Skip to main content
Erschienen in: Physics of Metals and Metallography 13/2018

01.12.2018 | STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION

Computer Simulation for the Prediction of Phase Composition and Structure of Low-Alloyed Steels with Carbonitride Hardening

verfasst von: V. V. Popov, I. I. Gorbachev

Erschienen in: Physics of Metals and Metallography | Ausgabe 13/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Capabilities of modern methods of computer simulation of the phase composition and structure of the low-alloyed steels with carbonitride hardening at the solidification, austenization, and hot deformation of an ingot are briefly reviewed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K. Wu, Z. Li, A. M. Guo, XL. He, L. Zang, F. Fang, and L. Cheng, “Microstructure evolution in low carbon Nb–Ti microalloyed steels,” ISIJ Int. 46, 161–165 (2006).CrossRef K. Wu, Z. Li, A. M. Guo, XL. He, L. Zang, F. Fang, and L. Cheng, “Microstructure evolution in low carbon Nb–Ti microalloyed steels,” ISIJ Int. 46, 161–165 (2006).CrossRef
2.
Zurück zum Zitat C. Y. Chen, C. C. Chen, and J. R. Yang, “Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb,” Mater. Charact. 69, 69–79 (2014).CrossRef C. Y. Chen, C. C. Chen, and J. R. Yang, “Microstructure characterization of nanometer carbides heterogeneous precipitation in Ti–Nb,” Mater. Charact. 69, 69–79 (2014).CrossRef
3.
Zurück zum Zitat V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Del’gado Reina, S. A. Golosienko, U. A. Pazilova, and E. I. Khlusova, “Effect of thermomechanical treatment on the resistance of low-carbon low-alloy steel to brittle fracture,” Phys. Met. Metallogr. 116, 189–199 (2015).CrossRef V. M. Schastlivtsev, T. I. Tabatchikova, I. L. Yakovleva, S. Yu. Del’gado Reina, S. A. Golosienko, U. A. Pazilova, and E. I. Khlusova, “Effect of thermomechanical treatment on the resistance of low-carbon low-alloy steel to brittle fracture,” Phys. Met. Metallogr. 116, 189–199 (2015).CrossRef
4.
Zurück zum Zitat V. M. Farber, V. A. Khotinov, S. V. Belikov, O. V. Selivanova, N. V. Lezhnin, A. N. Morozova, M. S. Karabonalov, and A. Yu. Zhilyakov, “Separations in steels subjected to controlled rolling, followed by accelerated cooling,” Phys. Met. Metallogr. 117, 407–421 (2016).CrossRef V. M. Farber, V. A. Khotinov, S. V. Belikov, O. V. Selivanova, N. V. Lezhnin, A. N. Morozova, M. S. Karabonalov, and A. Yu. Zhilyakov, “Separations in steels subjected to controlled rolling, followed by accelerated cooling,” Phys. Met. Metallogr. 117, 407–421 (2016).CrossRef
5.
Zurück zum Zitat O. V. Sych, A. A. Kruglova, V. M. Schastlivtsev, T. I. Tabatchikova, and I. L. Yakovleva, “Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure“ Phys. Met. Metallogr. 117, 1270–1280 (2016).CrossRef O. V. Sych, A. A. Kruglova, V. M. Schastlivtsev, T. I. Tabatchikova, and I. L. Yakovleva, “Effect of vanadium on the precipitation strengthening upon tempering of a high-strength pipe steel with different initial structure“ Phys. Met. Metallogr. 117, 1270–1280 (2016).CrossRef
6.
Zurück zum Zitat L. Meyer, H. E. Buhler, and F. Heisterkamp, “Metallkundliche Untersuchangen zur Wirkungsweise von Titan in unlegierten Baustahlen,” Arch. Eisenhuttehw. 43, 823–832 (1972). L. Meyer, H. E. Buhler, and F. Heisterkamp, “Metallkundliche Untersuchangen zur Wirkungsweise von Titan in unlegierten Baustahlen,” Arch. Eisenhuttehw. 43, 823–832 (1972).
7.
Zurück zum Zitat M. I. Goldshteyn, L. P. Zhitova, and V. V. Popov, “Influence of titanium carbonitrides on the structure and properties of low-carbon steels,” Fiz. Met. Metalloved. 51, 1245–1252 (1981). M. I. Goldshteyn, L. P. Zhitova, and V. V. Popov, “Influence of titanium carbonitrides on the structure and properties of low-carbon steels,” Fiz. Met. Metalloved. 51, 1245–1252 (1981).
8.
Zurück zum Zitat J.-Y. Li and W.-Y. Zhang, “Effect of TiN inclusion on fracture toughness in ultrahigh strength steel,” ISIJ Int. 29, 158–164 (1989).CrossRef J.-Y. Li and W.-Y. Zhang, “Effect of TiN inclusion on fracture toughness in ultrahigh strength steel,” ISIJ Int. 29, 158–164 (1989).CrossRef
9.
Zurück zum Zitat V. V. Popov and A. O. Homenko, “Similation of phase formation in cast steels with titanium,” Izv. Akad. Nauk, Met. No. 4, 82–88 (1994). V. V. Popov and A. O. Homenko, “Similation of phase formation in cast steels with titanium,” Izv. Akad. Nauk, Met. No. 4, 82–88 (1994).
10.
Zurück zum Zitat J. O. Anderson, “Thermo-Calk & Dictra computational tools for materials science,” CALPHAD 26, 273–312 (2002).CrossRef J. O. Anderson, “Thermo-Calk & Dictra computational tools for materials science,” CALPHAD 26, 273–312 (2002).CrossRef
11.
Zurück zum Zitat C. W. Bale, P. Chartrand, and S. A. Degterov, “FactSage Thermochemical Software and Databases,” CALPHAD 26, 189. C. W. Bale, P. Chartrand, and S. A. Degterov, “FactSage Thermochemical Software and Databases,” CALPHAD 26, 189.
12.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004). V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: I. Description of thermodynamic properties. Computation procedure,” Phys. Met. Metallogr. 98, 344–354 (2004).
13.
Zurück zum Zitat H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method (Cambridge University, Cambridge, 2007).CrossRef H. L. Lukas, S. G. Fries, and B. Sundman, Computational Thermodynamics: The CALPHAD Method (Cambridge University, Cambridge, 2007).CrossRef
14.
Zurück zum Zitat M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 42, 3618–3626 (1970).CrossRef M. Hillert and L.-I. Staffonsson, “The regular solution model for stoichiometric phases and ionic melts,” Acta Chem. Scand. 42, 3618–3626 (1970).CrossRef
15.
Zurück zum Zitat B. Sundman and J. Ågren, “A regular solution model for phase with several components and sublattices suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).CrossRef B. Sundman and J. Ågren, “A regular solution model for phase with several components and sublattices suitable for computer applications,” J. Phys. Chem. Solids 42, 297–301 (1981).CrossRef
16.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: II. Solubility of carbides, nitrides, and carbonitrides in the Fe–V–C, Fe–V–N, and Fe–V–C–N systems,” Phys. Met. Metallogr. 99, 286–299 (2005). V. V. Popov and I. I. Gorbachev, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: II. Solubility of carbides, nitrides, and carbonitrides in the Fe–V–C, Fe–V–N, and Fe–V–C–N systems,” Phys. Met. Metallogr. 99, 286–299 (2005).
17.
Zurück zum Zitat I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe–Ti–C, Fe–Ti–N, and Fe–Ti–C–N systems,” Phys. Met. Metallogr. 108, 484–495 (2009).CrossRef I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: III. Solubility of carbides, nitrides, and carbonitrides in the Fe–Ti–C, Fe–Ti–N, and Fe–Ti–C–N systems,” Phys. Met. Metallogr. 108, 484–495 (2009).CrossRef
18.
Zurück zum Zitat I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).CrossRef I. I. Gorbachev and V. V. Popov, “Analysis of solubility of carbides, nitrides, and carbonitrides in steels using methods of computer thermodynamics: IV. Solubility of carbides, nitrides, and carbonitrides in the Fe–Nb–C, Fe–Nb–N, and Fe–Nb–C–N systems,” Phys. Met. Metallogr. 110, 52–61 (2010).CrossRef
19.
Zurück zum Zitat I. I. Gorbachev and V. V. Popov, “Thermodynamic simulation of the Fe–V–Nb–C–N system using the CALPHAD method,” Phys. Met. Metallogr. 111, 495–502 (2011).CrossRef I. I. Gorbachev and V. V. Popov, “Thermodynamic simulation of the Fe–V–Nb–C–N system using the CALPHAD method,” Phys. Met. Metallogr. 111, 495–502 (2011).CrossRef
20.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti,” Phys. Met. Metallogr. 113, 687–695 (2012).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with Nb and Ti,” Phys. Met. Metallogr. 113, 687–695 (2012).CrossRef
21.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic simulation of the formation of carbonitrides in steels with V and Ti,” Phys. Met. Metallogr. 113, 974–981 (2012).CrossRef
22.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low-alloy low-carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, 69–76 (2014).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Thermodynamic calculations of carbonitride formation in low-alloy low-carbon steels containing V, Nb, and Ti,” Phys. Met. Metallogr. 115, 69–76 (2014).CrossRef
23.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Calculations of the influence of alloying elements (Al, Cr, Mn, Ni, Si) on the solubility of carbonitrides in low-carbon low-alloy steels,” Phys. Met. Metallogr. 117, 1226–1236 (2016).CrossRef
24.
Zurück zum Zitat V. M. Salganik, A. V. Shmakov, and V. V. Popov, “Rational controlled rolling on a 5000 pipe-blank mill at reduced temperature,” Steel in Translation 39, 906–911 (2009).CrossRef V. M. Salganik, A. V. Shmakov, and V. V. Popov, “Rational controlled rolling on a 5000 pipe-blank mill at reduced temperature,” Steel in Translation 39, 906–911 (2009).CrossRef
25.
Zurück zum Zitat J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multicomponent multiphase systems with spherical precipitates I: Theory,” Mater. Sci. Eng. A 385, 166–174 (2004). J. Svoboda, F. D. Fischer, P. Fratzl, and E. Kozeschnik, “Modelling of kinetics in multicomponent multiphase systems with spherical precipitates I: Theory,” Mater. Sci. Eng. A 385, 166–174 (2004).
26.
Zurück zum Zitat E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multicomponent systems,” CALPHAD 28, 379–382 (2004).CrossRef E. Kozeschnik, J. Svoboda, and F. D. Fischer, “Modified evolution equations for the precipitation kinetics of complex phases in multicomponent systems,” CALPHAD 28, 379–382 (2004).CrossRef
27.
Zurück zum Zitat P. B. S. Srinivas, V. B. Rajkumar, and K. C. Hari Kumar, “Numerical simulation of precipitate evolution in ferritic–martensitic power plant steels,” CALPHAD 36, 1–7 (2012).CrossRef P. B. S. Srinivas, V. B. Rajkumar, and K. C. Hari Kumar, “Numerical simulation of precipitate evolution in ferritic–martensitic power plant steels,” CALPHAD 36, 1–7 (2012).CrossRef
28.
Zurück zum Zitat S. Shahandech and M. Militzer, “Grain boundary curvature and grain growth kinetics with particle pinning,” Philos. Mag. A 93, 3231–3247 (2013). S. Shahandech and M. Militzer, “Grain boundary curvature and grain growth kinetics with particle pinning,” Philos. Mag. A 93, 3231–3247 (2013).
29.
Zurück zum Zitat V. V. Popov, “Numerical simulation of the evolution of a polydisperse ensemble of precipitates in a two-component alloy upon isothermal annealing,” Phys. Met. Metallogr. 87, 379–386 (1999). V. V. Popov, “Numerical simulation of the evolution of a polydisperse ensemble of precipitates in a two-component alloy upon isothermal annealing,” Phys. Met. Metallogr. 87, 379–386 (1999).
30.
Zurück zum Zitat V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Philos. Mag. A 82, 17–27 (2002).CrossRef V. V. Popov, “Simulation of dissolution and coarsening of MnS precipitates in Fe–Si,” Philos. Mag. A 82, 17–27 (2002).CrossRef
31.
Zurück zum Zitat V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 303–309 (2002). V. V. Popov, “Simulation of the evolution of precipitates in dilute alloys,” Phys. Met. Metallogr. 93, 303–309 (2002).
32.
Zurück zum Zitat V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003). V. V. Popov and I. I. Gorbachev, “Simulation of the evolution of precipitates in multicomponent alloys,” Phys. Met. Metallogr. 95, 417–426 (2003).
33.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef V. V. Popov, I. I. Gorbachev, and J. A. Alyabieva, “Simulation of VC precipitate evolution in steels with consideration for the formation of new nuclei,” Philos. Mag. 85, 2449–2467 (2005).CrossRef
34.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).CrossRef I. I. Gorbachev, V. V. Popov, and E. N. Akimova, “Computer simulation of the diffusion interaction between carbonitride precipitates and austenitic matrix with allowance for the possibility of variation of their composition,” Phys. Met. Metallogr. 102, 18–28 (2006).CrossRef
35.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nb and Ti containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).CrossRef I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of evolution of precipitates of two carbonitride phases in Nb and Ti containing steels during isothermal annealing,” Phys. Met. Metallogr. 114, 741–751 (2013).CrossRef
36.
Zurück zum Zitat I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015). I. I. Gorbachev, V. V. Popov, and A. Yu. Pasynkov, “Simulation of precipitate ensemble evolution in steels with V and Nb,” Phys. Met. Metallogr. 116, 356–366 (2015).
37.
Zurück zum Zitat V. V. Popov, I. I. Gorbachev, and A. Y. Pasynkov, “Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation,” Philos. Mag. 96, 3632–3653 (2016).CrossRef V. V. Popov, I. I. Gorbachev, and A. Y. Pasynkov, “Simulation of precipitates evolution in multiphase multicomponent systems with consideration of nucleation,” Philos. Mag. 96, 3632–3653 (2016).CrossRef
38.
Zurück zum Zitat P. A. Manohar, M. Ferry, and T. Chandara, “Five decades of the Zener equation,” ISIJ Int. 38, 913–924 (1998).CrossRef P. A. Manohar, M. Ferry, and T. Chandara, “Five decades of the Zener equation,” ISIJ Int. 38, 913–924 (1998).CrossRef
39.
Zurück zum Zitat G. S. Thompson, “Kinetic model of particle-inhibited grain growth,” A Dissertation for the Degree of Doctor of Philosophy (Lehigh University, 2001). G. S. Thompson, “Kinetic model of particle-inhibited grain growth,” A Dissertation for the Degree of Doctor of Philosophy (Lehigh University, 2001).
40.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Prediction of the austenite-grain size of microalloyed steels based on the simulation of the evolution of carbonitride precipitates,” Phys. Met. Metallogr. 116, 1127–1134 (2015).CrossRef
41.
Zurück zum Zitat T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. R. Soc. (London), Ser. A 294, 298–309 (1966). T. Gladman, “On the theory of the effect of precipitate particles on grain growth in metals,” Proc. R. Soc. (London), Ser. A 294, 298–309 (1966).
42.
Zurück zum Zitat R. Sandrom and R. Lagneborg, “A model for hot working occurring by recrystallization,” Acta Metall., 23, 387–398 (1975).CrossRef R. Sandrom and R. Lagneborg, “A model for hot working occurring by recrystallization,” Acta Metall., 23, 387–398 (1975).CrossRef
43.
Zurück zum Zitat C. Roucoules and M. Pietrzyk, and P. D. Hodgson, “Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model,” Mater. Sci. Eng., A 339, 1–9 (2003).CrossRef C. Roucoules and M. Pietrzyk, and P. D. Hodgson, “Analysis of work hardening and recrystallization during the hot working of steel using a statistically based internal variable model,” Mater. Sci. Eng., A 339, 1–9 (2003).CrossRef
44.
Zurück zum Zitat A. Timoshenkov, P. Warczok, M Albu, J. Klarner, E. Kozeschnik, R. Bureau, and C. Sommitsch, “Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata,” Comput. Mater. Sci, 24, 85-94 (2014).CrossRef A. Timoshenkov, P. Warczok, M Albu, J. Klarner, E. Kozeschnik, R. Bureau, and C. Sommitsch, “Modelling the dynamic recrystallization in C–Mn micro-alloyed steel during thermo-mechanical treatment using cellular automata,” Comput. Mater. Sci, 24, 85-94 (2014).CrossRef
45.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloy steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557 (2018). I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the effect of hot deformation on the austenite grain size of low-alloy steels with carbonitride hardening,” Phys. Met. Metallogr. 119, 551–557 (2018).
46.
Zurück zum Zitat I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the evolution of carbonitride particles of complex composition during hot deformation of low-alloy steel,” Phys. Met. Metallogr. 119, 770–779 (2018). I. I. Gorbachev, A. Yu. Pasynkov, and V. V. Popov, “Simulation of the evolution of carbonitride particles of complex composition during hot deformation of low-alloy steel,” Phys. Met. Metallogr. 119, 770–779 (2018).
47.
Zurück zum Zitat M. Pietrzyk, “Through-process modelling of microstructure evolution in hot forming of steels,” J. Mater. Process. Technol. 125–126, 53–62 (2002).CrossRef M. Pietrzyk, “Through-process modelling of microstructure evolution in hot forming of steels,” J. Mater. Process. Technol. 125–126, 53–62 (2002).CrossRef
Metadaten
Titel
Computer Simulation for the Prediction of Phase Composition and Structure of Low-Alloyed Steels with Carbonitride Hardening
verfasst von
V. V. Popov
I. I. Gorbachev
Publikationsdatum
01.12.2018
Verlag
Pleiades Publishing
Erschienen in
Physics of Metals and Metallography / Ausgabe 13/2018
Print ISSN: 0031-918X
Elektronische ISSN: 1555-6190
DOI
https://doi.org/10.1134/S0031918X18130252

Weitere Artikel der Ausgabe 13/2018

Physics of Metals and Metallography 13/2018 Zur Ausgabe