Skip to main content

2019 | OriginalPaper | Buchkapitel

26. Computing Nonlinear Normal Modes of Aerospace Structures Using the Multi-harmonic Balance Method

verfasst von : Christopher I. VanDamme, Ben Moldenhauer, Matthew S. Allen, Joseph J. Hollkamp

Erschienen in: Nonlinear Dynamics, Volume 1

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The extreme environments that hypersonic vehicles experience during flight expose the thin structural panels to high aerodynamic pressure loading and large temperature gradients, leading to a highly nonlinear structural response. Reduced order models (ROMs) provide an efficient means to compute nonlinear response, however, the accuracy of a ROM is highly dependent on how it is made: the number of modes included within the basis set and the load scaling factors used. The authors have previously proposed to validate ROMs by computing the Nonlinear Normal Modes (NNMs) of the ROMs and using them to compare ROMs of increasing order. The NNMs are a useful metric because they are independent of a specific loading scenario, yet if the NNMs are reproduced accurately then the response to various resonant inputs will also be accurate. This framework has proven challenging to apply to curved structures because they can exhibit complex softening-hardening behavior as well as many nested internal resonance branches. The numerical integration and shooting method that has been used to compute the NNMs typically tracks all the internal resonances, and so it becomes slow and tends to require manual intervention. This work seeks to address these challenges by applying a Multi-Harmonic Balance (MHB) method rather than the shooting algorithm used previously. One attractive feature of the MHB method is the fact that one can filter out internal resonance branches from the solution by limiting the number of harmonics included. This filtering property will be explored, to ascertain the extent to which it can be used to skip internal resonances and identify the primary backbone branch of the NNMs. Particular attention will be paid to balancing the number of harmonics required to obtain an accurate primary backbone branch, including modal interactions that occur along the backbone. The method is applied to a clamped-clamped flat beam, a complex aerospace panel structure and a curved beam to demonstrate the capabilities.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mignolet, M., Przekop, A., Rizzi, S., Spottswood, M.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332, 2437–2460 (2013)CrossRef Mignolet, M., Przekop, A., Rizzi, S., Spottswood, M.: A review of indirect/non-intrusive reduced order modeling of nonlinear geometric structures. J. Sound Vib. 332, 2437–2460 (2013)CrossRef
2.
Zurück zum Zitat Gordon, R., Hollkamp, J.: Reduced-order models for acoustic response prediction, Air Force Research Laboratory, techreport AFRL-RB-WP-TR-2011-3040 (2011) Gordon, R., Hollkamp, J.: Reduced-order models for acoustic response prediction, Air Force Research Laboratory, techreport AFRL-RB-WP-TR-2011-3040 (2011)
3.
Zurück zum Zitat Kuether, R., Deaner, B., Hollkamp, J., Allen, M.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53, 3273–3285 (2015)CrossRef Kuether, R., Deaner, B., Hollkamp, J., Allen, M.: Evaluation of geometrically nonlinear reduced-order models with nonlinear normal modes. AIAA J. 53, 3273–3285 (2015)CrossRef
4.
Zurück zum Zitat Kuether, R., Allen, M.: Validation of nonlinear reduced order models with time integration targeted at nonlinear normal modes. In: Nonlinear Dynamics, Volume 1 Conference Proceedings of the Society for Experimental Mechanics Series (2015) Kuether, R., Allen, M.: Validation of nonlinear reduced order models with time integration targeted at nonlinear normal modes. In: Nonlinear Dynamics, Volume 1 Conference Proceedings of the Society for Experimental Mechanics Series (2015)
5.
Zurück zum Zitat Damme, C.V., Allen, M.: Using NNMS to evaluate reduced order models of curved beam. In: De Clerck, J., Epp, D. S. (eds.) Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry. Volume 8: Proceedings of the 34th IMAC, a Conference and Exposition on Structural Dynamics 2016, pp. 457–469. Cham (2016) Damme, C.V., Allen, M.: Using NNMS to evaluate reduced order models of curved beam. In: De Clerck, J., Epp, D. S. (eds.) Rotating Machinery, Hybrid Test Methods, Vibro-Acoustics and Laser Vibrometry. Volume 8: Proceedings of the 34th IMAC, a Conference and Exposition on Structural Dynamics 2016, pp. 457–469. Cham (2016)
6.
Zurück zum Zitat Detroux, T., Renson, L., Kerschen, G.: The harmonic balance method for advanced analysis and design of nonlinear mechanical systems. In: Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series (2014)CrossRef Detroux, T., Renson, L., Kerschen, G.: The harmonic balance method for advanced analysis and design of nonlinear mechanical systems. In: Nonlinear Dynamics, Volume 2. Conference Proceedings of the Society for Experimental Mechanics Series (2014)CrossRef
7.
Zurück zum Zitat Peeters, M., Virguie, R., Serandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009) Peeters, M., Virguie, R., Serandour, G., Kerschen, G., Golinval, J.C.: Nonlinear normal modes, Part II: toward a practical computation using numerical continuation techniques. Mech. Syst. Signal Process. 23, 195–216 (2009)
8.
Zurück zum Zitat Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1), 243–262 (2009)CrossRef Cochelin, B., Vergez, C.: A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions. J. Sound Vib. 324(1), 243–262 (2009)CrossRef
9.
Zurück zum Zitat Shah, P., Blades, E., Nucci, M., Schoneman, J., Berg, D., Cornish, A., Hill, T.: Nonlinear dynamic response of hypersonic vehicle skin panels using coupled fluid-thermal-structural simulation tools. In: Proceedings of the 35th International Modal Analysis Conference (2017) Shah, P., Blades, E., Nucci, M., Schoneman, J., Berg, D., Cornish, A., Hill, T.: Nonlinear dynamic response of hypersonic vehicle skin panels using coupled fluid-thermal-structural simulation tools. In: Proceedings of the 35th International Modal Analysis Conference (2017)
10.
Zurück zum Zitat Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46(1), 1–15 (2014)CrossRef Kuether, R.J., Allen, M.S.: A numerical approach to directly compute nonlinear normal modes of geometrically nonlinear finite element models. Mech. Syst. Signal Process. 46(1), 1–15 (2014)CrossRef
11.
Zurück zum Zitat Damme, C.V., Allen, M.: Nonlinear normal modes of a curved beam and its response to random loading. In: Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics (2017) Damme, C.V., Allen, M.: Nonlinear normal modes of a curved beam and its response to random loading. In: Nonlinear Dynamics, Volume 1. Conference Proceedings of the Society for Experimental Mechanics (2017)
Metadaten
Titel
Computing Nonlinear Normal Modes of Aerospace Structures Using the Multi-harmonic Balance Method
verfasst von
Christopher I. VanDamme
Ben Moldenhauer
Matthew S. Allen
Joseph J. Hollkamp
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-74280-9_26

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.