Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 10/2012

01.10.2012

Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance

verfasst von: M. Grujicic, B. P. d’Entremont, B. Pandurangan, J. Runt, J. Tarter, G. Dillon

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 10/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polyurea is an elastomeric co-polymer in which the presence of strong hydrogen bonding between chains gives rise to the formation of a nano-composite like microstructure consisting of discrete hard-domains distributed randomly within a compliant/soft matrix. Several experimental investigations reported in the open literature have indicated that the application of polyurea external coatings and/or internal linings can substantially improve ballistic penetration resistance and blast survivability of buildings, vehicles and laboratory/field test-plates. Recently, it was proposed that transition of polyurea between its rubbery state and its glassy state under high deformation-rate loading conditions is the main mechanism responsible for the improved ballistic-impact resistance of polyurea-coated structures. As far as the shock-mitigation performance of polyurea is concerned, additional/alternative mechanisms such as shock-impedance mismatch, shock-wave dispersion, fracture-mode conversion, and strain delocalization have been suggested (without validation). In this study, an attempt is made to identify the phenomena and processes within polyurea which are most likely responsible for the observed superior shock-mitigation performance of this material. Towards that end, computational methods and tools are used to investigate shockwave generation, propagation, dispersion, and transmission/reflection within polyurea and the adjoining material layers as present in the case of a blast-loaded assembly consisting of a head covered with a polyurea-augmented helmet. The results obtained show that for effective shock mitigation, the operation of volumetric energy-dissipating/energy-storing processes is required. Candidate processes of this type are identified and presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Grujicic, H. Marvi, G. Arakere, W.C. Bell, and I. Haque, The Effect of Up-armoring the High-Mobility Multi-purpose Wheeled Vehicle (HMMWV) on the Off-road Vehicle Performance”, Multidiscip. Model. Mater. Struct., 2010, 6(2), p 229–256 M. Grujicic, H. Marvi, G. Arakere, W.C. Bell, and I. Haque, The Effect of Up-armoring the High-Mobility Multi-purpose Wheeled Vehicle (HMMWV) on the Off-road Vehicle Performance”, Multidiscip. Model. Mater. Struct., 2010, 6(2), p 229–256
2.
Zurück zum Zitat M. Grujicic, W.C. Bell, G. Arakere, and I. Haque, Finite Element Analysis of the Effect of Up-armoring on the Off-road Braking and Sharp-turn Performance of a High-Mobility Multi-purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223(D11), p 1419–1434CrossRef M. Grujicic, W.C. Bell, G. Arakere, and I. Haque, Finite Element Analysis of the Effect of Up-armoring on the Off-road Braking and Sharp-turn Performance of a High-Mobility Multi-purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223(D11), p 1419–1434CrossRef
3.
Zurück zum Zitat M. Grujicic, G. Arakere, H.K. Nallagatla, W.C. Bell, and I. Haque, Computational Investigation of Blast Survivability and Off-road Performance of an Up-armored High-Mobility Multi-purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223, p 301–325CrossRef M. Grujicic, G. Arakere, H.K. Nallagatla, W.C. Bell, and I. Haque, Computational Investigation of Blast Survivability and Off-road Performance of an Up-armored High-Mobility Multi-purpose Wheeled Vehicle (HMMWV), J. Automob. Eng., 2009, 223, p 301–325CrossRef
4.
Zurück zum Zitat M. Grujicic, G. Arakere, B. Pandurangan, W.C. Bell, T. He, and X. Xie, Material-modeling and Structural-mechanics Aspects of the Traumatic Brain Injury Problem, Multidiscip. Model. Mater. Struct., 2010, 6(3), p 335–363 M. Grujicic, G. Arakere, B. Pandurangan, W.C. Bell, T. He, and X. Xie, Material-modeling and Structural-mechanics Aspects of the Traumatic Brain Injury Problem, Multidiscip. Model. Mater. Struct., 2010, 6(3), p 335–363
5.
Zurück zum Zitat M. Grujicic, W.C. Bell, B. Pandurangan, and P.S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet, J. Mater. Eng. Perform., 2011, 20(6), p 877–893CrossRef M. Grujicic, W.C. Bell, B. Pandurangan, and P.S. Glomski, Fluid/Structure Interaction Computational Investigation of the Blast-Wave Mitigation Efficacy of the Advanced Combat Helmet, J. Mater. Eng. Perform., 2011, 20(6), p 877–893CrossRef
6.
Zurück zum Zitat V. F. Nesterenko, Shock (Blast) Mitigation by “Soft” Condensed Matter, MRS Symposium Proceedings, 751, 2003, MM 4.3.1–MM 4.3.12. V. F. Nesterenko, Shock (Blast) Mitigation by “Soft” Condensed Matter, MRS Symposium Proceedings, 751, 2003, MM 4.3.1–MM 4.3.12.
7.
Zurück zum Zitat M. Grujicic, T. He, and B. Pandurangan, Development and Parameterization of an Equilibrium Material Model for Segmented Polyurea, Multidiscip. Model. Mater. Struct., 2011, 7(2), p 96–114 M. Grujicic, T. He, and B. Pandurangan, Development and Parameterization of an Equilibrium Material Model for Segmented Polyurea, Multidiscip. Model. Mater. Struct., 2011, 7(2), p 96–114
8.
Zurück zum Zitat M. Grujicic, T. He, and B. Pandurangan, Experimental Characterization and Material-model Development for Microphase-segregated Polyurea: An Overview, J. Mater. Eng. Perform. 2010. doi:10.1007/s11665-011-9875-6 M. Grujicic, T. He, and B. Pandurangan, Experimental Characterization and Material-model Development for Microphase-segregated Polyurea: An Overview, J. Mater. Eng. Perform. 2010. doi:10.​1007/​s11665-011-9875-6
9.
Zurück zum Zitat A.J. Ryan, Spinodal Decomposition during Bulk Copolymerization: Reaction Injection Molding, Polymer, 1989, 31, p 707CrossRef A.J. Ryan, Spinodal Decomposition during Bulk Copolymerization: Reaction Injection Molding, Polymer, 1989, 31, p 707CrossRef
10.
Zurück zum Zitat M. Grujicic, B. Pandurangan, T. He, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition, Mater. Sci. Eng. A, 2010, 527(29–30), p 7741–7751 M. Grujicic, B. Pandurangan, T. He, B.A. Cheeseman, C.-F. Yen, and C.L. Randow, Computational Investigation of Impact Energy Absorption Capability of Polyurea Coatings via Deformation-Induced Glass Transition, Mater. Sci. Eng. A, 2010, 527(29–30), p 7741–7751
11.
Zurück zum Zitat Y.A. Bahei-El-Din, G.J. Dvorak, and O.J. Fredricksen, A Blast-tolerant Sandwich Plate Design with a Polyurea Interlayer, Int. J. Solids Struct., 2006, 43, p 7644–7658CrossRef Y.A. Bahei-El-Din, G.J. Dvorak, and O.J. Fredricksen, A Blast-tolerant Sandwich Plate Design with a Polyurea Interlayer, Int. J. Solids Struct., 2006, 43, p 7644–7658CrossRef
12.
Zurück zum Zitat S. M. Walsh, R. R. Scott and D. M. Spagnuolo, The Development of a Hybrid Thermoplastic Ballistic Material with Application to Helmets, ARL-TR-3700, Army Research Laboratory, December 2005. S. M. Walsh, R. R. Scott and D. M. Spagnuolo, The Development of a Hybrid Thermoplastic Ballistic Material with Application to Helmets, ARL-TR-3700, Army Research Laboratory, December 2005.
13.
Zurück zum Zitat S.A. Tekalur, A. Shukla, and K. Shivakumar, Blast Resistance of Polyurea-Based Layered Composite Materials, Compos. Struct., 2008, 84(3), p 271–281CrossRef S.A. Tekalur, A. Shukla, and K. Shivakumar, Blast Resistance of Polyurea-Based Layered Composite Materials, Compos. Struct., 2008, 84(3), p 271–281CrossRef
14.
Zurück zum Zitat J.R. Porter, R.J. Dinan, M.I. Hammons, and K.J. Knox, Polymer Coatings Increase Blast Resistance of Existing and Temporary Structures, AMPTIAC Q., 2002, 6(4), p 47–52 J.R. Porter, R.J. Dinan, M.I. Hammons, and K.J. Knox, Polymer Coatings Increase Blast Resistance of Existing and Temporary Structures, AMPTIAC Q., 2002, 6(4), p 47–52
15.
Zurück zum Zitat W. Matthews, Polymer Protection, Defense News, 2004, p 32–35. W. Matthews, Polymer Protection, Defense News, 2004, p 32–35.
16.
Zurück zum Zitat G.N. Nurick and J.B. Martin, Deformation of Thin Plates Subjected to Impulsive Loading—A Review, Part II: Experimental Studies, Int. J. Impact Eng., 1989, 8(2), p 171–186CrossRef G.N. Nurick and J.B. Martin, Deformation of Thin Plates Subjected to Impulsive Loading—A Review, Part II: Experimental Studies, Int. J. Impact Eng., 1989, 8(2), p 171–186CrossRef
17.
Zurück zum Zitat V.H. Balden and G.N. Nurick, Numerical Simulation of the Post-failure Motion of Steel Plates Subjected to Blast Loading, Int. J. Impact Eng., 2005, 32, p 14–34CrossRef V.H. Balden and G.N. Nurick, Numerical Simulation of the Post-failure Motion of Steel Plates Subjected to Blast Loading, Int. J. Impact Eng., 2005, 32, p 14–34CrossRef
18.
Zurück zum Zitat Y. Lee and T. Wierzbicki, Fracture Prediction of Thin Plates under Localized Impulsive Loading. Part II: Discing and Petalling, Int. J. Impact Eng., 2005, 31, p 1277–1308CrossRef Y. Lee and T. Wierzbicki, Fracture Prediction of Thin Plates under Localized Impulsive Loading. Part II: Discing and Petalling, Int. J. Impact Eng., 2005, 31, p 1277–1308CrossRef
19.
Zurück zum Zitat C. Chen, D.G. Linzell, E. Alpman, and L.N. Long, Effectiveness of Advanced Coating Systems for Mitigating Blast effects on Steel Components, Tenth International Conference on Structures Under Shock or Impact, 14–16 May, 2008, Algarve, Portugal C. Chen, D.G. Linzell, E. Alpman, and L.N. Long, Effectiveness of Advanced Coating Systems for Mitigating Blast effects on Steel Components, Tenth International Conference on Structures Under Shock or Impact, 14–16 May, 2008, Algarve, Portugal
20.
Zurück zum Zitat S.A. Tekalur, A. Shukla, and K. Shivakumar, Blast Resistance of Polyurea based Layered Composite Materials, Compos. Struct., 2008, 84, p 271–281CrossRef S.A. Tekalur, A. Shukla, and K. Shivakumar, Blast Resistance of Polyurea based Layered Composite Materials, Compos. Struct., 2008, 84, p 271–281CrossRef
21.
Zurück zum Zitat A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Nemat-Nasser, An Experimentally-based Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(3), p 5847–5866CrossRef A.V. Amirkhizi, J. Isaacs, J. McGee, and S. Nemat-Nasser, An Experimentally-based Constitutive Model for Polyurea, Including Pressure and Temperature Effects, Philos. Mag., 2006, 86(3), p 5847–5866CrossRef
22.
Zurück zum Zitat R.B. Bogoslovov, C.M. Roland, and R.M. Gamache, Impact-induced Glass-Transition in Elastomer Coatings, Appl. Phys. Lett., 2007, 90, p 221910CrossRef R.B. Bogoslovov, C.M. Roland, and R.M. Gamache, Impact-induced Glass-Transition in Elastomer Coatings, Appl. Phys. Lett., 2007, 90, p 221910CrossRef
23.
Zurück zum Zitat C.M. Roland and R. Cassini, Effect of Hydrostatic Pressure on the Viscoelastic Response of Polyurea, Polymer, 2007, 48, p 5747–5752CrossRef C.M. Roland and R. Cassini, Effect of Hydrostatic Pressure on the Viscoelastic Response of Polyurea, Polymer, 2007, 48, p 5747–5752CrossRef
24.
Zurück zum Zitat F.G. Friedlander, The Wave Equation on a Curved Space-Time, Cambridge Monographs on Mathematical Physics, 2, 1976, Cambridge University Press, New York F.G. Friedlander, The Wave Equation on a Curved Space-Time, Cambridge Monographs on Mathematical Physics, 2, 1976, Cambridge University Press, New York
25.
Zurück zum Zitat P.W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996 P.W. Cooper, Explosives Engineering, Wiley-VCH, New York, 1996
26.
Zurück zum Zitat D. Hyde, User’s Guide for Microcomputer Programs, CONWEP and FUNPRO—Applications of TM 5-855-1, U.S, Army Engineer Waterways Experimental Station, Vicksburg, 1988 D. Hyde, User’s Guide for Microcomputer Programs, CONWEP and FUNPRO—Applications of TM 5-855-1, U.S, Army Engineer Waterways Experimental Station, Vicksburg, 1988
27.
Zurück zum Zitat M.K. Nyein, A.M. Jason, L. Yu, C.M. Pita, J.D. Joannopoulos, D.F. Moore, and R.A. Radovitzky, In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury, Proc. Natl. Acad. Sci. USA, 2010, 48(107), p 20703–20708CrossRef M.K. Nyein, A.M. Jason, L. Yu, C.M. Pita, J.D. Joannopoulos, D.F. Moore, and R.A. Radovitzky, In Silico Investigation of Intracranial Blast Mitigation with Relevance to Military Traumatic Brain Injury, Proc. Natl. Acad. Sci. USA, 2010, 48(107), p 20703–20708CrossRef
28.
Zurück zum Zitat D.F. Moore, R. Radovitzky, L. Shupenko, A. Klinoff, M.S. Jaffee, and J.M. Rosen, Blast Physics and Central Nervous System Injury, Futur. Neurol., 2008, 64, p S30 D.F. Moore, R. Radovitzky, L. Shupenko, A. Klinoff, M.S. Jaffee, and J.M. Rosen, Blast Physics and Central Nervous System Injury, Futur. Neurol., 2008, 64, p S30
29.
Zurück zum Zitat M.R. Amini, J. Simon, and S. Namet-Nasser, Numerical Modeling of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure Pulse Experiments, Mech. Mater., 2010, 42, p 615–627CrossRef M.R. Amini, J. Simon, and S. Namet-Nasser, Numerical Modeling of Effect of Polyurea on Response of Steel Plates to Impulsive Loads in Direct Pressure Pulse Experiments, Mech. Mater., 2010, 42, p 615–627CrossRef
30.
Zurück zum Zitat P.A. Taylor and C.C. Ford, Simulation of Blast-induced Early-time Intracranial Wave Physics Leading to Traumatic Brain Injury, J. Biomech. Eng., 2009, 131, p 061007-1–061007-11CrossRef P.A. Taylor and C.C. Ford, Simulation of Blast-induced Early-time Intracranial Wave Physics Leading to Traumatic Brain Injury, J. Biomech. Eng., 2009, 131, p 061007-1–061007-11CrossRef
31.
Zurück zum Zitat ABAQUS Version 6.10 EF1, User Documentation, Dassault Systems, 2010. ABAQUS Version 6.10 EF1, User Documentation, Dassault Systems, 2010.
32.
Zurück zum Zitat W. Mock, S. Bartyczak, G. Lee, J. Fredderly, and K. Jordan, Dynamic Properties of Polyurea-1000, Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Vo1. 195, 2009, p 1241–1244. W. Mock, S. Bartyczak, G. Lee, J. Fredderly, and K. Jordan, Dynamic Properties of Polyurea-1000, Shock Compression of Condensed Matter 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, Vo1. 195, 2009, p 1241–1244.
33.
Zurück zum Zitat ANSYS/Autodyn-2D and 3D, Version 6.1, User Documentation, ANSYS Inc., 2007. ANSYS/Autodyn-2D and 3D, Version 6.1, User Documentation, ANSYS Inc., 2007.
34.
Zurück zum Zitat S. Curgul, I. Yilgor, E. Yilgor, B. Erman, and M. Cakmak, Effect of Chemical Composition on Large Deformation Mechanooptical Properties of High Strength Poly(urethane urea)s, Macromolecules, 2004, 37, p 8676–8685CrossRef S. Curgul, I. Yilgor, E. Yilgor, B. Erman, and M. Cakmak, Effect of Chemical Composition on Large Deformation Mechanooptical Properties of High Strength Poly(urethane urea)s, Macromolecules, 2004, 37, p 8676–8685CrossRef
35.
Zurück zum Zitat F. Yeh, B.S. Hsiao, B.B. Sauer, S. Michel, and H.W. Siesler, In-Situ Studies of Structure Development during Deformation of a Segmented Poly(urethane urea) Elastomer, Macromolecules, 2003, 36, p 1940–1954CrossRef F. Yeh, B.S. Hsiao, B.B. Sauer, S. Michel, and H.W. Siesler, In-Situ Studies of Structure Development during Deformation of a Segmented Poly(urethane urea) Elastomer, Macromolecules, 2003, 36, p 1940–1954CrossRef
36.
Zurück zum Zitat R.S. Waletzko, L.T. James Korley, B.D. Pate, E.L. Thomas, and P.T. Hammond, Role of Increased Crystallinity in Deformation-induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO-PPO-PEO Soft Segments and HDI, Hard Segments, Macromolecules, 2009, 42, p 2041–2053CrossRef R.S. Waletzko, L.T. James Korley, B.D. Pate, E.L. Thomas, and P.T. Hammond, Role of Increased Crystallinity in Deformation-induced Structure of Segmented Thermoplastic Polyurethane Elastomers with PEO and PEO-PPO-PEO Soft Segments and HDI, Hard Segments, Macromolecules, 2009, 42, p 2041–2053CrossRef
37.
Zurück zum Zitat M. Tosaka, Strain-Induced Crystallization of Crosslinked Natural Rubber as Revealed by X-ray Diffraction using Synchrotron Radiation, Polym. J., 2007, 39, p 1207–1220CrossRef M. Tosaka, Strain-Induced Crystallization of Crosslinked Natural Rubber as Revealed by X-ray Diffraction using Synchrotron Radiation, Polym. J., 2007, 39, p 1207–1220CrossRef
38.
Zurück zum Zitat A.N. Gent, S. Kawahara, and J. Zhao, Crystallization and Strength of Natural Rubber and Synthetic cis-1,4-Polyisoprene, Rubber Chem. Technol., 1998, 71, p 668–678CrossRef A.N. Gent, S. Kawahara, and J. Zhao, Crystallization and Strength of Natural Rubber and Synthetic cis-1,4-Polyisoprene, Rubber Chem. Technol., 1998, 71, p 668–678CrossRef
39.
Zurück zum Zitat C.I. Martins and M. Cakmak, Control of the Strain-induced Crystallization of Polyethylene Terephthalate by Temporally Varying Deformation Rates: A Mechano-optical Study, Polymer, 2007, 48(7), p 2109–2123CrossRef C.I. Martins and M. Cakmak, Control of the Strain-induced Crystallization of Polyethylene Terephthalate by Temporally Varying Deformation Rates: A Mechano-optical Study, Polymer, 2007, 48(7), p 2109–2123CrossRef
40.
Zurück zum Zitat M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore, Mechanically-Induced Chemical Changes in Polymeric Materials, Chem. Rev., 2009, 109, p 5755–5798CrossRef M.M. Caruso, D.A. Davis, Q. Shen, S.A. Odom, N.R. Sottos, S.R. White, and J.S. Moore, Mechanically-Induced Chemical Changes in Polymeric Materials, Chem. Rev., 2009, 109, p 5755–5798CrossRef
41.
Zurück zum Zitat J.P. Sheth, A. Aneja, G.L. Wilkes, E. Yilgor, G.E. Atilla, I. Yilgor, and L. Beyer, Influence of System Variables on the Morphology and Dynamic Mechanical Behavior of Polydimethylsiloxanebased Segmented Polyureathane and Polyurea Copolymers: A Comparative Perspective, Polymer, 2004, 45, p 6919–6932CrossRef J.P. Sheth, A. Aneja, G.L. Wilkes, E. Yilgor, G.E. Atilla, I. Yilgor, and L. Beyer, Influence of System Variables on the Morphology and Dynamic Mechanical Behavior of Polydimethylsiloxanebased Segmented Polyureathane and Polyurea Copolymers: A Comparative Perspective, Polymer, 2004, 45, p 6919–6932CrossRef
Metadaten
Titel
Concept-Level Analysis and Design of Polyurea for Enhanced Blast-Mitigation Performance
verfasst von
M. Grujicic
B. P. d’Entremont
B. Pandurangan
J. Runt
J. Tarter
G. Dillon
Publikationsdatum
01.10.2012
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 10/2012
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-011-0117-8

Weitere Artikel der Ausgabe 10/2012

Journal of Materials Engineering and Performance 10/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.