Skip to main content
Erschienen in: Journal of Materials Science 11/2019

28.02.2019 | Energy materials

Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application

verfasst von: Sonali Das, Kadambinee Sa, Injamul Alam, Pitamber Mahanandia

Erschienen in: Journal of Materials Science | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Photoconductivity of kesterite CZTS (Cu2ZnSnS4) quantum dots (QDs) anchored on multi-walled carbon nanotubes (MWCNTs) hybrid nanostructures has been investigated here, which take the advantages of both CZTS QDs and MWCNTs. The objective material CZTS QDs-anchored MWCNTs hybrid nanostructure have been prepared by a simple solution casting approach without doing any surface modifications. As-prepared MWCNTs, CZTS QDs and CZTS QDs–MWCNTs hybrid nanostructure have been characterized by XRD, Raman, FTIR, XPS, FESEM and TEM, and UV–visible spectroscopy. The improved optical gain of CZTS QDs–MWCNTs has been observed by UV–visible spectroscopy analysis. Other characterizations and TEM micrographs confirmed the adherence of CZTS QDs on MWCNTs. The photoconductivity of the above prepared hybrid nanostructure has been measured both in dark and under illumination (1.5G solar simulator). The hybrid nanostructure demonstrated improved photocurrent compared to bare CZTS QDs and MWCNTs. The obtained improved photocurrent is due to high optical gain by CZTS QDs and fast charge carrier transport by MWCNTs throughout in the hybrid nanostructure. The enhanced photocurrent and the stability of the CZTS–MWCNTs hybrid nanostructure ensure a possible application in future solar cell.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York
2.
Zurück zum Zitat Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett 82:2548–2551CrossRef Chen P, Wu X, Sun X, Lin J, Ji W, Tan KL (1999) Electronic structure and optical limiting behavior of carbon nanotubes. Phys Rev Lett 82:2548–2551CrossRef
3.
Zurück zum Zitat Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69CrossRef Collins PG, Avouris P (2000) Nanotubes for electronics. Sci Am 283:62–69CrossRef
4.
Zurück zum Zitat Ma YZ, Stenger J, Zimmermann J, Bachilo SM, Smalley RE, Weisman RB, Fleming GR (2004) Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J Chem Phys 120:3368–3373CrossRef Ma YZ, Stenger J, Zimmermann J, Bachilo SM, Smalley RE, Weisman RB, Fleming GR (2004) Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J Chem Phys 120:3368–3373CrossRef
5.
Zurück zum Zitat Kharisov BI, Kharissova OV, Mendez UO, Fuente IGDL (2015) Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synth React Inorg Met-Org Nano-Met Chem 46:55–76CrossRef Kharisov BI, Kharissova OV, Mendez UO, Fuente IGDL (2015) Decoration of carbon nanotubes with metal nanoparticles: recent trends. Synth React Inorg Met-Org Nano-Met Chem 46:55–76CrossRef
6.
Zurück zum Zitat Satishkumar BC, Vogl EM, Govindaraj A, Rao CNR (1996) The decoration of carbon nanotubes by metal nanoparticles. J Phys D Appl Phys 29:31–73CrossRef Satishkumar BC, Vogl EM, Govindaraj A, Rao CNR (1996) The decoration of carbon nanotubes by metal nanoparticles. J Phys D Appl Phys 29:31–73CrossRef
7.
Zurück zum Zitat Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372CrossRef Ang LM, Hor TSA, Xu GQ, Tung CH, Zhao SP, Wang JLS (2000) Decoration of activated carbon nanotubes with copper and nickel. Carbon 38:363–372CrossRef
8.
Zurück zum Zitat Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147CrossRef Quinn BM, Dekker C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127:6146–6147CrossRef
9.
Zurück zum Zitat Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube−nanocrystal heterostructures. Nano Lett 2:195–200CrossRef Banerjee S, Wong SS (2002) Synthesis and characterization of carbon nanotube−nanocrystal heterostructures. Nano Lett 2:195–200CrossRef
10.
Zurück zum Zitat Das A, Hall E, Wai CM (2014) Noncovalent attachment of PbS quantum dots to single- and multiwalled carbon nanotubes. J Nanotechnol Article ID 285857 Das A, Hall E, Wai CM (2014) Noncovalent attachment of PbS quantum dots to single- and multiwalled carbon nanotubes. J Nanotechnol Article ID 285857
11.
Zurück zum Zitat Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2:1253–1258CrossRef Haremza JM, Hahn MA, Krauss TD (2002) Attachment of single CdSe nanocrystals to individual single-walled carbon nanotubes. Nano Lett 2:1253–1258CrossRef
12.
Zurück zum Zitat Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRef Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRef
13.
Zurück zum Zitat Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT polymer composites. Carbon 46:1497–1505CrossRef Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT polymer composites. Carbon 46:1497–1505CrossRef
14.
Zurück zum Zitat Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef Treacy MMJ, Ebbesen TW, Gibson JM (1996) Exceptionally high Young’s modulus observed for individual carbon nanotubes. Nature 381:678–680CrossRef
15.
Zurück zum Zitat Alivisatos AP (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271:933–937CrossRef Alivisatos AP (1996) Semiconductor clusters, nanocrystals and quantum dots. Science 271:933–937CrossRef
16.
Zurück zum Zitat Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRef Li X, Jia Y, Cao A (2010) Tailored single-walled carbon nanotube-CdS nanoparticle hybrids for tunable optoelectronic devices. ACS Nano 4:506–512CrossRef
17.
Zurück zum Zitat Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867CrossRef Choi JH, Nguyen FT, Barone PW, Heller DA, Moll AE, Patel D, Boppart SA, Strano MS (2007) Multimodal biomedical imaging with asymmetric single-walled carbon nanotube/iron oxide nanoparticle complexes. Nano Lett 7:861–867CrossRef
18.
Zurück zum Zitat Aimin Y, Wang Q, Yong J, Mahona JP, Malherbe F, Wang F, Zhang H, Wang J (2012) Silver nanoparticle-carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochim Acta 74:111–116CrossRef Aimin Y, Wang Q, Yong J, Mahona JP, Malherbe F, Wang F, Zhang H, Wang J (2012) Silver nanoparticle-carbon nanotube hybrid films: preparation and electrochemical sensing. Electrochim Acta 74:111–116CrossRef
19.
Zurück zum Zitat Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Controll Release 155:344–357CrossRef Huang HC, Barua S, Sharma G, Dey SK, Rege K (2011) Inorganic nanoparticles for cancer imaging and therapy. J Controll Release 155:344–357CrossRef
20.
Zurück zum Zitat Yang W, Liu X, Yue X, Jia J, Guo S (2015) Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc 137:1436–1439CrossRef Yang W, Liu X, Yue X, Jia J, Guo S (2015) Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J Am Chem Soc 137:1436–1439CrossRef
21.
Zurück zum Zitat Ahn HJ, Moon WJ, Seong TY, Wang D (2009) Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells. Electrochem Commun 11:635–643CrossRef Ahn HJ, Moon WJ, Seong TY, Wang D (2009) Three-dimensional nanostructured carbon nanotube array/PtRu nanoparticle electrodes for micro-fuel cells. Electrochem Commun 11:635–643CrossRef
22.
Zurück zum Zitat Kim HS, Lee H, Han KS, Kim JH, Song MS, Park MS, Lee JY, Kang JK (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B 109:8983–8986CrossRef Kim HS, Lee H, Han KS, Kim JH, Song MS, Park MS, Lee JY, Kang JK (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B 109:8983–8986CrossRef
23.
Zurück zum Zitat Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef Kamat PV (2008) Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J Phys Chem C 112:18737–18753CrossRef
24.
Zurück zum Zitat Yuan CT, Wang YG, Huang KY, Chen TY, Yu P, Tang J, Sitt A, Banin U, Oded M (2012) Single-particle studies of band alignment effects on electron transfer dynamics, from semiconductor hetero-nanostructures to single-walled carbon nanotubes. ACS Nano 6:176–182CrossRef Yuan CT, Wang YG, Huang KY, Chen TY, Yu P, Tang J, Sitt A, Banin U, Oded M (2012) Single-particle studies of band alignment effects on electron transfer dynamics, from semiconductor hetero-nanostructures to single-walled carbon nanotubes. ACS Nano 6:176–182CrossRef
25.
Zurück zum Zitat Jeong SY, Lim SC, Bae DJ, Lee YH, Shin HJ, Yoon SM, Choi JY, Cha OH, Jeong MS, Perello D, Yun M (2008) Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor. Appl Phys Lett 92:243103–243106CrossRef Jeong SY, Lim SC, Bae DJ, Lee YH, Shin HJ, Yoon SM, Choi JY, Cha OH, Jeong MS, Perello D, Yun M (2008) Photocurrent of CdSe nanocrystals on single-walled carbon nanotube-field effect transistor. Appl Phys Lett 92:243103–243106CrossRef
26.
Zurück zum Zitat Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746CrossRef Landi BJ, Castro SL, Ruf HJ, Evans CM, Bailey SG, Raffaelle RP (2005) CdSe quantum dot-single wall carbon nanotube complexes for polymeric solar cells. Sol Energy Mater Sol Cells 87:733–746CrossRef
27.
Zurück zum Zitat Khia LSH, Basnar B, Willner I (2005) Efficient generation of pohotocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed 44:78–83CrossRef Khia LSH, Basnar B, Willner I (2005) Efficient generation of pohotocurrents by using CdS/carbon nanotube assemblies on electrodes. Angew Chem Int Ed 44:78–83CrossRef
28.
Zurück zum Zitat Dutta M, Jana S, Basak D (2010) Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes. Chem Phys Chem 11:1774–1779CrossRef Dutta M, Jana S, Basak D (2010) Quenching of photoluminescence in ZnO QDs decorating multiwalled carbon nanotubes. Chem Phys Chem 11:1774–1779CrossRef
29.
Zurück zum Zitat Tanaka K, Oonuki M, Moritake N, Uchiki H (2009) Cu2ZnSnS4 thin film solar cells prepared by nonvacuum processing. Sol Energy Mater Sol Cells 93:583–587CrossRef Tanaka K, Oonuki M, Moritake N, Uchiki H (2009) Cu2ZnSnS4 thin film solar cells prepared by nonvacuum processing. Sol Energy Mater Sol Cells 93:583–587CrossRef
30.
Zurück zum Zitat Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S (2001) Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells 65:141–148CrossRef Katagiri H, Saitoh K, Washio T, Shinohara H, Kurumadani T, Miyajima S (2001) Development of thin film solar cell based on Cu2ZnSnS4 thin films. Sol Energy Mater Sol Cells 65:141–148CrossRef
31.
Zurück zum Zitat Qu Y, Zoppi G, Beattie NS (2016) The role of nanoparticle inks in determining the performance of solution processed Cu2ZnSn(S, Se)4 thin film solar cells. Prog Photovolt Res Appl 24:836–845CrossRef Qu Y, Zoppi G, Beattie NS (2016) The role of nanoparticle inks in determining the performance of solution processed Cu2ZnSn(S, Se)4 thin film solar cells. Prog Photovolt Res Appl 24:836–845CrossRef
32.
Zurück zum Zitat Wang J, Zhang P, Song X, Gao L (2014) Cu2ZnSnS4 thin films: spin coating synthesis and photo electrochemistry. RSC Adv 4:21318–21324CrossRef Wang J, Zhang P, Song X, Gao L (2014) Cu2ZnSnS4 thin films: spin coating synthesis and photo electrochemistry. RSC Adv 4:21318–21324CrossRef
33.
Zurück zum Zitat Wang J, Zhang P, Song X, Gao L (2014) Surfactant-free hydrothermal synthesis of Cu2ZnSnS4(CZTS) nanocrystals with photocatalytic properties. RSC Adv 4:27805–27810CrossRef Wang J, Zhang P, Song X, Gao L (2014) Surfactant-free hydrothermal synthesis of Cu2ZnSnS4(CZTS) nanocrystals with photocatalytic properties. RSC Adv 4:27805–27810CrossRef
34.
Zurück zum Zitat Wang J, Yu N, Zhang Y, Zhu Y, Fu L, Zhang P, Gao L, Wu Y (2016) Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. J Alloys Compd 688:923–932CrossRef Wang J, Yu N, Zhang Y, Zhu Y, Fu L, Zhang P, Gao L, Wu Y (2016) Synthesis and performance of Cu2ZnSnS4 semiconductor as photocathode for solar water splitting. J Alloys Compd 688:923–932CrossRef
35.
Zurück zum Zitat Zeng X, Xiong D, Zhang W, Ming L, Xu Z, Huang Z, Wang M, Chen W, Cheng YB (2013) Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot sensitized solar cell system. Nanoscale 5:6992–7000CrossRef Zeng X, Xiong D, Zhang W, Ming L, Xu Z, Huang Z, Wang M, Chen W, Cheng YB (2013) Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot sensitized solar cell system. Nanoscale 5:6992–7000CrossRef
36.
Zurück zum Zitat Nemala SS, Mokurala K, Bhargava P, Mallick S (2016) Cu2ZnSnS4/CNT composites as Pt free counter electrodes for dye sensitized solar cells with improved efficiency. Mater Today: Proc 3:1808–1814 Nemala SS, Mokurala K, Bhargava P, Mallick S (2016) Cu2ZnSnS4/CNT composites as Pt free counter electrodes for dye sensitized solar cells with improved efficiency. Mater Today: Proc 3:1808–1814
37.
Zurück zum Zitat Chen H, Wang J, Jia C, Mou J, Zhu L (2017) Highly efficient dye-sensitized solar cell with a novel nano hybrid film of Cu2ZnSnS4-MWCNTs as counter electrode. Appl Surf Sci 422:591–596CrossRef Chen H, Wang J, Jia C, Mou J, Zhu L (2017) Highly efficient dye-sensitized solar cell with a novel nano hybrid film of Cu2ZnSnS4-MWCNTs as counter electrode. Appl Surf Sci 422:591–596CrossRef
38.
Zurück zum Zitat Das S, Sa K, Alam I, Mahakul PC, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application. AIP Conf Proc 1961:020006–020012CrossRef Das S, Sa K, Alam I, Mahakul PC, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) Synthesis and characterizations of Cu2ZnSnS4 nanoparticles/carbon nanotube composite as an efficient absorber material for solar cell application. AIP Conf Proc 1961:020006–020012CrossRef
39.
Zurück zum Zitat Darvishzadeh P, Sohrabpoor H, Gorji NE (2016) Numerical device simulation of carbon nanotube contacted CZTS solar cells. Opt Quant Electron 48:480–486CrossRef Darvishzadeh P, Sohrabpoor H, Gorji NE (2016) Numerical device simulation of carbon nanotube contacted CZTS solar cells. Opt Quant Electron 48:480–486CrossRef
40.
Zurück zum Zitat Bell JN, Yun Ng H, Du A, Coster H, Smith CS, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically Prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009CrossRef Bell JN, Yun Ng H, Du A, Coster H, Smith CS, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically Prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115:6004–6009CrossRef
41.
Zurück zum Zitat Zhang H, Xie A, Wan C, Wang H, Shen Y, Tian X (2013) Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 1:8547–8552CrossRef Zhang H, Xie A, Wan C, Wang H, Shen Y, Tian X (2013) Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption. J Mater Chem A 1:8547–8552CrossRef
42.
Zurück zum Zitat Luo PQ, Yu YX, Le XB, Chen YH, Kuang BD, Su YC (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116:8111–8117CrossRef Luo PQ, Yu YX, Le XB, Chen YH, Kuang BD, Su YC (2012) Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J Phys Chem C 116:8111–8117CrossRef
43.
Zurück zum Zitat Das S, Sa K, Alam I, Mahanandia P (2018) Synthesis of CZTS QDs decorated reduced graphene oxide nanocomposite as possible absorber for solar cell. Mater Lett 232:232–236CrossRef Das S, Sa K, Alam I, Mahanandia P (2018) Synthesis of CZTS QDs decorated reduced graphene oxide nanocomposite as possible absorber for solar cell. Mater Lett 232:232–236CrossRef
44.
Zurück zum Zitat Pang Z, Wei A, Zhao Y, Liu J, Tao L, Xiao Y, Yang Y, Luo D (2017) Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. J Mater Sci Energy Mater 53:2748–2757 Pang Z, Wei A, Zhao Y, Liu J, Tao L, Xiao Y, Yang Y, Luo D (2017) Direct growth of Cu2ZnSnS4 on three-dimensional porous reduced graphene oxide thin films as counter electrode with high conductivity and excellent catalytic activity for dye-sensitized solar cells. J Mater Sci Energy Mater 53:2748–2757
45.
Zurück zum Zitat Das S, Alam I, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) A facile method to synthesize CZTS quantum dots for solar cell applications. Physica E 105:19–24CrossRef Das S, Alam I, Raiguru J, Subramanyam BVRS, Mahanandia P (2018) A facile method to synthesize CZTS quantum dots for solar cell applications. Physica E 105:19–24CrossRef
46.
Zurück zum Zitat Mahanandia P, Nanda KK (2008) A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology 19:155602–155609CrossRef Mahanandia P, Nanda KK (2008) A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology 19:155602–155609CrossRef
47.
Zurück zum Zitat Mahanandia P, Vishwakarma PN, Nanda KK, Prasada V, Barai K, Mondal AK, Sarangid S, Deye GK, Subramanyama SV (2008) Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun 145:143–148CrossRef Mahanandia P, Vishwakarma PN, Nanda KK, Prasada V, Barai K, Mondal AK, Sarangid S, Deye GK, Subramanyama SV (2008) Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun 145:143–148CrossRef
48.
Zurück zum Zitat Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749CrossRef Park HK, Kim DK, Kim CH (1997) Effect of solvent on titania particle formation and morphology in thermal hydrolysis of TiCl4. J Am Ceram Soc 80:743–749CrossRef
49.
Zurück zum Zitat Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90CrossRef Burton AW, Ong K, Rea T, Chan IY (2009) On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems. Microporous Mesoporous Mater 117:75–90CrossRef
50.
Zurück zum Zitat Kim UJ, Furtado CA, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445CrossRef Kim UJ, Furtado CA, Eklund PC (2005) Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J Am Chem Soc 127:15437–15445CrossRef
51.
Zurück zum Zitat Gorai S, Ganguli D, Chaudhuri S (2005) Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst Growth Des 5:875–877CrossRef Gorai S, Ganguli D, Chaudhuri S (2005) Synthesis of copper sulfides of varying morphologies and stoichiometries controlled by chelating and nonchelating solvents in a solvothermal process. Cryst Growth Des 5:875–877CrossRef
52.
Zurück zum Zitat Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402:422–429CrossRef Osswald S, Flahaut E, Ye H, Gogotsi Y (2005) Elimination of D-band in Raman spectra of double-wall carbon nanotubes by oxidation. Chem Phys Lett 402:422–429CrossRef
53.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef Dresselhaus MS, Dresselhaus G, Saito R, Jorio A (2005) Raman spectroscopy of carbon nanotubes. Phys Rep 409:47–99CrossRef
54.
Zurück zum Zitat Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef Datsyuk V, Kalyva M, Papagelis K, Parthenios J, Tasis D, Siokou A, Kallitsis I, Galiotis C (2008) Chemical oxidation of multiwalled carbon nanotubes. Carbon 46:833–840CrossRef
55.
Zurück zum Zitat Chen CS, Xie XD, Liu TG, Lin LW, Kuang JC, Xie XL, Lu LJ, Cao SY (2012) Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J Nanopart Res 14:817–822CrossRef Chen CS, Xie XD, Liu TG, Lin LW, Kuang JC, Xie XL, Lu LJ, Cao SY (2012) Multi-walled carbon nanotubes supported Cu-doped ZnO nanoparticles and their optical property. J Nanopart Res 14:817–822CrossRef
56.
Zurück zum Zitat Arul NS, Yun DY, Lee DU, Kim TW (2013) Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells. Nanoscale 5:11940–11943CrossRef Arul NS, Yun DY, Lee DU, Kim TW (2013) Strong quantum confinement effects in kesterite Cu2ZnSnS4 nanospheres for organic optoelectronic cells. Nanoscale 5:11940–11943CrossRef
57.
Zurück zum Zitat Wang X, Li M, Chang Z, Wang Y, Chen B, Zhang L, Wu Y (2015) Orientated Co3O4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor. J Electrochem Soc 162:A1966–A1971CrossRef Wang X, Li M, Chang Z, Wang Y, Chen B, Zhang L, Wu Y (2015) Orientated Co3O4 nanocrystals on MWCNTs as superior battery-type positive electrode material for a hybrid capacitor. J Electrochem Soc 162:A1966–A1971CrossRef
58.
Zurück zum Zitat Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 7:2280–2285CrossRef Wang X, Li M, Chang Z, Yang Y, Wu Y, Liu X (2015) Co3O4@MWCNT nanocable as cathode with superior electrochemical performance for supercapacitors. ACS Appl Mater Interfaces 7:2280–2285CrossRef
59.
Zurück zum Zitat Batmunkh M, Shearer JC, Bat-Erdene M, Biggs JM, Shapter GJ (2017) Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl Mater Interfaces 9:19945–19954CrossRef Batmunkh M, Shearer JC, Bat-Erdene M, Biggs JM, Shapter GJ (2017) Single-walled carbon nanotubes enhance the efficiency and stability of mesoscopic perovskite solar cells. ACS Appl Mater Interfaces 9:19945–19954CrossRef
60.
Zurück zum Zitat Goutam JP, Singh KD, Giri KP, Iyer KP (2011) Enhancing the photostability of poly(3-hexylthiophene) by preparing composites with multiwalled carbon nanotubes. J Phys Chem B 115:919–924CrossRef Goutam JP, Singh KD, Giri KP, Iyer KP (2011) Enhancing the photostability of poly(3-hexylthiophene) by preparing composites with multiwalled carbon nanotubes. J Phys Chem B 115:919–924CrossRef
61.
Zurück zum Zitat Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M (2004) Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids. Angew Chem Int Ed Engl 43:5526–5530CrossRef Guldi DM, Rahman GMA, Jux N, Tagmatarchis N, Prato M (2004) Integrating single-wall carbon nanotubes into donor–acceptor nanohybrids. Angew Chem Int Ed Engl 43:5526–5530CrossRef
62.
Zurück zum Zitat Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phys Chem 99:508–510CrossRef Fowler PW, Ceulemans A (1995) Electron deficiency of the fullerenes. J Phys Chem 99:508–510CrossRef
63.
Zurück zum Zitat Fowler PW (1990) Carbon cylinders: a class of closed-shell clusters. J Chem Soc Faraday Trans 86:2073–2077CrossRef Fowler PW (1990) Carbon cylinders: a class of closed-shell clusters. J Chem Soc Faraday Trans 86:2073–2077CrossRef
64.
Zurück zum Zitat Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRef Robel I, Bunker BA, Kamat PV (2005) Single-walled carbon nanotube–CdS nanocomposites as light-harvesting assemblies: photoinduced charge transfer interactions. Adv Mater 17:2458–2463CrossRef
Metadaten
Titel
Enhancement of photocurrent in Cu2ZnSnS4 quantum dot-anchored multi-walled carbon nanotube for solar cell application
verfasst von
Sonali Das
Kadambinee Sa
Injamul Alam
Pitamber Mahanandia
Publikationsdatum
28.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 11/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03467-y

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Science 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.