Skip to main content
Erschienen in: Journal of Materials Science 11/2019

07.03.2019 | Chemical routes to materials

Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development

verfasst von: Warittha Thongkham, Charoenporn Lertsatitthanakorn, Manit Jitpukdee, Kanpitcha Jiramitmongkon, Paisan Khanchaitit, Monrudee Liangruksa

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Harvesting waste energy through thermoelectric has widely gained attention to aid green energy production. Current efforts are to take advantages of nanomaterials and nanosystems because of dramatic improvements in the performance. However, its cost-effectiveness in generating a 3D configuration for a large-area use is hindered by high production cost. To overcome the present challenges, we propose a flexible and lightweight thermoelectric developed on a melamine foam using a simple dip-dry technique to self-assemble conductive nanofilms in the scaffold. Different amounts of poly(3,4-ethylenedioxythiophene):polystyrenesulfonate (PEDOT:PSS) conductive nanofilms were variedly fabricated in the foam due to altered amounts of sodium dodecyl sulfate (SDS) surfactant from 0 to 5 wt%. Together with experimental results, a theoretical model was constructed to predict thermal and electrical conductivities, indicating the strong influence of SDS to the electrical conductivity. As a result, the highest nanofilm formation in the foam structure is achieved by adding SDS at 3 wt%. The figure of merit (ZT) of thermoelectric foam is about 0.006–0.007. Our first device was also demonstrated with output voltage of 1.1 mV (ΔT = 40 K). The present study could provide the design and optimization of a hybrid thermoelectric that can act as a simultaneous thermal insulator and power generator.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Martín-González M, Caballero-Calero O, Díaz-Chao P (2013) Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. Renew Sust Energy Rev 24:288–305CrossRef Martín-González M, Caballero-Calero O, Díaz-Chao P (2013) Spray pyrolysis of conductor- and binder-free porous FeS2 films for high-performance lithium ion batteries. Renew Sust Energy Rev 24:288–305CrossRef
2.
Zurück zum Zitat He W, Zhang G, Zhang X, Ji J, Li G, Zhao X (2015) Recent development and application of thermoelectric generator and cooler. Appl Energy 143:1–25CrossRef He W, Zhang G, Zhang X, Ji J, Li G, Zhao X (2015) Recent development and application of thermoelectric generator and cooler. Appl Energy 143:1–25CrossRef
3.
Zurück zum Zitat Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRef Hicks LD, Dresselhaus MS (1993) Effect of quantum-well structures on the thermoelectric figure of merit. Phys Rev B 47(19):12727–12731CrossRef
4.
Zurück zum Zitat Kim W, Zide J, Gossard A et al (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96(4):045901CrossRef Kim W, Zide J, Gossard A et al (2006) Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys Rev Lett 96(4):045901CrossRef
5.
Zurück zum Zitat Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841CrossRef Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37(6):820–841CrossRef
6.
Zurück zum Zitat Wang L, Liu Y, Zhang Z et al (2017) Polymer composites-based thermoelectric materials and devices. Compos Part B Eng 122:145–155CrossRef Wang L, Liu Y, Zhang Z et al (2017) Polymer composites-based thermoelectric materials and devices. Compos Part B Eng 122:145–155CrossRef
7.
Zurück zum Zitat Toshima N (2017) Recent progress of organic and hybrid thermoelectric materials. Synth Met 225:3–21CrossRef Toshima N (2017) Recent progress of organic and hybrid thermoelectric materials. Synth Met 225:3–21CrossRef
8.
Zurück zum Zitat Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4(4):2445–2451CrossRef Yao Q, Chen L, Zhang W, Liufu S, Chen X (2010) Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4(4):2445–2451CrossRef
9.
Zurück zum Zitat Khalid M, Tumelero MA, Brandt IS, Zoldan VC, Acuña JJS, Pasa AA (2013) Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids. Indian J Mater Sci 2013:1–7CrossRef Khalid M, Tumelero MA, Brandt IS, Zoldan VC, Acuña JJS, Pasa AA (2013) Electrical conductivity studies of polyaniline nanotubes doped with different sulfonic acids. Indian J Mater Sci 2013:1–7CrossRef
10.
Zurück zum Zitat Park YW, Yoon CO, Lee CH, Shirakawa H, Suezaki Y, Akagi K (1989) Conductivity and thermoelectric power of the newly processed polyacetylene. Synth Met 28(3):D27–D34CrossRef Park YW, Yoon CO, Lee CH, Shirakawa H, Suezaki Y, Akagi K (1989) Conductivity and thermoelectric power of the newly processed polyacetylene. Synth Met 28(3):D27–D34CrossRef
11.
Zurück zum Zitat Kemp NT, Kaiser AB, Liu CJ et al (1999) Thermoelectric power and conductivity of different types of polypyrrole. J Polym Sci B Polym Phys 37(9):953–960CrossRef Kemp NT, Kaiser AB, Liu CJ et al (1999) Thermoelectric power and conductivity of different types of polypyrrole. J Polym Sci B Polym Phys 37(9):953–960CrossRef
12.
Zurück zum Zitat Culebras M, Uriol B, Gomez CM, Cantarero A (2015) Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole. Phys Chem Chem Phys 17(23):15140–15145CrossRef Culebras M, Uriol B, Gomez CM, Cantarero A (2015) Controlling the thermoelectric properties of polymers: application to PEDOT and polypyrrole. Phys Chem Chem Phys 17(23):15140–15145CrossRef
13.
Zurück zum Zitat Wu J, Sun Y, Pei W-B, Huang L, Xu W, Zhang Q (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synth Met 196:173–177CrossRef Wu J, Sun Y, Pei W-B, Huang L, Xu W, Zhang Q (2014) Polypyrrole nanotube film for flexible thermoelectric application. Synth Met 196:173–177CrossRef
14.
Zurück zum Zitat Lévesque I, Bertrand PO, Blouin N et al (2007) Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem Mater 19(8):2128–2138CrossRef Lévesque I, Bertrand PO, Blouin N et al (2007) Synthesis and thermoelectric properties of polycarbazole, polyindolocarbazole, and polydiindolocarbazole derivatives. Chem Mater 19(8):2128–2138CrossRef
15.
Zurück zum Zitat Aïch RB, Blouin N, Bouchard A, Leclerc M (2009) Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem Mater 21(4):751–757CrossRef Aïch RB, Blouin N, Bouchard A, Leclerc M (2009) Electrical and thermoelectric properties of poly(2,7-carbazole) derivatives. Chem Mater 21(4):751–757CrossRef
16.
Zurück zum Zitat Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162(11–12):912–917CrossRef Yue R, Xu J (2012) Poly(3,4-ethylenedioxythiophene) as promising organic thermoelectric materials: a mini-review. Synth Met 162(11–12):912–917CrossRef
17.
Zurück zum Zitat Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2015) Recent progress on PEDOT-based thermoelectric materials. Materials 8(2):732–750CrossRef Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2015) Recent progress on PEDOT-based thermoelectric materials. Materials 8(2):732–750CrossRef
18.
Zurück zum Zitat Sun K, Zhang S, Li P et al (2015) Review on application of PEDOTs and PEDOT:pSS in energy conversion and storage devices. J Mater Sci: Mater Electron 26(7):4438–4462 Sun K, Zhang S, Li P et al (2015) Review on application of PEDOTs and PEDOT:pSS in energy conversion and storage devices. J Mater Sci: Mater Electron 26(7):4438–4462
19.
Zurück zum Zitat Kim JY, Jung JH, Lee DE, Joo J (2002) Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met 126(2):311–316CrossRef Kim JY, Jung JH, Lee DE, Joo J (2002) Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. Synth Met 126(2):311–316CrossRef
20.
Zurück zum Zitat Yamashita M, Otani C, Shimizu M, Okuzaki H (2011) Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy. Appl Phys Lett 99(4):143307CrossRef Yamashita M, Otani C, Shimizu M, Okuzaki H (2011) Effect of solvent on carrier transport in poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) studied by terahertz and infrared-ultraviolet spectroscopy. Appl Phys Lett 99(4):143307CrossRef
21.
Zurück zum Zitat Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45(25):8443–8450CrossRef Ouyang J, Xu Q, Chu C-W, Yang Y, Li G, Shinar J (2004) On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer 45(25):8443–8450CrossRef
22.
Zurück zum Zitat Wei Q, Mukaida M, Naitoh Y, Ishida T (2013) Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents. Adv Mater 25(20):2831–2836CrossRef Wei Q, Mukaida M, Naitoh Y, Ishida T (2013) Morphological change and mobility enhancement in PEDOT:PSS by adding co-solvents. Adv Mater 25(20):2831–2836CrossRef
23.
Zurück zum Zitat Fan B, Mei X, Ouyang J (2008) Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 41(16):5971–5973CrossRef Fan B, Mei X, Ouyang J (2008) Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) films by adding anionic surfactants into polymer solution. Macromolecules 41(16):5971–5973CrossRef
24.
Zurück zum Zitat Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater 1(4):1500017CrossRef Shi H, Liu C, Jiang Q, Xu J (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review. Adv Electron Mater 1(4):1500017CrossRef
25.
Zurück zum Zitat Zhu Z, Liu C, Jiang F, Xu J, Liu E (2017) Effective treatment methods on PEDOT:PSS to enhance its thermoelectric performance. Synth Met 225:31–40CrossRef Zhu Z, Liu C, Jiang F, Xu J, Liu E (2017) Effective treatment methods on PEDOT:PSS to enhance its thermoelectric performance. Synth Met 225:31–40CrossRef
26.
Zurück zum Zitat Yi C, Wilhite A, Zhang L et al (2015) Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by binary secondary dopants. ACS Appl Mater Interfaces 7(17):8984–8989CrossRef Yi C, Wilhite A, Zhang L et al (2015) Enhanced thermoelectric properties of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) by binary secondary dopants. ACS Appl Mater Interfaces 7(17):8984–8989CrossRef
27.
Zurück zum Zitat Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2014) Polymer thermoelectric modules screen-printed on paper. RSC Adv 4(54):28802–28806CrossRef Wei Q, Mukaida M, Kirihara K, Naitoh Y, Ishida T (2014) Polymer thermoelectric modules screen-printed on paper. RSC Adv 4(54):28802–28806CrossRef
28.
Zurück zum Zitat Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050CrossRef Russ B, Glaudell A, Urban JJ, Chabinyc ML, Segalman RA (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:16050CrossRef
29.
Zurück zum Zitat Sun T, Peavey JL, David Shelby M, Ferguson S, O’Connor BT (2015) Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers Manag 103:674–680CrossRef Sun T, Peavey JL, David Shelby M, Ferguson S, O’Connor BT (2015) Heat shrink formation of a corrugated thin film thermoelectric generator. Energy Convers Manag 103:674–680CrossRef
30.
Zurück zum Zitat Owoyele O, Ferguson S, O’Connor BT (2015) Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 147:184–191CrossRef Owoyele O, Ferguson S, O’Connor BT (2015) Performance analysis of a thermoelectric cooler with a corrugated architecture. Appl Energy 147:184–191CrossRef
31.
Zurück zum Zitat Søndergaard RR, Hösel M, Espinosa N, Jørgensen M, Krebs FC (2013) Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci Eng 1(2):81–88CrossRef Søndergaard RR, Hösel M, Espinosa N, Jørgensen M, Krebs FC (2013) Practical evaluation of organic polymer thermoelectrics by large-area R2R processing on flexible substrates. Energy Sci Eng 1(2):81–88CrossRef
32.
Zurück zum Zitat Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Therm Fluid Sci 25:55–64CrossRef Manglik RM, Wasekar VM, Zhang J (2001) Dynamic and equilibrium surface tension of aqueous surfactant and polymeric solutions. Exp Therm Fluid Sci 25:55–64CrossRef
33.
Zurück zum Zitat Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, HobokenCrossRef Rosen MJ (2004) Surfactants and interfacial phenomena. Wiley, HobokenCrossRef
34.
Zurück zum Zitat Ranut P (2016) On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl Therm Eng 101:496–524CrossRef Ranut P (2016) On the effective thermal conductivity of aluminum metal foams: review and improvement of the available empirical and analytical models. Appl Therm Eng 101:496–524CrossRef
35.
Zurück zum Zitat Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625CrossRef Progelhof RC, Throne JL, Ruetsch RR (1976) Methods for predicting the thermal conductivity of composite systems: a review. Polym Eng Sci 16(9):615–625CrossRef
36.
Zurück zum Zitat Levy FL (1981) A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int J Refrig 4(4):223–225CrossRef Levy FL (1981) A modified Maxwell-Eucken equation for calculating the thermal conductivity of two-component solutions or mixtures. Int J Refrig 4(4):223–225CrossRef
37.
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1(3):187–191CrossRef Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component systems. Ind Eng Chem Fund 1(3):187–191CrossRef
38.
Zurück zum Zitat Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44(4):827–836CrossRef Boomsma K, Poulikakos D (2001) On the effective thermal conductivity of a three-dimensionally structured fluid-saturated metal foam. Int J Heat Mass Transf 44(4):827–836CrossRef
39.
Zurück zum Zitat Dai Z, Nawaz K, Park YG, Bock J, Jacobi AM (2010) Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams. Int Commun Heat Mass Transf 37(6):575–580CrossRef Dai Z, Nawaz K, Park YG, Bock J, Jacobi AM (2010) Correcting and extending the Boomsma-Poulikakos effective thermal conductivity model for three-dimensional, fluid-saturated metal foams. Int Commun Heat Mass Transf 37(6):575–580CrossRef
40.
Zurück zum Zitat Yao Y, Wu H, Liu Z (2015) A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams. Int J Therm Sci 97:56–67CrossRef Yao Y, Wu H, Liu Z (2015) A new prediction model for the effective thermal conductivity of high porosity open-cell metal foams. Int J Therm Sci 97:56–67CrossRef
41.
Zurück zum Zitat Calmidi VV, Mahajan RL (1999) Effective thermal conductivity of high porosity fibrous metal foams. J Heat Transf 121(2):466–471CrossRef Calmidi VV, Mahajan RL (1999) Effective thermal conductivity of high porosity fibrous metal foams. J Heat Transf 121(2):466–471CrossRef
42.
Zurück zum Zitat Bhattacharya A, Calmidi VV, Mahajan RL (2002) Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 45(5):1017–1031CrossRef Bhattacharya A, Calmidi VV, Mahajan RL (2002) Thermophysical properties of high porosity metal foams. Int J Heat Mass Transf 45(5):1017–1031CrossRef
43.
Zurück zum Zitat Feng Y, Zheng H, Zhu Z, Zu F (2003) The microstructure and electrical conductivity of aluminum alloy foams. Mater Chem Phys 78(1):196–201CrossRef Feng Y, Zheng H, Zhu Z, Zu F (2003) The microstructure and electrical conductivity of aluminum alloy foams. Mater Chem Phys 78(1):196–201CrossRef
44.
Zurück zum Zitat Xiandong M, Peyton AJ (2006) Eddy current measurement of the electrical conductivity and porosity of metal foams. IEEE Trans Instrum Meas 55(2):570–576CrossRef Xiandong M, Peyton AJ (2006) Eddy current measurement of the electrical conductivity and porosity of metal foams. IEEE Trans Instrum Meas 55(2):570–576CrossRef
45.
Zurück zum Zitat Hakamada M, Kuromura T, Chen Y, Kusuda H, Mabuchi M (2007) Influence of porosity and pore size on electrical resistivity of porous aluminum produced by spacer method. Mater Trans 48(1):32–36CrossRef Hakamada M, Kuromura T, Chen Y, Kusuda H, Mabuchi M (2007) Influence of porosity and pore size on electrical resistivity of porous aluminum produced by spacer method. Mater Trans 48(1):32–36CrossRef
46.
Zurück zum Zitat Liu PS, Li TF, Fu C (1999) Relationship between electrical resistivity and porosity for porous metals. Mater Sci Eng, A 268(1–2):208–215CrossRef Liu PS, Li TF, Fu C (1999) Relationship between electrical resistivity and porosity for porous metals. Mater Sci Eng, A 268(1–2):208–215CrossRef
47.
Zurück zum Zitat Kováčik J, Simančík F (1998) Aluminium foam—modulus of elasticity and electrical conductivity according to percolation theory. Scr Mater 39(2):239–246CrossRef Kováčik J, Simančík F (1998) Aluminium foam—modulus of elasticity and electrical conductivity according to percolation theory. Scr Mater 39(2):239–246CrossRef
48.
Zurück zum Zitat Dharmasena KP, Wadley HNG (2002) Electrical conductivity of open-cell metal foams. J Mater Res 17(3):625–631CrossRef Dharmasena KP, Wadley HNG (2002) Electrical conductivity of open-cell metal foams. J Mater Res 17(3):625–631CrossRef
49.
Zurück zum Zitat Chernyshev LI, Skorokhod VV (2003) Effects of porous structure on the electrical conductivity of highly porous metal-matrix materials. Powder Metall Met Ceram 42(1):88–93CrossRef Chernyshev LI, Skorokhod VV (2003) Effects of porous structure on the electrical conductivity of highly porous metal-matrix materials. Powder Metall Met Ceram 42(1):88–93CrossRef
50.
Zurück zum Zitat Zuruzi AS, Siow KS (2015) Electrical conductivity of porous silver made from sintered nanoparticles. Electron Mater Lett 11(2):308–314CrossRef Zuruzi AS, Siow KS (2015) Electrical conductivity of porous silver made from sintered nanoparticles. Electron Mater Lett 11(2):308–314CrossRef
51.
Zurück zum Zitat Zuruzi AS, Mazulianawati MS (2016) Effect of ligament morphology on electrical conductivity of porous silver. J Electron Mater 45(12):6113–6122CrossRef Zuruzi AS, Mazulianawati MS (2016) Effect of ligament morphology on electrical conductivity of porous silver. J Electron Mater 45(12):6113–6122CrossRef
52.
Zurück zum Zitat Kanaun S, Tkachenko O (2008) Effective conductive properties of open-cell foams. Int J Eng Sci 46(6):551–571CrossRef Kanaun S, Tkachenko O (2008) Effective conductive properties of open-cell foams. Int J Eng Sci 46(6):551–571CrossRef
53.
Zurück zum Zitat Pandey S, Bagwe RP, Shah DO (2003) Effect of counterions on surface and foaming properties of dodecyl sulfate. J Colloid Interface Sci 267(1):160–166CrossRef Pandey S, Bagwe RP, Shah DO (2003) Effect of counterions on surface and foaming properties of dodecyl sulfate. J Colloid Interface Sci 267(1):160–166CrossRef
54.
Zurück zum Zitat Khan ZU, Edberg J, Hamedi MM et al (2016) Thermoelectric polymers and their elastic aerogels. Adv Mater 28(22):4556–4562CrossRef Khan ZU, Edberg J, Hamedi MM et al (2016) Thermoelectric polymers and their elastic aerogels. Adv Mater 28(22):4556–4562CrossRef
55.
Zurück zum Zitat Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH (2014) Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J Mater Chem A 2(18):6532–6539CrossRef Park H, Lee SH, Kim FS, Choi HH, Cheong IW, Kim JH (2014) Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedoping process. J Mater Chem A 2(18):6532–6539CrossRef
56.
Zurück zum Zitat Xiong J, Jiang F, Zhou W, Liu C, Xu J (2015) Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution–filtration. RSC Adv 5(75):60708–60712CrossRef Xiong J, Jiang F, Zhou W, Liu C, Xu J (2015) Highly electrical and thermoelectric properties of a PEDOT:PSS thin-film via direct dilution–filtration. RSC Adv 5(75):60708–60712CrossRef
57.
Zurück zum Zitat Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273CrossRef Jiang F, Xiong J, Zhou W et al (2016) Use of organic solvent-assisted exfoliated MoS2 for optimizing the thermoelectric performance of flexible PEDOT:PSS thin films. J Mater Chem A 4(14):5265–5273CrossRef
58.
Zurück zum Zitat Yang E, Kim J, Jung BJ, Kwak J (2015) Enhanced thermoelectric properties of sorbitol-mixed PEDOT:PSS thin films by chemical reduction. J Mater Sci: Mater Electron 26(5):2838–2843 Yang E, Kim J, Jung BJ, Kwak J (2015) Enhanced thermoelectric properties of sorbitol-mixed PEDOT:PSS thin films by chemical reduction. J Mater Sci: Mater Electron 26(5):2838–2843
59.
Zurück zum Zitat Greco F, Zucca A, Taccola S et al (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7(22):10642–10650CrossRef Greco F, Zucca A, Taccola S et al (2011) Ultra-thin conductive free-standing PEDOT/PSS nanofilms. Soft Matter 7(22):10642–10650CrossRef
60.
Zurück zum Zitat Singh V, Arora S, Arora M, Sharma V, Tandon RP (2014) Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Semicond Sci Tech 29(4):045020CrossRef Singh V, Arora S, Arora M, Sharma V, Tandon RP (2014) Characterization of doped PEDOT: PSS and its influence on the performance and degradation of organic solar cells. Semicond Sci Tech 29(4):045020CrossRef
61.
Zurück zum Zitat Wichiansee W, Sirivat A (2009) Electrorheological properties of poly(dimethylsiloxane) and poly(3,4-ethylenedioxy thiophene)/poly(stylene sulfonic acid)/ethylene glycol blends. Mater Sci Eng, C 29(1):78–84CrossRef Wichiansee W, Sirivat A (2009) Electrorheological properties of poly(dimethylsiloxane) and poly(3,4-ethylenedioxy thiophene)/poly(stylene sulfonic acid)/ethylene glycol blends. Mater Sci Eng, C 29(1):78–84CrossRef
62.
Zurück zum Zitat Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107(9):094308CrossRef Lee H, Vashaee D, Wang DZ, Dresselhaus MS, Ren ZF, Chen G (2010) Effects of nanoscale porosity on thermoelectric properties of SiGe. J Appl Phys 107(9):094308CrossRef
63.
Zurück zum Zitat Tarkhanyan RH, Niarchos DG (2013) Seebeck coefficient of graded porous composites. J Mater Res 28(17):2316–2324CrossRef Tarkhanyan RH, Niarchos DG (2013) Seebeck coefficient of graded porous composites. J Mater Res 28(17):2316–2324CrossRef
64.
Zurück zum Zitat Kirihara K, Wei Q, Mukaida M, Ishida T (2017) Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synth Met 225:41–48CrossRef Kirihara K, Wei Q, Mukaida M, Ishida T (2017) Thermoelectric power generation using nonwoven fabric module impregnated with conducting polymer PEDOT:PSS. Synth Met 225:41–48CrossRef
65.
Zurück zum Zitat Du Y, Cai K, Chen S et al (2015) Thermoelectric fabrics: toward power generating clothing. Sci Rep 5:6411CrossRef Du Y, Cai K, Chen S et al (2015) Thermoelectric fabrics: toward power generating clothing. Sci Rep 5:6411CrossRef
66.
Zurück zum Zitat Kong F-F, Liu C-C, Xu J-K et al (2011) Simultaneous enhancement of electrical conductivity and seebeck coefficient of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films treated with urea. Chin Phys Lett 28(3):037201CrossRef Kong F-F, Liu C-C, Xu J-K et al (2011) Simultaneous enhancement of electrical conductivity and seebeck coefficient of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) films treated with urea. Chin Phys Lett 28(3):037201CrossRef
67.
Zurück zum Zitat Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12(8):719–723CrossRef Kim GH, Shao L, Zhang K, Pipe KP (2013) Engineered doping of organic semiconductors for enhanced thermoelectric efficiency. Nat Mater 12(8):719–723CrossRef
68.
Zurück zum Zitat Wang X-D, Huang Y-X, Cheng C-H, Ta-Wei Lin D, Kang C-H (2012) A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 47(1):488–497CrossRef Wang X-D, Huang Y-X, Cheng C-H, Ta-Wei Lin D, Kang C-H (2012) A three-dimensional numerical modeling of thermoelectric device with consideration of coupling of temperature field and electric potential field. Energy 47(1):488–497CrossRef
69.
Zurück zum Zitat Chen W-H, Wang C-C, Hung C-I (2014) Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Convers Manag 87:566–575CrossRef Chen W-H, Wang C-C, Hung C-I (2014) Geometric effect on cooling power and performance of an integrated thermoelectric generation-cooling system. Energy Convers Manag 87:566–575CrossRef
70.
Zurück zum Zitat Chen W-H, Liao C-Y, Hung C-I, Huang W-L (2012) Experimental study on thermoelectric modules for power generation at various operating conditions. Energy 45(1):874–881CrossRef Chen W-H, Liao C-Y, Hung C-I, Huang W-L (2012) Experimental study on thermoelectric modules for power generation at various operating conditions. Energy 45(1):874–881CrossRef
71.
Zurück zum Zitat Gou X, Xiao H, Yang S (2010) Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energy 87(10):3131–3136CrossRef Gou X, Xiao H, Yang S (2010) Modeling, experimental study and optimization on low-temperature waste heat thermoelectric generator system. Appl Energy 87(10):3131–3136CrossRef
72.
Zurück zum Zitat Chen W-H, Liao C-Y, Wang C-C, Hung C-I (2015) Evaluation of power generation from thermoelectric cooler at normal and low-temperature cooling conditions. Energy Sustain Dev 25:8–16CrossRef Chen W-H, Liao C-Y, Wang C-C, Hung C-I (2015) Evaluation of power generation from thermoelectric cooler at normal and low-temperature cooling conditions. Energy Sustain Dev 25:8–16CrossRef
73.
Zurück zum Zitat Bharti M, Singh A, Samanta S, Aswal DK (2017) Conductive polymers: creating their niche in thermoelectric domain. Prog Mater Sci 93:270–310CrossRef Bharti M, Singh A, Samanta S, Aswal DK (2017) Conductive polymers: creating their niche in thermoelectric domain. Prog Mater Sci 93:270–310CrossRef
74.
Zurück zum Zitat Ouyang J (2013) “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34(5):423–436CrossRef Ouyang J (2013) “Secondary doping” methods to significantly enhance the conductivity of PEDOT:PSS for its application as transparent electrode of optoelectronic devices. Displays 34(5):423–436CrossRef
75.
Zurück zum Zitat Kroon R, Mengistie DA, Kiefer D et al (2016) Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem Soc Rev 45(22):6147–6164CrossRef Kroon R, Mengistie DA, Kiefer D et al (2016) Thermoelectric plastics: from design to synthesis, processing and structure-property relationships. Chem Soc Rev 45(22):6147–6164CrossRef
76.
Zurück zum Zitat Liu C, Lu B, Yan J et al (2010) Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth Met 160(23):2481–2485CrossRef Liu C, Lu B, Yan J et al (2010) Highly conducting free-standing poly(3,4-ethylenedioxythiophene)/poly(styrenesulfonate) films with improved thermoelectric performances. Synth Met 160(23):2481–2485CrossRef
77.
Zurück zum Zitat Jiang F-X, Xu J-K, Lu B-Y, Xie Y, Huang R-J, Li L-F (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Chin Phys Lett 25(6):2202–2205CrossRef Jiang F-X, Xu J-K, Lu B-Y, Xie Y, Huang R-J, Li L-F (2008) Thermoelectric performance of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate). Chin Phys Lett 25(6):2202–2205CrossRef
78.
Zurück zum Zitat Chang K-C, Jeng M-S, Yang C-C et al (2009) The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films. J Electron Mater 38(7):1182–1188CrossRef Chang K-C, Jeng M-S, Yang C-C et al (2009) The thermoelectric performance of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) thin films. J Electron Mater 38(7):1182–1188CrossRef
79.
Zurück zum Zitat Scholdt M, Do H, Lang J et al (2010) Organic semiconductors for thermoelectric applications. J Electron Mater 39(9):1589–1592CrossRef Scholdt M, Do H, Lang J et al (2010) Organic semiconductors for thermoelectric applications. J Electron Mater 39(9):1589–1592CrossRef
Metadaten
Titel
Conductive nanofilm/melamine foam hybrid thermoelectric as a thermal insulator generating electricity: theoretical analysis and development
verfasst von
Warittha Thongkham
Charoenporn Lertsatitthanakorn
Manit Jitpukdee
Kanpitcha Jiramitmongkon
Paisan Khanchaitit
Monrudee Liangruksa
Publikationsdatum
07.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03480-1

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.