrossRef
12.
Zurück zum Zitat Weinberg EJ, Mofrad MRK. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng. 2007;7:140–55CrossRef Weinberg EJ, Mofrad MRK. Transient, three-dimensional, multiscale simulations of the human aortic valve. Cardiovasc Eng. 2007;7:140–55CrossRef
13.
Zurück zum Zitat Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng. 1998;26:534–545.CrossRef Grande KJ, Cochran RP, Reinhall PG, Kunzelman KS. Stress variations in the human aortic root and valve: the role of anatomic asymmetry. Ann Biomed Eng. 1998;26:534–545.CrossRef
14.
Zurück zum Zitat Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis. 2003;12:781–9. Nicosia MA, Cochran RP, Einstein DR, Rutland CJ, Kunzelman KS. A coupled fluid-structure finite element model of the aortic valve and root. J Heart Valve Dis. 2003;12:781–9.
15.
Zurück zum Zitat Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34:1799–819.CrossRef Mendelson K, Schoen FJ. Heart valve tissue engineering: concepts, approaches, progress, and challenges. Ann Biomed Eng. 2006;34:1799–819.CrossRef
16.
Zurück zum Zitat De Hart J, Baaijens FP, Peters GW, Schreurs PJ. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech. 2003;36:699–712.CrossRef De Hart J, Baaijens FP, Peters GW, Schreurs PJ. A computational fluid-structure interaction analysis of a fiber-reinforced stentless aortic valve. J Biomech. 2003;36:699–712.CrossRef
17.
Zurück zum Zitat Thubrikar M, Piepgrass WC, Bosher LP, Nolan SP. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res. 1980;47:792–800.CrossRef Thubrikar M, Piepgrass WC, Bosher LP, Nolan SP. The elastic modulus of canine aortic valve leaflets in vivo and in vitro. Circ Res. 1980;47:792–800.CrossRef
18.
Zurück zum Zitat Carmody CJ, Burriesci G, Howard IC, Patterson EA. An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech. 2006;39:158–69.CrossRef Carmody CJ, Burriesci G, Howard IC, Patterson EA. An approach to the simulation of fluid-structure interaction in the aortic valve. J Biomech. 2006;39:158–69.CrossRef
19.
Zurück zum Zitat Gnyaneshwar R, Kumar RK, Balakrishnan KR. Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg. 2002;73:1122–9.CrossRef Gnyaneshwar R, Kumar RK, Balakrishnan KR. Dynamic analysis of the aortic valve using a finite element model. Ann Thorac Surg. 2002;73:1122–9.CrossRef
20.
Zurück zum Zitat Sripathi VC, Kumar RK, Balakrishnan KR. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg. 2004;77:844–51.CrossRef Sripathi VC, Kumar RK, Balakrishnan KR. Further insights into normal aortic valve function: role of a compliant aortic root on leaflet opening and valve orifice area. Ann Thorac Surg. 2004;77:844–51.CrossRef
21.
Zurück zum Zitat Patterson EA, Howard IC, Thornton MA. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J Med Eng Technol. 1996;20:95–108.CrossRef Patterson EA, Howard IC, Thornton MA. A comparative study of linear and nonlinear simulations of the leaflets in a bioprosthetic heart valve during the cardiac cycle. J Med Eng Technol. 1996;20:95–108.CrossRef
22.
Zurück zum Zitat Ranga A, Mongrain R, Mendes Galaz R, Biadillah Y, Cartier R. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties. J Med Eng Technol. 2004;28:95–103.CrossRef Ranga A, Mongrain R, Mendes Galaz R, Biadillah Y, Cartier R. Large-displacement 3D structural analysis of an aortic valve model with nonlinear material properties. J Med Eng Technol. 2004;28:95–103.CrossRef
23.
Zurück zum Zitat Burriesci G, Howard IC, Patterson EA. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol. 1999;23:203–15.CrossRef Burriesci G, Howard IC, Patterson EA. Influence of anisotropy on the mechanical behaviour of bioprosthetic heart valves. J Med Eng Technol. 1999;23:203–15.CrossRef
24.
Zurück zum Zitat Li J, Luo XY, Kuang ZB. A nonlinear anisotropic model for porcine aortic heart valves. J Biomech. 2001;34:1279–89.CrossRef Li J, Luo XY, Kuang ZB. A nonlinear anisotropic model for porcine aortic heart valves. J Biomech. 2001;34:1279–89.CrossRef
25.
Zurück zum Zitat Cheng A, Dagum P, Miller DC. Aortic root dynamics and surgery: from craft to science. Phil Trans R Soc B. 2007;362:1407–19.CrossRef Cheng A, Dagum P, Miller DC. Aortic root dynamics and surgery: from craft to science. Phil Trans R Soc B. 2007;362:1407–19.CrossRef
26.
Zurück zum Zitat Driessen NJ, Bouten CV, Baaijens FP. Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng. 2005;127:329–36.CrossRef Driessen NJ, Bouten CV, Baaijens FP. Improved prediction of the collagen fiber architecture in the aortic heart valve. J Biomech Eng. 2005;127:329–36.CrossRef
27.
Zurück zum Zitat David TE, Feindel CM, Bos J. Repair of the aortic valve in patients with aortic insufficiency and aortic root aneurysm. J Thorac Cardiovasc Surg. 1995;109:345–51.CrossRef David TE, Feindel CM, Bos J. Repair of the aortic valve in patients with aortic insufficiency and aortic root aneurysm. J Thorac Cardiovasc Surg. 1995;109:345–51.CrossRef
28.
Zurück zum Zitat Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J Thorac Cardiovasc Surg. 2001;122:946–54.CrossRef Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Mechanisms of aortic valve incompetence: finite-element modeling of Marfan syndrome. J Thorac Cardiovasc Surg. 2001;122:946–54.CrossRef
29.
Zurück zum Zitat Robicsek F, Thubrikar MJ, Fokin AA. Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory. Ann Thorac Surg. 2002;73:1346–54.CrossRef Robicsek F, Thubrikar MJ, Fokin AA. Cause of degenerative disease of the trileaflet aortic valve: review of subject and presentation of a new theory. Ann Thorac Surg. 2002;73:1346–54.CrossRef
30.
Zurück zum Zitat Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans Biomed Eng. 2001;48:647–59.CrossRef Grande-Allen KJ, Cochran RP, Reinhall PG, Kunzelman KS. Finite-element analysis of aortic valve-sparing: influence of graft shape and stiffness. IEEE Trans Biomed Eng. 2001;48:647–59.CrossRef
31.
Zurück zum Zitat Cacciola G, Peters GW, Schreurs PJ. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J Biomech. 2000;33:521–30.CrossRef Cacciola G, Peters GW, Schreurs PJ. A three-dimensional mechanical analysis of a stentless fibre-reinforced aortic valve prosthesis. J Biomech. 2000;33:521–30.CrossRef
32.
Zurück zum Zitat Chandran KB, Kim SH, Han G. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech. 1991;24:385–95.CrossRef Chandran KB, Kim SH, Han G. Stress distribution on the cusps of a polyurethane trileaflet heart valve prosthesis in the closed position. J Biomech. 1991;24:385–95.CrossRef
33.
Zurück zum Zitat Krucinski S, Vesely I, Dokainish MA, Campbell G. Numerical simulation of bioprosthetic valves mounted on rigid and expansile stents. J Biomech. 1993;26:929–43.CrossRef Krucinski S, Vesely I, Dokainish MA, Campbell G. Numerical simulation of bioprosthetic valves mounted on rigid and expansile stents. J Biomech. 1993;26:929–43.CrossRef
34.
Zurück zum Zitat Robicsek F. Leonardo da Vinci and the sinuses of Valsalva. Ann Thorac Surg. 1991;52:328–35.CrossRef Robicsek F. Leonardo da Vinci and the sinuses of Valsalva. Ann Thorac Surg. 1991;52:328–35.CrossRef
35.
Zurück zum Zitat Beck A, Thubrikar MJ, Robicsek F. Stress analysis of the aortic valve with and without the sinuses of Valsalva. J Heart Valve Dis. 2001;10:1–11. Beck A, Thubrikar MJ, Robicsek F. Stress analysis of the aortic valve with and without the sinuses of Valsalva. J Heart Valve Dis. 2001;10:1–11.
36.
Zurück zum Zitat David TE, Feindel CM, Webb GD, Colman JM, Armstrong S, Maganti M. Long-term results of aortic valve-sparing operations for aortic root aneurysm. J Thorac Cardiovasc Surg. 2006;132:347–54.CrossRef David TE, Feindel CM, Webb GD, Colman JM, Armstrong S, Maganti M. Long-term results of aortic valve-sparing operations for aortic root aneurysm. J Thorac Cardiovasc Surg. 2006;132:347–54.CrossRef
37.
Zurück zum Zitat Pacini D, Settepani F, De Paulis R, Loforte A, Nardella S, Ornaghi D, Gallotti R, Chiariello L, Di Bartolomeo R. Early results of valve-sparing reimplantation procedure using the Valsalva conduit: a multicenter study. Ann Thorac Surg. 2006;82:865–71.CrossRef Pacini D, Settepani F, De Paulis R, Loforte A, Nardella S, Ornaghi D, Gallotti R, Chiariello L, Di Bartolomeo R. Early results of valve-sparing reimplantation procedure using the Valsalva conduit: a multicenter study. Ann Thorac Surg. 2006;82:865–71.CrossRef
38.
Zurück zum Zitat Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijen FP. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003;125:549–57.CrossRef Driessen NJ, Boerboom RA, Huyghe JM, Bouten CV, Baaijen FP. Computational analyses of mechanically induced collagen fiber remodeling in the aortic heart valve. J Biomech Eng. 2003;125:549–57.CrossRef
39.
Zurück zum Zitat De Hart J, Cacciola G, Schreurs PJ, Peters GW. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J Biomech. 1998;31:629–38.CrossRef De Hart J, Cacciola G, Schreurs PJ, Peters GW. A three-dimensional analysis of a fibre-reinforced aortic valve prosthesis. J Biomech. 1998;31:629–38.CrossRef
40.
Zurück zum Zitat Chandran PL, Barocas VH. Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng. 2007;129:137–47.CrossRef Chandran PL, Barocas VH. Deterministic material-based averaging theory model of collagen gel micromechanics. J Biomech Eng. 2007;129:137–47.CrossRef
41.
Zurück zum Zitat Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Level MR, Bove EL. Multiscale modeling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech. 2006;39:1010–20.CrossRef Migliavacca F, Balossino R, Pennati G, Dubini G, Hsia TY, de Level MR, Bove EL. Multiscale modeling in biofluidynamics: application to reconstructive paediatric cardiac surgery. J Biomech. 2006;39:1010–20.CrossRef
42.
Zurück zum Zitat Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61:1–48.MathSciNetMATHCrossRef Holzapfel GA, Gasser TC, Ogden RW. A new constitutive framework for arterial wall mechanics and a comparative study of material models. J Elast. 2000;61:1–48.MathSciNetMATHCrossRef
43.
Zurück zum Zitat Weinberg EJ, Mofrad MRK. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech. 2008;41:3482–7.CrossRef Weinberg EJ, Mofrad MRK. A multiscale computational comparison of the bicuspid and tricuspid aortic valves in relation to calcific aortic stenosis. J Biomech. 2008;41:3482–7.CrossRef
Metadaten
Titel
Computational Modeling of Aortic Heart Valve Mechanics Across Multiple Scales
verfasst von
Laura R. Croft
Mohammad R. Kaazempur Mofrad
Copyright-Jahr
2010
Verlag
Springer US
DOI
https://doi.org/10.1007/978-1-4419-0730-1_16

Neuer Inhalt