Skip to main content
Erschienen in: Journal of Materials Science 11/2019

04.03.2019 | Chemical routes to materials

Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance

verfasst von: Huiyong Chen, Manyun Wang, Mengfei Yang, Wenjin Shang, Chenbiao Yang, Baoyu Liu, Qingqing Hao, Jianbo Zhang, Xiaoxun Ma

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Hierarchical SAPO-34 zeolites with a special nanosheet-assembled morphology were hydrothermally synthesized under dynamic condition by using the commercial quaternary ammonium-type organosilane surfactant [3-(trimethoxysilyl) propyl] octadecyldimethyl-ammonium chloride (TPOAC) for the mesoscopic aggregation and tetraethylammonium hydroxide as the micropore structure-directing agent. The growth evolution during the crystallization process and governing factors including TPOAC content and dynamic hydrothermal condition in the synthesis were discussed in detail, and the possible nucleation and growth process were proposed as well. With a systematic structure characterization by XRD, FTIR, N2 adsorption–desorption, ICP, SEM, TEM, NH3-TPD and pyridine-adsorbed IR measurements, the nanosheet-assembled SAPO-34 (NA-SP34) prepared under the optimized synthesis condition presented the pure phase of CHA framework, high degree of crystallinity, interconnected hierarchical meso-/microporosity and relatively weak acidity comparing with the conventional microporous SAPO-34 (CM-SP34) with micron size and the nanosheet-like SAPO-34 (NL-SP34) synthesized in the absence of TPOAC. Moreover, the catalytic performances evaluated by the methanol-to-olefin reaction indicated that the optimal NA-SP34 catalyst presented remarkable improvements of not only much longer catalytic lifetime (300 min) and slower coke formation rate (0.24 mg g−1 min−1) but also higher ethylene and propylene selectivity (81.93%) comparing with those (95 min, 0.55 mg g−1 min−1 and 80.75%, respectively) of CM-SP34, which can be attributed to the integrated balance of well-remained microporosity, considerable mesoporosity and suitable weak acidity.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
2.
Zurück zum Zitat Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26:323–345CrossRef Chang CD (1984) Methanol conversion to light olefins. Catal Rev 26:323–345CrossRef
3.
Zurück zum Zitat Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938CrossRef Tian P, Wei Y, Ye M, Liu Z (2015) Methanol to olefins (MTO): from fundamentals to commercialization. ACS Catal 5:1922–1938CrossRef
4.
Zurück zum Zitat Zhong J, Han J, Wei Y et al (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal Sci Technol 7:4905–4923CrossRef Zhong J, Han J, Wei Y et al (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal Sci Technol 7:4905–4923CrossRef
5.
Zurück zum Zitat Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596CrossRef Dai W, Wu G, Li L, Guan N, Hunger M (2013) Mechanisms of the deactivation of SAPO-34 materials with different crystal sizes applied as MTO catalysts. ACS Catal 3:588–596CrossRef
6.
Zurück zum Zitat Chen D, Grønvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46:4116–4123CrossRef Chen D, Grønvold A, Moljord K, Holmen A (2007) Methanol conversion to light olefins over SAPO-34: reaction network and deactivation kinetics. Ind Eng Chem Res 46:4116–4123CrossRef
7.
Zurück zum Zitat Qi L, Li J, Wang L, Wang C, Xu L, Liu Z (2017) Comparative investigation of the deactivation behaviors over HZSM-5 and HSAPO-34 catalysts during low-temperature methanol conversion. Catal Sci Technol 7:2022–2031CrossRef Qi L, Li J, Wang L, Wang C, Xu L, Liu Z (2017) Comparative investigation of the deactivation behaviors over HZSM-5 and HSAPO-34 catalysts during low-temperature methanol conversion. Catal Sci Technol 7:2022–2031CrossRef
8.
Zurück zum Zitat Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRef Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRef
9.
Zurück zum Zitat Teixeira AR, Qi X, Chang C-C, Fan W, Conner WC, Dauenhauer PJ (2014) On asymmetric surface barriers in MFI zeolites revealed by frequency response. J Phys Chem C 118:22166–22180CrossRef Teixeira AR, Qi X, Chang C-C, Fan W, Conner WC, Dauenhauer PJ (2014) On asymmetric surface barriers in MFI zeolites revealed by frequency response. J Phys Chem C 118:22166–22180CrossRef
10.
Zurück zum Zitat Vattipalli V, Qi X, Dauenhauer PJ, Fan W (2016) Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chem Mater 28:7852–7863CrossRef Vattipalli V, Qi X, Dauenhauer PJ, Fan W (2016) Long walks in hierarchical porous materials due to combined surface and configurational diffusion. Chem Mater 28:7852–7863CrossRef
11.
Zurück zum Zitat Qi X, Vattipalli V, Dauenhauer PJ, Fan W (2018) Silica nanoparticle mass transfer fins for MFI composite materials. Chem Mater 30:2353–2361CrossRef Qi X, Vattipalli V, Dauenhauer PJ, Fan W (2018) Silica nanoparticle mass transfer fins for MFI composite materials. Chem Mater 30:2353–2361CrossRef
12.
Zurück zum Zitat Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R (2012) Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem 13:1495–1499CrossRef Mehlhorn D, Valiullin R, Kärger J, Cho K, Ryoo R (2012) Intracrystalline diffusion in mesoporous zeolites. ChemPhysChem 13:1495–1499CrossRef
13.
Zurück zum Zitat Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760CrossRef Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760CrossRef
14.
Zurück zum Zitat Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513CrossRef Tosheva L, Valtchev VP (2005) Nanozeolites: synthesis, crystallization mechanism, and applications. Chem Mater 17:2494–2513CrossRef
15.
Zurück zum Zitat Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707CrossRef Möller K, Bein T (2013) Mesoporosity—a new dimension for zeolites. Chem Soc Rev 42:3689–3707CrossRef
16.
Zurück zum Zitat Yang G, Wei Y, Xu S et al (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222CrossRef Yang G, Wei Y, Xu S et al (2013) Nanosize-enhanced lifetime of SAPO-34 catalysts in methanol-to-olefin reactions. J Phys Chem C 117:8214–8222CrossRef
17.
Zurück zum Zitat Sun Q, Wang N, Guo G, Yu J (2015) Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chem Commun 51:16397–16400CrossRef Sun Q, Wang N, Guo G, Yu J (2015) Ultrafast synthesis of nano-sized zeolite SAPO-34 with excellent MTO catalytic performance. Chem Commun 51:16397–16400CrossRef
18.
Zurück zum Zitat Gao B, Yang M, Qiao Y et al (2016) A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Catal Sci Technol 6:7569–7578CrossRef Gao B, Yang M, Qiao Y et al (2016) A low-temperature approach to synthesize low-silica SAPO-34 nanocrystals and their application in the methanol-to-olefins (MTO) reaction. Catal Sci Technol 6:7569–7578CrossRef
19.
Zurück zum Zitat Li Z, Martínez-Triguero J, Yu J, Corma A (2015) Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment. J Catal 329:379–388CrossRef Li Z, Martínez-Triguero J, Yu J, Corma A (2015) Conversion of methanol to olefins: stabilization of nanosized SAPO-34 by hydrothermal treatment. J Catal 329:379–388CrossRef
20.
Zurück zum Zitat van Heyden H, Mintova S, Bein T (2008) Nanosized SAPO-34 synthesized from colloidal solutions. Chem Mater 20:2956–2963CrossRef van Heyden H, Mintova S, Bein T (2008) Nanosized SAPO-34 synthesized from colloidal solutions. Chem Mater 20:2956–2963CrossRef
21.
Zurück zum Zitat Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249CrossRef Choi M, Na K, Kim J, Sakamoto Y, Terasaki O, Ryoo R (2009) Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts. Nature 461:246–249CrossRef
22.
Zurück zum Zitat Fan W, Snyder MA, Kumar S et al (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991CrossRef Fan W, Snyder MA, Kumar S et al (2008) Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat Mater 7:984–991CrossRef
23.
Zurück zum Zitat Liu B, Wattanaprayoon C, Oh SC, Emdadi L, Liu D (2015) Synthesis of organic pillared MFI zeolite as bifunctional acid–base catalyst. Chem Mater 27:1479–1487CrossRef Liu B, Wattanaprayoon C, Oh SC, Emdadi L, Liu D (2015) Synthesis of organic pillared MFI zeolite as bifunctional acid–base catalyst. Chem Mater 27:1479–1487CrossRef
24.
Zurück zum Zitat Chen H, Yang M, Shang W et al (2018) Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Ind Eng Chem Res 57:10956–10966CrossRef Chen H, Yang M, Shang W et al (2018) Organosilane surfactant-directed synthesis of hierarchical ZSM-5 zeolites with improved catalytic performance in methanol-to-propylene reaction. Ind Eng Chem Res 57:10956–10966CrossRef
25.
Zurück zum Zitat Xi D, Sun Q, Xu J et al (2014) In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J Mater Chem A 2:17994–18004CrossRef Xi D, Sun Q, Xu J et al (2014) In situ growth-etching approach to the preparation of hierarchically macroporous zeolites with high MTO catalytic activity and selectivity. J Mater Chem A 2:17994–18004CrossRef
26.
Zurück zum Zitat Yang M, Tian P, Wang C et al (2014) A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chem Commun 50:1845–1847CrossRef Yang M, Tian P, Wang C et al (2014) A top-down approach to prepare silicoaluminophosphate molecular sieve nanocrystals with improved catalytic activity. Chem Commun 50:1845–1847CrossRef
27.
Zurück zum Zitat Yang H, Liu Z, Gao H, Xie Z (2010) Synthesis and catalytic performances of hierarchical SAPO-34 monolith. J Mater Chem 20:3227–3231CrossRef Yang H, Liu Z, Gao H, Xie Z (2010) Synthesis and catalytic performances of hierarchical SAPO-34 monolith. J Mater Chem 20:3227–3231CrossRef
28.
Zurück zum Zitat Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. J Mater Chem A 3:19783–19789CrossRef Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. J Mater Chem A 3:19783–19789CrossRef
29.
Zurück zum Zitat Wang J, Yang M, Shang W et al (2017) Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous Mesoporous Mater 252:10–16CrossRef Wang J, Yang M, Shang W et al (2017) Synthesis, characterization, and catalytic application of hierarchical SAPO-34 zeolite with three-dimensionally ordered mesoporous-imprinted structure. Microporous Mesoporous Mater 252:10–16CrossRef
30.
Zurück zum Zitat Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRef Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221CrossRef
31.
Zurück zum Zitat Jin W, Wang B, Tuo P et al (2018) Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34. Ind Eng Chem Res 57:4231–4236CrossRef Jin W, Wang B, Tuo P et al (2018) Selective desilication, mesopores formation, and MTO reaction enhancement via citric acid treatment of zeolite SAPO-34. Ind Eng Chem Res 57:4231–4236CrossRef
32.
Zurück zum Zitat Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723CrossRef Choi M, Cho HS, Srivastava R, Venkatesan C, Choi D-H, Ryoo R (2006) Amphiphilic organosilane-directed synthesis of crystalline zeolite with tunable mesoporosity. Nat Mater 5:718–723CrossRef
33.
Zurück zum Zitat Choi M, Srivastava R, Ryoo R (2006) Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem Commun 42:4380–4382CrossRef Choi M, Srivastava R, Ryoo R (2006) Organosilane surfactant-directed synthesis of mesoporous aluminophosphates constructed with crystalline microporous frameworks. Chem Commun 42:4380–4382CrossRef
34.
Zurück zum Zitat Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505CrossRef Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50:6502–6505CrossRef
35.
Zurück zum Zitat Wang C, Yang M, Tian P et al (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616CrossRef Wang C, Yang M, Tian P et al (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mater Chem A 3:5608–5616CrossRef
36.
Zurück zum Zitat Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40CrossRef Liang J, Li H, Zhao S, Guo W, Wang R, Ying M (1990) Characteristics and performance of SAPO-34 catalyst for methanol-to-olefin conversion. Appl Catal 64:31–40CrossRef
37.
Zurück zum Zitat Shen W, Li X, Wei Y et al (2012) A study of the acidity of SAPO-34 by solid-state NMR spectroscopy. Microporous Mesoporous Mater 158:19–25CrossRef Shen W, Li X, Wei Y et al (2012) A study of the acidity of SAPO-34 by solid-state NMR spectroscopy. Microporous Mesoporous Mater 158:19–25CrossRef
38.
Zurück zum Zitat Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57:157–168CrossRef Buchholz A, Wang W, Arnold A, Xu M, Hunger M (2003) Successive steps of hydration and dehydration of silicoaluminophosphates H-SAPO-34 and H-SAPO-37 investigated by in situ CF MAS NMR spectroscopy. Microporous Mesoporous Mater 57:157–168CrossRef
39.
Zurück zum Zitat Zhang L, Bates J, Chen D, Nie H-Y, Huang Y (2011) Investigations of formation of molecular sieve SAPO-34. J Phys Chem C 115:22309–22319CrossRef Zhang L, Bates J, Chen D, Nie H-Y, Huang Y (2011) Investigations of formation of molecular sieve SAPO-34. J Phys Chem C 115:22309–22319CrossRef
40.
Zurück zum Zitat Borade RB, Clearfield A (1994) A comparative study of acidic properties of SAPO-5, -11, -34 and -37 molecular sieves. J Mol Catal 88:249–265CrossRef Borade RB, Clearfield A (1994) A comparative study of acidic properties of SAPO-5, -11, -34 and -37 molecular sieves. J Mol Catal 88:249–265CrossRef
41.
Zurück zum Zitat Emdadi L, Oh SC, Wu Y et al (2016) The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol. J Catal 335:165–174CrossRef Emdadi L, Oh SC, Wu Y et al (2016) The role of external acidity of meso-/microporous zeolites in determining selectivity for acid-catalyzed reactions of benzyl alcohol. J Catal 335:165–174CrossRef
42.
Zurück zum Zitat Chen H, Wu Y, Tan Y, Li X, Qian Y, Xi H (2012) Mesoscopic simulation of surfactant/silicate self-assembly in the mesophase formation of SBA-15 under charge matching interactions. Eur Polym J 48:1892–1900CrossRef Chen H, Wu Y, Tan Y, Li X, Qian Y, Xi H (2012) Mesoscopic simulation of surfactant/silicate self-assembly in the mesophase formation of SBA-15 under charge matching interactions. Eur Polym J 48:1892–1900CrossRef
43.
Zurück zum Zitat Jo C, Jung J, Shin HS, Kim J, Ryoo R (2013) Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem 125:10198–10201CrossRef Jo C, Jung J, Shin HS, Kim J, Ryoo R (2013) Capping with multivalent surfactants for zeolite nanocrystal synthesis. Angew Chem 125:10198–10201CrossRef
44.
Zurück zum Zitat Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51:1962–1965CrossRef Inayat A, Knoke I, Spiecker E, Schwieger W (2012) Assemblies of mesoporous FAU-type zeolite nanosheets. Angew Chem Int Ed 51:1962–1965CrossRef
45.
Zurück zum Zitat Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X (2011) Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem Eng J 166:391–400CrossRef Guo Y-P, Wang H-J, Guo Y-J, Guo L-H, Chu L-F, Guo C-X (2011) Fabrication and characterization of hierarchical ZSM-5 zeolites by using organosilanes as additives. Chem Eng J 166:391–400CrossRef
46.
Zurück zum Zitat Cho K, Cho HS, de Ménorval L-C, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21:5664–5673CrossRef Cho K, Cho HS, de Ménorval L-C, Ryoo R (2009) Generation of mesoporosity in LTA zeolites by organosilane surfactant for rapid molecular transport in catalytic application. Chem Mater 21:5664–5673CrossRef
47.
Zurück zum Zitat Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203CrossRef Chen D, Moljord K, Fuglerud T, Holmen A (1999) The effect of crystal size of SAPO-34 on the selectivity and deactivation of the MTO reaction. Microporous Mesoporous Mater 29:191–203CrossRef
Metadaten
Titel
Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance
verfasst von
Huiyong Chen
Manyun Wang
Mengfei Yang
Wenjin Shang
Chenbiao Yang
Baoyu Liu
Qingqing Hao
Jianbo Zhang
Xiaoxun Ma
Publikationsdatum
04.03.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03485-w

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.