Skip to main content
Erschienen in: Journal of Intelligent Manufacturing 4/2020

30.09.2019

Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing

verfasst von: Eryun Liu, Kangping Chen, Zhiyu Xiang, Jun Zhang

Erschienen in: Journal of Intelligent Manufacturing | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The inspection of conductive particles after Anisotropic Conductive Film (ACF) bonding is a common and crucial step in the TFT-LCD manufacturing process since the number of high-quality conductive particles is a key indicator of ACF bonding quality. However, manual inspection under microscope is a time-consuming, tedious, and error-prone. Therefore, there is an urgent demand in industry for the automatic conductive particle inspection system. It is challenging for automatic conductive particle quality inspection due to the existence of complex background noise and diversified particle appearance, including shape, size, clustering and overlapping, etc. As a result, it lacks an effective automatic detection method to handle all the complex particle patterns. In this paper, we propose a U-shaped deep residual neural network (i.e., U-ResNet), which can learn features of particle from massively labeled data. The experimental results show that the proposed method achieves high detection accuracy and recall rate, which exceedingly outperforms the previous work. Also, our system is very efficient and can work in real time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.CrossRef Bengio, Y., Courville, A., & Vincent, P. (2013). Representation learning: A review and new perspectives. IEEE Transactions on Pattern Analysis and Machine Intelligence, 35(8), 1798–1828.CrossRef
Zurück zum Zitat Cao, K., & Jain, A. K. (2019). Automated latent fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4), 788–800.CrossRef Cao, K., & Jain, A. K. (2019). Automated latent fingerprint recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41(4), 788–800.CrossRef
Zurück zum Zitat Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The importance of skip connections in biomedical image segmentation. Deep learning and data labeling for medical applications (pp. 179–187). Cham: Springer.CrossRef Drozdzal, M., Vorontsov, E., Chartrand, G., Kadoury, S., & Pal, C. (2016). The importance of skip connections in biomedical image segmentation. Deep learning and data labeling for medical applications (pp. 179–187). Cham: Springer.CrossRef
Zurück zum Zitat Ferguson, M., Ak, R., Lee, Y. T. T., & Law, K. H. (2017). Automatic localization of casting defects with convolutional neural networks. In 2017 IEEE international conference on big data (big data) (pp. 1726–1735). IEEE. Ferguson, M., Ak, R., Lee, Y. T. T., & Law, K. H. (2017). Automatic localization of casting defects with convolutional neural networks. In 2017 IEEE international conference on big data (big data) (pp. 1726–1735). IEEE.
Zurück zum Zitat Gonzalez, R. C., & Woo, R. E. (2017). Digital image processing (4th ed.). London: Pearson. Gonzalez, R. C., & Woo, R. E. (2017). Digital image processing (4th ed.). London: Pearson.
Zurück zum Zitat Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press. Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep learning. Cambridge: MIT Press.
Zurück zum Zitat Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing. IEEE. arXiv:1303.5778. Graves, A., Mohamed, A. R., & Hinton, G. (2013). Speech recognition with deep recurrent neural networks. In 2013 IEEE international conference on acoustics, speech and signal processing. IEEE. arXiv:​1303.​5778.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026–1034). He, K., Zhang, X., Ren, S., & Sun, J. (2015b). Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE international conference on computer vision (pp. 1026–1034).
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
Zurück zum Zitat Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.CrossRef Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of data with neural networks. Science, 313(5786), 504–507.CrossRef
Zurück zum Zitat Jia, L., Sheng, X., Xiong, Z., Wang, Z., & Ding, H. (2014). Particle on bump (POB) technique for ultra-fine pitch chip on glass (COG) applications by conductive particles and adhesives. Microelectronics Reliability, 54(4), 825–832.CrossRef Jia, L., Sheng, X., Xiong, Z., Wang, Z., & Ding, H. (2014). Particle on bump (POB) technique for ultra-fine pitch chip on glass (COG) applications by conductive particles and adhesives. Microelectronics Reliability, 54(4), 825–832.CrossRef
Zurück zum Zitat Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In International conference on learning representations (pp. 1–13). Kingma, D. P., & Ba, J. L. (2015). Adam: A method for stochastic optimization. In International conference on learning representations (pp. 1–13).
Zurück zum Zitat Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 25 (pp. 1097–1105). New York: Curran Associates. Krizhevsky, A., Sutskever, I., & Hinton, G. (2012). Imagenet classification with deep convolutional neural networks. In F. Pereira, C. J. C. Burges, L. Bottou, & K. Q. Weinberger (Eds.), Advances in neural information processing systems 25 (pp. 1097–1105). New York: Curran Associates.
Zurück zum Zitat Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G. H., Cho, J. H., Kim, N. I., & Kim, K. (2018). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing. https://doi.org/10.1007/s10845-018-1451-6. Kwon, O., Kim, H. G., Ham, M. J., Kim, W., Kim, G. H., Cho, J. H., Kim, N. I., & Kim, K. (2018). A deep neural network for classification of melt-pool images in metal additive manufacturing. Journal of Intelligent Manufacturing. https://​doi.​org/​10.​1007/​s10845-018-1451-6.
Zurück zum Zitat LeCun, Y. (1988). A theoretical framework for back-propagation. In D. Touretzky, G. Hinton, and T. Sejnowski (Eds.), Proceedings of the 1988 connectionist models summer school, pages 21–28, CMU, Pittsburgh, Pa, 1988. Morgan Kaufmann. LeCun, Y. (1988). A theoretical framework for back-propagation. In D. Touretzky, G. Hinton, and T. Sejnowski (Eds.), Proceedings of the 1988 connectionist models summer school, pages 21–28, CMU, Pittsburgh, Pa, 1988. Morgan Kaufmann.
Zurück zum Zitat LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.CrossRef
Zurück zum Zitat Lin, C. S., Huang, K. H., Lin, T. C., Shei, H. J., & Tien, Chuen-Lin. (2011). An automatic inspection method for the fracture conditions of anisotropic conductive film in the tft-lcd assembly process. International Journal of Optomechatronics, 5(3), 286–298.CrossRef Lin, C. S., Huang, K. H., Lin, T. C., Shei, H. J., & Tien, Chuen-Lin. (2011). An automatic inspection method for the fracture conditions of anisotropic conductive film in the tft-lcd assembly process. International Journal of Optomechatronics, 5(3), 286–298.CrossRef
Zurück zum Zitat Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of led chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 30(6), 2525–2534.CrossRef Lin, H., Li, B., Wang, X., Shu, Y., & Niu, S. (2018). Automated defect inspection of led chip using deep convolutional neural network. Journal of Intelligent Manufacturing, 30(6), 2525–2534.CrossRef
Zurück zum Zitat Long, J., Shelhamer, E., & Darrell, T. (2015a). Fully convolutional networks for semantic segmentation. In 2015 IEEE conference on computer vision and pattern recognition (CVPR), (pp. 3431–3440). Long, J., Shelhamer, E., & Darrell, T. (2015a). Fully convolutional networks for semantic segmentation. In 2015 IEEE conference on computer vision and pattern recognition (CVPR), (pp. 3431–3440).
Zurück zum Zitat Long, J., Shelhamer, E., & Darrell, T. (2015b). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440). Long, J., Shelhamer, E., & Darrell, T. (2015b). Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 3431–3440).
Zurück zum Zitat Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:1301.3781. Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of word representations in vector space. arXiv:​1301.​3781.
Zurück zum Zitat Ni, G., Liu, L., Xiaohui, D., Zhang, J., Liu, J., & Liu, Y. (2017). Accurate aoi inspection of resistance in lcd anisotropic conductive film bonding using differential interference contrast. Optik-International Journal for Light and Electron Optics, 130, 786–796.CrossRef Ni, G., Liu, L., Xiaohui, D., Zhang, J., Liu, J., & Liu, Y. (2017). Accurate aoi inspection of resistance in lcd anisotropic conductive film bonding using differential interference contrast. Optik-International Journal for Light and Electron Optics, 130, 786–796.CrossRef
Zurück zum Zitat Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. . In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), International conference on medical image computing and computer-assisted intervention (pp. 234–241). Berlin: Springer. Ronneberger, O., Fischer, P., & Brox, T. (2015). U-net: Convolutional networks for biomedical image segmentation. . In N. Navab, J. Hornegger, W. M. Wells, & A. F. Frangi (Eds.), International conference on medical image computing and computer-assisted intervention (pp. 234–241). Berlin: Springer.
Zurück zum Zitat Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., & Ma, S. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252.CrossRef Russakovsky, O., Deng, J., Hao, S., Krause, J., Satheesh, S., & Ma, S. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision (IJCV), 115(3), 211–252.CrossRef
Zurück zum Zitat Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146–166.CrossRef Sezgin, M., & Sankur, B. (2004). Survey over image thresholding techniques and quantitative performance evaluation. Journal of Electronic imaging, 13(1), 146–166.CrossRef
Zurück zum Zitat Sheng, X., Jia, L., Xiong, Z., Wang, Z., & Ding, H. (2013). Acf-cog interconnection conductivity inspection system using conductive area. Microelectronics Reliability, 53(4), 622–628.CrossRef Sheng, X., Jia, L., Xiong, Z., Wang, Z., & Ding, H. (2013). Acf-cog interconnection conductivity inspection system using conductive area. Microelectronics Reliability, 53(4), 622–628.CrossRef
Zurück zum Zitat Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–9). Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., & Rabinovich, A. (2015). Going deeper with convolutions. In 2015 IEEE conference on computer vision and pattern recognition (CVPR) (pp. 1–9).
Zurück zum Zitat Tran, N., Zhang, X., Xin, L., Shan, B., & Li, M. (2017). De novo peptide sequencing by deep learning. Proceedings of the National Academy of Sciences, 114(31), 8247–8252.CrossRef Tran, N., Zhang, X., Xin, L., Shan, B., & Li, M. (2017). De novo peptide sequencing by deep learning. Proceedings of the National Academy of Sciences, 114(31), 8247–8252.CrossRef
Zurück zum Zitat Wirges, S., Hartenbach, F., & Stiller, C. (2018). Evidential occupancy grid map augmentation using deep learning. In 2018 IEEE intelligent vehicles symposium (IV) (pp. 668–673). arXiv:1801.05297. Wirges, S., Hartenbach, F., & Stiller, C. (2018). Evidential occupancy grid map augmentation using deep learning. In 2018 IEEE intelligent vehicles symposium (IV) (pp. 668–673). arXiv:​1801.​05297.
Zurück zum Zitat Yen, Y. W., & Lee, C. Y. (2011). ACF particle distribution in COG process. Microelectronics Reliability, 51(3), 676–684.CrossRef Yen, Y. W., & Lee, C. Y. (2011). ACF particle distribution in COG process. Microelectronics Reliability, 51(3), 676–684.CrossRef
Zurück zum Zitat Yu-ye, C., Ke, X., Zhen-xiong, G., Jun-jie, H., Chang, L., & Song-yan, C. (2017). Detection of conducting particles bonding in the circuit of liquid crystal display. Chinese Journal of Liquid Crystals and Displays, 32(7), 553–559.CrossRef Yu-ye, C., Ke, X., Zhen-xiong, G., Jun-jie, H., Chang, L., & Song-yan, C. (2017). Detection of conducting particles bonding in the circuit of liquid crystal display. Chinese Journal of Liquid Crystals and Displays, 32(7), 553–559.CrossRef
Zurück zum Zitat Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.CrossRef Zhang, Z., Liu, Q., & Wang, Y. (2018). Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters, 15(5), 749–753.CrossRef
Zurück zum Zitat Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016). Learning deep representation for face alignment with auxiliary attributes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 918–930.CrossRef Zhang, Z., Luo, P., Loy, C. C., & Tang, X. (2016). Learning deep representation for face alignment with auxiliary attributes. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(5), 918–930.CrossRef
Zurück zum Zitat Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2881–2890). Zhao, H., Shi, J., Qi, X., Wang, X., & Jia, J. (2017). Pyramid scene parsing network. In Proceedings of IEEE conference on computer vision and pattern recognition (CVPR) (pp. 2881–2890).
Zurück zum Zitat Zhao, Z., Li, Y., Liu, C., & Gao, J. (2019). On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing (pp. 1–14). Zhao, Z., Li, Y., Liu, C., & Gao, J. (2019). On-line part deformation prediction based on deep learning. Journal of Intelligent Manufacturing (pp. 1–14).
Metadaten
Titel
Conductive particle detection via deep learning for ACF bonding in TFT-LCD manufacturing
verfasst von
Eryun Liu
Kangping Chen
Zhiyu Xiang
Jun Zhang
Publikationsdatum
30.09.2019
Verlag
Springer US
Erschienen in
Journal of Intelligent Manufacturing / Ausgabe 4/2020
Print ISSN: 0956-5515
Elektronische ISSN: 1572-8145
DOI
https://doi.org/10.1007/s10845-019-01494-9

Weitere Artikel der Ausgabe 4/2020

Journal of Intelligent Manufacturing 4/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.