Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 2/2020

30.01.2020

Confinement of Mg Nanoparticles by Bituminous Coal and Associated Synergistic Hydrogen Storage Effect

verfasst von: Yanwei Song, Tonghuan Zhang, Shixue Zhou, Pei Liu, Hao Yu, Zongying Han

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Using the coking property of bituminous coal, a nanostructured Mg-C composite hydrogen storage material was developed by ball milling and heat treatment. The heat treatment conditions and hydrogen storage behavior of the composite material were investigated. Results show that when the material is heat-treated at 550 °C under Ar atmosphere, the carbon could react with Mg to irreversibly form Mg2C3. When 1.0 MPa H2 was introduced to the heat treatment at 550 °C, the magnesium does not form Mg2C3. The resulting composite material is shown to have a globular bonded structure by scanning electron microscopy, and the Mg nanoparticles are confined by the bituminous coal. Fourier transform infrared spectroscopy and gas chromatography analysis show that the carbon could combine with hydrogen only in the presence of MgH2 under current experimental conditions. The carbon-bonded hydrogen would be released in the form of small molecule hydrocarbons such as CH4, C2H4 and C2H6. Dynamic tests show that coal carbon and magnesium absorb/desorb hydrogen at similar temperatures, which proves that there is a synergistic hydrogen storage effect between magnesium and coal carbon.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat V. Tozzini and V. Pellegrini, Prospects for Hydrogen Storage in Graphene. Phys. Chem. Chem. Phys. (2012), 15(1), p 80–89 V. Tozzini and V. Pellegrini, Prospects for Hydrogen Storage in Graphene. Phys. Chem. Chem. Phys. (2012), 15(1), p 80–89
2.
Zurück zum Zitat M.S. Yahya, N.N. Sulaiman, N.S. Mustafa, and M. Ismail, Improvement of Hydrogen Storage Properties in MgH2 Catalysed by K2NbF7. Int. J. Hydrogen Energy (2018), 43(31), p 14532–14540 M.S. Yahya, N.N. Sulaiman, N.S. Mustafa, and M. Ismail, Improvement of Hydrogen Storage Properties in MgH2 Catalysed by K2NbF7. Int. J. Hydrogen Energy (2018), 43(31), p 14532–14540
3.
Zurück zum Zitat H. Zhou, Q. Liu, W. Liu, J. Ge, M. Lan, C. Wang, J. Geng, and P. Wang, Template-Free Preparation of Volvox-Like CdxZn1-xS Nanospheres with Cubic Phase for Efficient Photocatalytic Hydrogen Production. Chem. Asian J. (2014), 9(3), p 811–818 H. Zhou, Q. Liu, W. Liu, J. Ge, M. Lan, C. Wang, J. Geng, and P. Wang, Template-Free Preparation of Volvox-Like CdxZn1-xS Nanospheres with Cubic Phase for Efficient Photocatalytic Hydrogen Production. Chem. Asian J. (2014), 9(3), p 811–818
4.
Zurück zum Zitat P. Lianos, Review of Recent Trends in Photoelectron Catalytic Conversion of Solar Energy to Electricity and Hydrogen. Appl. Catal. B Environ. (2017), 210, p 235–254 P. Lianos, Review of Recent Trends in Photoelectron Catalytic Conversion of Solar Energy to Electricity and Hydrogen. Appl. Catal. B Environ. (2017), 210, p 235–254
5.
Zurück zum Zitat P. Lianos, A. Bassi, L. Turchetti, and M. Venturin, Multi-objective Optimization of a Hydrogen Production Through the HyS Process Powered by Solar Energy in Different Scenarios. Int. J. Hydrogen Energy (2018), 43(18), p 8683–8697 P. Lianos, A. Bassi, L. Turchetti, and M. Venturin, Multi-objective Optimization of a Hydrogen Production Through the HyS Process Powered by Solar Energy in Different Scenarios. Int. J. Hydrogen Energy (2018), 43(18), p 8683–8697
6.
Zurück zum Zitat J. Tian, Y. Leng, H. Cui, and H. Liu, Hydrogenated TiO2 Nanobelts as Highly Efficient Photocatalytic Organic Dye Degradation and Hydrogen Evolution Photocatalyst. J. Hazard. Mater. (2015), 299, p 165–173 J. Tian, Y. Leng, H. Cui, and H. Liu, Hydrogenated TiO2 Nanobelts as Highly Efficient Photocatalytic Organic Dye Degradation and Hydrogen Evolution Photocatalyst. J. Hazard. Mater. (2015), 299, p 165–173
7.
Zurück zum Zitat G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, and H. Che, Tungsten Oxide Nanostructures and Nanocomposites for Photoelectrochemical Water Splitting. Nanoscale (2019), 11(41), p 18968–18994 G. Zheng, J. Wang, H. Liu, V. Murugadoss, G. Zu, and H. Che, Tungsten Oxide Nanostructures and Nanocomposites for Photoelectrochemical Water Splitting. Nanoscale (2019), 11(41), p 18968–18994
8.
Zurück zum Zitat B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, and Z. Guo, Surface Intercalated Spherical MoS2xSe2(1-x)Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reactions. Dalton Trans. (2019), 48(23), p 8279–8287 B. Lin, Z. Lin, S. Chen, M. Yu, W. Li, Q. Gao, M. Dong, Q. Shao, S. Wu, T. Ding, and Z. Guo, Surface Intercalated Spherical MoS2xSe2(1-x)Nanocatalysts for Highly Efficient and Durable Hydrogen Evolution Reactions. Dalton Trans. (2019), 48(23), p 8279–8287
9.
Zurück zum Zitat C. Wang, F. Lan, Z. He, X. Xie, Y. Zhao, H. Hou, L. Guo, V. Murugadoss, H. Liu, Q. Shao, Q. Gao, T. Ding, R. Wei, and Z. Guo, Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting. Chemsuschem (2019), 12, p 1576–1590 C. Wang, F. Lan, Z. He, X. Xie, Y. Zhao, H. Hou, L. Guo, V. Murugadoss, H. Liu, Q. Shao, Q. Gao, T. Ding, R. Wei, and Z. Guo, Iridium-Based Catalysts for Solid Polymer Electrolyte Electrocatalytic Water Splitting. Chemsuschem (2019), 12, p 1576–1590
10.
Zurück zum Zitat N.A. Sazelee, N.H. Idris, M.F. MdDin, N.S. Mustafa, N.A. Ali, M.S. Yahya, F.A. HalimYap, N.N. Sulaiman, and M. Ismail, Synthesis of BaFe12O19 by Solid State Method and its Effect on Hydrogen Storage Properties of MgH2. Int. J. Hydrogen Energy (2018), 43(45), p 20853–20860 N.A. Sazelee, N.H. Idris, M.F. MdDin, N.S. Mustafa, N.A. Ali, M.S. Yahya, F.A. HalimYap, N.N. Sulaiman, and M. Ismail, Synthesis of BaFe12O19 by Solid State Method and its Effect on Hydrogen Storage Properties of MgH2. Int. J. Hydrogen Energy (2018), 43(45), p 20853–20860
11.
Zurück zum Zitat I.P. Jain, P. Jain, and A. Jain, Novel Hydrogen Storage Materials: A Review of Lightweight Complex Hydrides. J. Alloys Compd. (2010), 503(2), p 303–339 I.P. Jain, P. Jain, and A. Jain, Novel Hydrogen Storage Materials: A Review of Lightweight Complex Hydrides. J. Alloys Compd. (2010), 503(2), p 303–339
12.
Zurück zum Zitat N.Z.A.K. Khafidz, Z. Yaakob, K.L. Lim, and S.N. Timmiati, The Kinetics of Lightweight Solid-State Hydrogen Storage Materials: A Review. Int. J. Hydrogen Energy (2016), 41(30), p 13131–13151 N.Z.A.K. Khafidz, Z. Yaakob, K.L. Lim, and S.N. Timmiati, The Kinetics of Lightweight Solid-State Hydrogen Storage Materials: A Review. Int. J. Hydrogen Energy (2016), 41(30), p 13131–13151
13.
Zurück zum Zitat R. Floriano, S. Deledda, B.C. Hauback, D.R. Leiva, and W.J. Botta, Iron and Niobium Based Additives in Magnesium Hydride: Microstructure and Hydrogen Storage Properties. Int. J. Hydrogen Energy (2017), 42, p 6810–6819 R. Floriano, S. Deledda, B.C. Hauback, D.R. Leiva, and W.J. Botta, Iron and Niobium Based Additives in Magnesium Hydride: Microstructure and Hydrogen Storage Properties. Int. J. Hydrogen Energy (2017), 42, p 6810–6819
14.
Zurück zum Zitat M.S. Yahya and M. Ismail, Synergistic Catalytic Effect of SrTiO3, and Ni on the Hydrogen Storage Properties of MgH2. Int. J. Hydrogen Energy (2018), 43(12), p 6244–6255 M.S. Yahya and M. Ismail, Synergistic Catalytic Effect of SrTiO3, and Ni on the Hydrogen Storage Properties of MgH2. Int. J. Hydrogen Energy (2018), 43(12), p 6244–6255
15.
Zurück zum Zitat H.Y. Shao, J. Matsuda, H.W. Li, E. Akiba, A. Jain, T. Ichikawa, and Y. Kojima, Phase and Morphology Evolution Study of Ball Milled Mg-Co Hydrogen Storage Alloys. Int. J. Hydrogen Energy (2013), 38(17), p 7070–7076 H.Y. Shao, J. Matsuda, H.W. Li, E. Akiba, A. Jain, T. Ichikawa, and Y. Kojima, Phase and Morphology Evolution Study of Ball Milled Mg-Co Hydrogen Storage Alloys. Int. J. Hydrogen Energy (2013), 38(17), p 7070–7076
16.
Zurück zum Zitat K. Dmytro, B. Flemming, and T.R. Jensen, Kinetics and Thermodynamics of Hydrogenation-Dehydrogenation for Mg-25%TM (TM= Ti, Nb or V) Composites Synthesized by Reactive Ball Milling in Hydrogen. Int. J. Hydrogen Energy (2018), 43, p 16804–16814 K. Dmytro, B. Flemming, and T.R. Jensen, Kinetics and Thermodynamics of Hydrogenation-Dehydrogenation for Mg-25%TM (TM= Ti, Nb or V) Composites Synthesized by Reactive Ball Milling in Hydrogen. Int. J. Hydrogen Energy (2018), 43, p 16804–16814
17.
Zurück zum Zitat S. Kumar, Y. Kojima, and G.K. Dey, Morphological Effects of Nb2O5 on Mg-MgH2 System for Thermal Energy Storage Application. Int. J. Hydrogen Energy (2018), 43(2), p 809–816 S. Kumar, Y. Kojima, and G.K. Dey, Morphological Effects of Nb2O5 on Mg-MgH2 System for Thermal Energy Storage Application. Int. J. Hydrogen Energy (2018), 43(2), p 809–816
18.
Zurück zum Zitat M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, and M.S. Yahya, The Hydrogen Storage Properties and Catalytic Mechanism of the CuFe2O4-Doped MgH2 Composite System. Int. J. Hydrogen Energy (2019), 44(1), p 318–324 M. Ismail, N.S. Mustafa, N.A. Ali, N.A. Sazelee, and M.S. Yahya, The Hydrogen Storage Properties and Catalytic Mechanism of the CuFe2O4-Doped MgH2 Composite System. Int. J. Hydrogen Energy (2019), 44(1), p 318–324
19.
Zurück zum Zitat Z. Wang, Z. Ren, J. Ni, M.X. Gao, J.J. Hu, F. Du, H.G. Pan, and Y.F. Liu, Vanadium Oxide Nanoparticles Supported on Cubic Carbon Nanoboxes as Highly Active Catalyst Precursors for Hydrogen Storage in MgH2. J. Mater. Chem. A (2018), 6(33), p 16177–16185 Z. Wang, Z. Ren, J. Ni, M.X. Gao, J.J. Hu, F. Du, H.G. Pan, and Y.F. Liu, Vanadium Oxide Nanoparticles Supported on Cubic Carbon Nanoboxes as Highly Active Catalyst Precursors for Hydrogen Storage in MgH2. J. Mater. Chem. A (2018), 6(33), p 16177–16185
20.
Zurück zum Zitat P. Liu, H.P. Chen, H. Yu, X.J. Liu, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Oxygen Vacancy in Magnesium/Cerium Composite from Ball Milling for Hydrogen Storage Improvement. Int. J. Hydrogen Energy (2019), 44(26), p 13606–13612 P. Liu, H.P. Chen, H. Yu, X.J. Liu, R.Q. Jiang, X.Y. Li, and S.X. Zhou, Oxygen Vacancy in Magnesium/Cerium Composite from Ball Milling for Hydrogen Storage Improvement. Int. J. Hydrogen Energy (2019), 44(26), p 13606–13612
21.
Zurück zum Zitat I.E. Malkaa, J. Bystrzyckia, T. Płocińskib, and T. Czujko, Microstructure and Hydrogen Storage Capacity of Magnesium Hydride with Zirconium and Niobium Fluoride Additives after Cyclic Loading. J. Alloys Compd. (2011), 509(S2), p 616–620 I.E. Malkaa, J. Bystrzyckia, T. Płocińskib, and T. Czujko, Microstructure and Hydrogen Storage Capacity of Magnesium Hydride with Zirconium and Niobium Fluoride Additives after Cyclic Loading. J. Alloys Compd. (2011), 509(S2), p 616–620
22.
Zurück zum Zitat S.K. Peng, X.Z. Xiao, R.J. Xu, L. Li, F. Wu, S.Q. Li, Q.D. Wang, and L.X. Chen, Hydrogen Storage Behaviors and Microstructure of MF3 (M=Ti, Fe)-Doped Magnesium Hydride. Trans. Nonferr. Met. Soc. China (2010), 20(10), p 1879–1884 S.K. Peng, X.Z. Xiao, R.J. Xu, L. Li, F. Wu, S.Q. Li, Q.D. Wang, and L.X. Chen, Hydrogen Storage Behaviors and Microstructure of MF3 (M=Ti, Fe)-Doped Magnesium Hydride. Trans. Nonferr. Met. Soc. China (2010), 20(10), p 1879–1884
23.
Zurück zum Zitat I.E. Malka, A. Błachowski, K. Ruebenbauer, J. Przewoźnik, J. Żukrowski, T. Czujko, and J. Bystrzycki, Iron Fluorides Assisted Dehydrogenation and Hydrogenation of MgH2 Studied by Mössbauer Spectroscopy. J. Alloys Compd. (2011), 509(17), p 5368–5372 I.E. Malka, A. Błachowski, K. Ruebenbauer, J. Przewoźnik, J. Żukrowski, T. Czujko, and J. Bystrzycki, Iron Fluorides Assisted Dehydrogenation and Hydrogenation of MgH2 Studied by Mössbauer Spectroscopy. J. Alloys Compd. (2011), 509(17), p 5368–5372
24.
Zurück zum Zitat S.A. Pighin, B. Coco, H. Troiani, F.J. Castro, and G. Urretavizcaya, Effect of Additive Distribution in H2 Absorption and Desorption Kinetics in MgH2 Milled with NbH0.9 or NbF5. Int. J. Hydrogen Energy (2018), 43(15), p 7430–7439 S.A. Pighin, B. Coco, H. Troiani, F.J. Castro, and G. Urretavizcaya, Effect of Additive Distribution in H2 Absorption and Desorption Kinetics in MgH2 Milled with NbH0.9 or NbF5. Int. J. Hydrogen Energy (2018), 43(15), p 7430–7439
25.
Zurück zum Zitat H.J. Yuan, Y. An, G.H. Xu, and C.P. Chen, Hydriding Behavior of Magnesium-Based Hydrogen Storage Alloy Modified by Mechanical Ball-Milling. Mater. Chem. Phys. (2004), 83(2-3), p 340–344 H.J. Yuan, Y. An, G.H. Xu, and C.P. Chen, Hydriding Behavior of Magnesium-Based Hydrogen Storage Alloy Modified by Mechanical Ball-Milling. Mater. Chem. Phys. (2004), 83(2-3), p 340–344
26.
Zurück zum Zitat J.G. Zhang, Y.F. Zhu, Y.C. Wang, Z.G. Pu, and L.Q. Li, Electrochemical Hydrogen Storage Properties of Mg2−xAlxNi (x = 0, 0.3, 0.5, 0.7) Prepared by Hydriding Combustion Synthesis and Mechanical Milling. Int. J. Hydrogen Energy (2012), 37(23), p 18140–18147 J.G. Zhang, Y.F. Zhu, Y.C. Wang, Z.G. Pu, and L.Q. Li, Electrochemical Hydrogen Storage Properties of Mg2−xAlxNi (x = 0, 0.3, 0.5, 0.7) Prepared by Hydriding Combustion Synthesis and Mechanical Milling. Int. J. Hydrogen Energy (2012), 37(23), p 18140–18147
27.
Zurück zum Zitat Y.H. Zhang, W. Zhang, B.W. Li, H.P. Ren, Y. Qi, and D.L. Zhao, Effects of Milling Duration on Electrochemical Hydrogen Storage Behavior of as-milled Mg-Ce-Ni-Al-Based Alloys for Use in Ni-Metal Hydride Batteries. J. Phys. Chem. Solids (2019), 133, p 178–186 Y.H. Zhang, W. Zhang, B.W. Li, H.P. Ren, Y. Qi, and D.L. Zhao, Effects of Milling Duration on Electrochemical Hydrogen Storage Behavior of as-milled Mg-Ce-Ni-Al-Based Alloys for Use in Ni-Metal Hydride Batteries. J. Phys. Chem. Solids (2019), 133, p 178–186
28.
Zurück zum Zitat H.R. Park, S.N. Kwon, and M.Y. Song, Effects of Milling Time on the Hydrogen Storage Properties of Mg-Based Transition Metals-added Alloys. Mater. Sci. (MEDŽIAGOTYRA) (2018), 24(2), p 166–171 H.R. Park, S.N. Kwon, and M.Y. Song, Effects of Milling Time on the Hydrogen Storage Properties of Mg-Based Transition Metals-added Alloys. Mater. Sci. (MEDŽIAGOTYRA) (2018), 24(2), p 166–171
29.
Zurück zum Zitat L.J. Wei, H. Gu, Y.F. Zhu, and L.Q. Li, Superior Hydrogen Storage Properties of Mg95Ni5 + 10wt.% Nanosized Zr0.7Ti0.3Mn2 +3wt.% MWCNT Prepared by Hydriding Combustion Synthesis Followed by Mechanical Milling (HCS+MM). Int. J. Hydrogen Energy (2012), 37(22), p 17146–17152 L.J. Wei, H. Gu, Y.F. Zhu, and L.Q. Li, Superior Hydrogen Storage Properties of Mg95Ni5 + 10wt.% Nanosized Zr0.7Ti0.3Mn2 +3wt.% MWCNT Prepared by Hydriding Combustion Synthesis Followed by Mechanical Milling (HCS+MM). Int. J. Hydrogen Energy (2012), 37(22), p 17146–17152
30.
Zurück zum Zitat M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, and V.A. Yartys, Magnesium-Carbon Hydrogen Storage Hybrid Materials Produced by Reactive Ball Milling in Hydrogen. Carbon (2013), 57, p 146–160 M. Lototskyy, J.M. Sibanyoni, R.V. Denys, M. Williams, B.G. Pollet, and V.A. Yartys, Magnesium-Carbon Hydrogen Storage Hybrid Materials Produced by Reactive Ball Milling in Hydrogen. Carbon (2013), 57, p 146–160
31.
Zurück zum Zitat K. Alsabawi, T.A. Webb, E.M.A. Gray, and C.J. Webb, The Effect of C60 Additive on Magnesium Hydride for Hydrogen Storage. Int. J. Hydrogen Energy (2015), 40(33), p 10508–10515 K. Alsabawi, T.A. Webb, E.M.A. Gray, and C.J. Webb, The Effect of C60 Additive on Magnesium Hydride for Hydrogen Storage. Int. J. Hydrogen Energy (2015), 40(33), p 10508–10515
32.
Zurück zum Zitat S.X. Zhou, H.P. Chen, C. Ding, H.L. Niu, T.H. Zhang, N.F. Wang, Q.Q. Zhang, D. Liu, S. Han, and H.G. Yu, Effectiveness of Crystallitic Carbon from Coal as Grinding Aid and for Hydrogen Storage During Milling with Magnesium. Fuel (2012), 109, p 68–75 S.X. Zhou, H.P. Chen, C. Ding, H.L. Niu, T.H. Zhang, N.F. Wang, Q.Q. Zhang, D. Liu, S. Han, and H.G. Yu, Effectiveness of Crystallitic Carbon from Coal as Grinding Aid and for Hydrogen Storage During Milling with Magnesium. Fuel (2012), 109, p 68–75
33.
Zurück zum Zitat S.X. Zhou, Q.Q. Zhang, W.X. Ran, W.X. Ran, Z.Y. Han, H.I. Niu, S.N. Han, L.Q. Cui, T.H. Zhang, H.P. Chen, and D. Liu, Evolution of Magnesium During Reactive Milling under Hydrogen Atmosphere with Crystallitic Carbon as Grinding Aid. J. Alloys Compd. (2013), 581, p 472–478 S.X. Zhou, Q.Q. Zhang, W.X. Ran, W.X. Ran, Z.Y. Han, H.I. Niu, S.N. Han, L.Q. Cui, T.H. Zhang, H.P. Chen, and D. Liu, Evolution of Magnesium During Reactive Milling under Hydrogen Atmosphere with Crystallitic Carbon as Grinding Aid. J. Alloys Compd. (2013), 581, p 472–478
34.
Zurück zum Zitat S.X. Zhou, Q.Q. Zhang, H.P. Chen, X.J. Zang, X.P. Zhou, R.L. Wang, X.J. Jang, B. Yang, and R.Q. Jiang, Crystalline Structure, Energy Calculation and Dehydriding Thermodynamics of Magnesium Hydride from Reactive Milling. Int. J. Hydrogen Energy (2015), 40(35), p 11484–11490 S.X. Zhou, Q.Q. Zhang, H.P. Chen, X.J. Zang, X.P. Zhou, R.L. Wang, X.J. Jang, B. Yang, and R.Q. Jiang, Crystalline Structure, Energy Calculation and Dehydriding Thermodynamics of Magnesium Hydride from Reactive Milling. Int. J. Hydrogen Energy (2015), 40(35), p 11484–11490
35.
Zurück zum Zitat S.X. Zhou, T.H. Zhang, N.F. Wang, T. Li, H.L. Niu, H. Yu, and D. Liu, Influence of Aluminum Location on Hydrogen Sorption Kinetics of Magnesium-Based Materials. Funct. Mater. Lett. (2014), 07(03), p 1450034 S.X. Zhou, T.H. Zhang, N.F. Wang, T. Li, H.L. Niu, H. Yu, and D. Liu, Influence of Aluminum Location on Hydrogen Sorption Kinetics of Magnesium-Based Materials. Funct. Mater. Lett. (2014), 07(03), p 1450034
36.
Zurück zum Zitat A.D. Ruda, A.M. Lakhnika, V.G. Ivanchenkoa, V.N. Uvarov, A.A. Shkola, V.A. Dekhtyarenko, L.I. Ivaschuk, and N.I. Kuskova, Hydrogen Storage of the Mg-C Composites. Int. J. Hydrogen Energy (2008), 33, p 1310–1316 A.D. Ruda, A.M. Lakhnika, V.G. Ivanchenkoa, V.N. Uvarov, A.A. Shkola, V.A. Dekhtyarenko, L.I. Ivaschuk, and N.I. Kuskova, Hydrogen Storage of the Mg-C Composites. Int. J. Hydrogen Energy (2008), 33, p 1310–1316
37.
Zurück zum Zitat A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.N. Golikand, and A.Z. Moshfegh, H2 Adsorption Mechanism in Mg Modified Multi-walled Carbon Nanotubes for Hydrogen Storage. Int. J. Hydrogen Energy (2012), 37(2), p 1919–1926 A. Reyhani, S.Z. Mortazavi, S. Mirershadi, A.N. Golikand, and A.Z. Moshfegh, H2 Adsorption Mechanism in Mg Modified Multi-walled Carbon Nanotubes for Hydrogen Storage. Int. J. Hydrogen Energy (2012), 37(2), p 1919–1926
38.
Zurück zum Zitat B.H. Chen, C.H. Kuo, J.R. Ku, P.S. Yan, C.J. Huang, M.S. Jeng, and F.H. Tasu, Highly Improved with Hydrogen Storage Capacity and Fast Kinetics in Mg-Based Nanocomposites by CNTs. J. Alloys Compd. (2013), 568, p 78–83 B.H. Chen, C.H. Kuo, J.R. Ku, P.S. Yan, C.J. Huang, M.S. Jeng, and F.H. Tasu, Highly Improved with Hydrogen Storage Capacity and Fast Kinetics in Mg-Based Nanocomposites by CNTs. J. Alloys Compd. (2013), 568, p 78–83
39.
Zurück zum Zitat S.S. Shinde, D.H. Kim, J.Y. Yu, and J.H. Lee, Self-Assembled Air-Stable Magnesium Hydride Embedded in 3-D Activated Carbon for Reversible Hydrogen Storage. Nanoscale (2017), 9(21), p 7094–7103 S.S. Shinde, D.H. Kim, J.Y. Yu, and J.H. Lee, Self-Assembled Air-Stable Magnesium Hydride Embedded in 3-D Activated Carbon for Reversible Hydrogen Storage. Nanoscale (2017), 9(21), p 7094–7103
40.
Zurück zum Zitat V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellostavoncolbe, J.C. Crivello, F. Cuevas, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, and M. Zhu, Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future. Int. J. Hydrogen Energy (2019), 44(15), p 7809–7859 V.A. Yartys, M.V. Lototskyy, E. Akiba, R. Albert, V.E. Antonov, J.R. Ares, M. Baricco, N. Bourgeois, C.E. Buckley, J.M. Bellostavoncolbe, J.C. Crivello, F. Cuevas, M. Dornheim, M. Felderhoff, D.M. Grant, B.C. Hauback, T.D. Humphries, and M. Zhu, Magnesium Based Materials for Hydrogen Based Energy Storage: Past, Present and Future. Int. J. Hydrogen Energy (2019), 44(15), p 7809–7859
41.
Zurück zum Zitat C.C. Lan, Q.L. Yu, Y.N. Qie, M.F. Jiang, X.J. Liu, and S.H. Zhang, Thermodynamic and Kinetic Behaviors of Coal Gasification. Thermochim. Acta (2018), 666, p 174–180 C.C. Lan, Q.L. Yu, Y.N. Qie, M.F. Jiang, X.J. Liu, and S.H. Zhang, Thermodynamic and Kinetic Behaviors of Coal Gasification. Thermochim. Acta (2018), 666, p 174–180
42.
Zurück zum Zitat M.S. Yahya and M. Ismail, Catalytic Effect of SrTiO3 on the Hydrogen Storage Behavior of MgH2. J. Energy Chem. (2019), 28, p 46–53 M.S. Yahya and M. Ismail, Catalytic Effect of SrTiO3 on the Hydrogen Storage Behavior of MgH2. J. Energy Chem. (2019), 28, p 46–53
43.
Zurück zum Zitat Z.Y. Han, H.P. Chen, X.Y. Li, R.Q. Jiang, and S.X. Zhou, Novel Application of MgH2/MoS2 Hydrogen Storage Materials to Thiophene Hydrodesulfurization: A Combined Experimental and Theoretical Case Study. Mater. Design (2018), 158, p 213–223 Z.Y. Han, H.P. Chen, X.Y. Li, R.Q. Jiang, and S.X. Zhou, Novel Application of MgH2/MoS2 Hydrogen Storage Materials to Thiophene Hydrodesulfurization: A Combined Experimental and Theoretical Case Study. Mater. Design (2018), 158, p 213–223
44.
Zurück zum Zitat Q. Chen, Q. Yin, A. Dong, Y. Gao, Y. Qian, D. Wang, M. Dong, Q. Shao, H. Liu, B.H. Han, T. Ding, Z. Guo, and N. Wang, Metal Complex Hybrid Composites Based on Fullerene-Bearing Porous Polycarbazole for H2, CO2 and CH4 Uptake and Heterogeneous Hydrogenation Catalysis. Polymer (2019), 169, p 255–262 Q. Chen, Q. Yin, A. Dong, Y. Gao, Y. Qian, D. Wang, M. Dong, Q. Shao, H. Liu, B.H. Han, T. Ding, Z. Guo, and N. Wang, Metal Complex Hybrid Composites Based on Fullerene-Bearing Porous Polycarbazole for H2, CO2 and CH4 Uptake and Heterogeneous Hydrogenation Catalysis. Polymer (2019), 169, p 255–262
Metadaten
Titel
Confinement of Mg Nanoparticles by Bituminous Coal and Associated Synergistic Hydrogen Storage Effect
verfasst von
Yanwei Song
Tonghuan Zhang
Shixue Zhou
Pei Liu
Hao Yu
Zongying Han
Publikationsdatum
30.01.2020
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 2/2020
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-020-04602-6

Weitere Artikel der Ausgabe 2/2020

Journal of Materials Engineering and Performance 2/2020 Zur Ausgabe

EditorialNotes

Editorial

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.