Skip to main content
Erschienen in: Journal of Inequalities and Applications 1/2015

Open Access 01.12.2015 | Research

Connecting orbits for Newtonian-like N-body problems

verfasst von: Kaili Xiang, Fengying Li, Xiang Yu

Erschienen in: Journal of Inequalities and Applications | Ausgabe 1/2015

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
download
DOWNLOAD
print
DRUCKEN
insite
SUCHEN
loading …

Abstract

Using variational minimizing methods, we prove the existence of a connecting orbit between the center of mass and infinity of Newtonian-like N-body problems with Newtonian-type weak force potentials.
Hinweise

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The research and writing of this manuscript was a collaborative effort from all the authors. All authors read and approved the final manuscript.

1 Introduction

In the 1989 paper of Rabinowitz [1], we find the first substantial use of variational methods to study heteroclinic orbits for Hamiltonian systems. The perspective of that work appears influential for a number of papers by several authors which followed [215]. Especially, we would like to draw attention to Souissi [13], Maderna and Venturelli [14] and Zhang [15] for a study of the parabolic orbits for restricted 3-body problems and complete N-body problems. From those studies, we draw motivation for the present work: namely, we extend the results and methods of Souissi [13] and Zhang [15] to Newtonian-like N-body problems.
Given masses \(m_{1},\ldots,m_{N}>0\) of N bodies, we study the following system of equations with Newtonian-type weak force potentials:
$$ m_{i}\ddot{q}_{i}(t)+\frac{\partial U(q)}{\partial q_{i}}=0, $$
(1.1)
where \(q_{i}\in R^{k}\), \(q=(q_{1},\ldots,q_{N})\), \(0<\alpha<2\), and
$$ U(q)= \sum _{1\leq i< j\leq N}\frac{m_{i}m_{j}}{|q_{i}-q_{j}|^{\alpha}} . $$
(1.2)
We apply the variational minimizing method to prove the following.
Theorem 1.1
For (1.1), there exists one connecting orbit \(\tilde{q}(t)=(\tilde{q}_{1}(t),\ldots,\tilde{q}_{N}(t))\) between the center of mass and infinity such that:
(i)
For any \(1\leq i\neq j\leq N\),
$$ \max_{0\leq t\leq+\infty}\bigl\vert \tilde{q}_{i}(t)-\tilde {q}_{j}(t)\bigr\vert =+\infty. $$
(1.3)
 
(ii)
$$ \min_{0\leq t\leq+\infty}\sum_{1}^{N}m_{i} \bigl\vert \dot{\tilde {q}}_{i}(t)\bigr\vert ^{2}=2E \geq0. $$
(1.4)
 

2 Variational minimizing critical points

In order to find a connecting orbit of (1.1), we shall first find a solution of the system (1.1) on the open interval \((0,\tau)\) and then consider the limit orbit as \(\tau\rightarrow +\infty\). To find a solution on \((0,\tau)\), we define the functional
$$ f(q)=\int_{0}^{\tau} \Biggl(\frac{1}{2}\sum _{i=1}^{N} m_{i}\bigl\vert \dot{q}_{i}(t)\bigr\vert ^{2}+U(q) \Biggr)\, dt, $$
(2.1)
where
$$ q_{i}\in H_{\tau}=\bigl\{ x,\dot{x}\in L^{2}[0, \tau]|x_{i}(0)=0,x_{i}(\tau)=a_{i}\bigr\} , $$
(2.2)
where \((a_{1},\ldots,a_{i},\ldots,a_{N})\) is a central configuration for the N-body problems which satisfies \(a_{j}\neq a_{i}\), \(1\leq j\neq i\leq N\), and there is \(\lambda \in R\) such that
$$ \sum_{j\neq i}\frac{m_{j}m_{i}(a_{j}-a_{i})}{|a_{j}-a_{i}|^{\alpha+2}}=\lambda m_{i}a_{i} . $$
(2.3)
Since \(\forall q_{i}\in H_{\tau}\), \(q_{i}(0)=0\), for \(q=(q_{1},\ldots,q_{N})\in H_{\tau}\times\cdots\times H_{\tau}\) we have the equivalent norm
$$ \|q\|_{\tau}= \Biggl(\sum_{i=1}^{N}m_{i} \int_{0}^{\tau}\bigl\vert \dot {q}_{i}(t) \bigr\vert ^{2}\, dt \Biggr)^{1/2}. $$
(2.4)
Lemma 2.1
(Tonelli [16])
Let X be a reflexive Banach space and \(f:X\rightarrow R\cup\{+\infty\}\). If f does not always take +∞ and is weakly lower semi-continuous and coercive (\(f(x)\rightarrow +\infty\), as \(\|x\|\rightarrow+\infty\)), then f attains its infimum on X.
Lemma 2.2
The functional \(f(q)\) defined in (2.1) is weakly lower semi-continuous (w.l.s.c.) on \(H_{\tau}\times\cdots\times H_{\tau}\).
Proof
(1) It is well known that the norm and its square are w.l.s.c.
(2) \(\forall\{q_{i}^{n}\}\subset H_{\tau}\), if \(q_{i}^{n}\rightharpoonup q_{i}\) weakly, then by the compact embedding theorem, we have the following uniform convergence:
$$ \max_{0\leqslant t\leqslant\tau} \bigl\vert q_{i}^{n}(t)-q_{i}(t) \bigr\vert \rightarrow0,\quad n\rightarrow+\infty. $$
(2.5)
Let \(S=\{\tilde{t}\in[0,\tau]: \exists1\leq i_{0}\neq j_{0}\leq N\mbox{ s.t. } q_{i_{0}}(t_{0})=q_{j_{0}}(t_{0})\}\) and let \(m(S)\) denote the Lebesgue measure of S.
(i)
If \(m(S)=0\), then \(U(q^{n}(t)) \stackrel{\text{a.e.}}{\rightarrow } U(q(t))\). From Fatou’s lemma we have
$$ \int_{0}^{\tau} U(q)\, dt\leq \varliminf_{n\rightarrow\infty} \int_{0}^{\tau} U\bigl(q^{n}(t)\bigr)\, dt. $$
(2.6)
 
(ii)
If \(m(S)>0\), then \(\int_{0}^{\tau} U(q)\, dt=+\infty\) and \(f(q)=+\infty\).
 
Since \(q^{n}(t)\rightarrow q(t)\) uniformly we have \(\int_{0}^{\tau} U(q^{n}(t))\, dt\rightarrow+\infty\), and so
$$ \varliminf_{n\rightarrow\infty}f\bigl(q^{n}\bigr)\geq f(q). $$
(2.7)
 □
The proof of the next lemma is straightforward.
Lemma 2.3
f is coercive on \(H_{\tau}\times\cdots\times H_{\tau}\).
Lemma 2.4
(1)
\(f(q)\) attains its infimum on \(H_{\tau}\times\cdots\times H_{\tau}\), and the minimizer \(\tilde{q}^{\tau}(t)=(\tilde{q}^{\tau}_{1}(t),\ldots,\tilde {q}_{N}^{\tau}(t))\) is a generalized solution [16].
 
(2)
Furthermore, when \(\tau\rightarrow+\infty\) and \(\tilde{q}^{\tau}_{i}(t)\rightarrow\tilde{q}_{i}(t)\), \(\tilde{q}_{i}(t)\) has the following properties:
(i)
for any \(1\leq i\neq j\leq N\),
$$ \max_{0\leq t\leq+\infty}\bigl\vert \tilde{q}_{i}(t)-\tilde {q}_{j}(t)\bigr\vert =+\infty, $$
(2.8)
 
(ii)
$$ \min_{0\leq t\leq+\infty}\sum_{1}^{N}m_{i} \bigl\vert \dot{\tilde {q}}_{i}(t)\bigr\vert ^{2}=2E. $$
(2.9)
 
 
Definition 2.5
Concerning the velocities of the solution of (1.1),
(1)
if, for all i,
$$ \bigl\vert \dot{\tilde{q}}_{i}(t)\bigr\vert \rightarrow0,\quad t \rightarrow +\infty $$
(2.10)
we say \(\tilde{q}(t)\) is a parabolic solution;
(2)
if, for all i,
$$ \bigl\vert \dot{\tilde{q}}_{i}(t)\bigr\vert \rightarrow v_{i}>0, \quad t\rightarrow +\infty $$
(2.11)
we say \(\tilde{q}(t)\) is a hyperbolic solution;
otherwise, we call it a mixed type solution.
The proof of (1) in Lemma 2.4 is obvious using Lemmas 2.1-2.3.
In the following, we will give the proofs of (2.8) and (2.9) of Lemma 2.4.
Lemma 2.6
There exist constants \(c>0\) and \(0<\theta<1\) independent of τ such that
$$ f\bigl(\tilde{q}^{\tau}\bigr)\leq c\tau^{\theta}. $$
(2.12)
Proof
We choose a special orbit defined by
$$ q_{i}(t)=a_{i}t^{\beta},\quad t\in[0, \tau],a_{i}\in R^{k}, $$
(2.13)
where \((a_{1},a_{2},\ldots,a_{N})\) can be a given central configuration, \(\frac {1}{2}<\beta< \min\{1,\frac{1}{\alpha}\}\), then
$$\begin{aligned} f\bigl(q(t)\bigr) =&\frac{1}{2}\sum_{i=1}^{N} m_{i}|a_{i}|^{2} \int_{0}^{\tau} \beta ^{2}t^{2(\beta-1)}\, dt +\int_{0}^{\tau} \sum_{1\leq i< j\leq N}\frac{m_{i}m_{j}}{|a_{i}-a_{j}|^{\alpha}}t^{-\alpha \beta}\, dt \\ \leq&\frac{1}{2} \Biggl( \sum_{i=1}^{N}m_{i}|a_{i}|^{2} \Biggr)\frac {\beta^{2}}{2\beta-1}\tau^{2\beta-1} \\ &{}+ \biggl(\sum _{1\leq i< j\leq N}\frac{m_{i}m_{j}}{|a_{i}-a_{j}|^{\alpha }} \biggr)\frac{1}{1-\alpha\beta} \tau^{1-\alpha\beta} \\ \leq& c\tau^{\theta}, \end{aligned}$$
(2.14)
where
$$ \theta= \max(2\beta-1,1-\alpha\beta) $$
(2.15)
and
$$ c=\frac{1}{2}\sum_{1}^{N}m_{i}|a_{i}|^{2} \frac{\beta^{2}}{2\beta-1}+ \sum _{1\leq i< j\leq N}\frac{m_{i}m_{j}}{|a_{i}-a_{j}|^{\alpha}} \frac{1}{1-\alpha\beta}>0. $$
(2.16)
When \(0<\alpha<2\), we have \(\frac{1}{\alpha}>\frac{1}{2}\). We can choose \(\frac{1}{2}<\beta<\frac{1}{\alpha}\), then \(2\beta-1>0\), \(1-\alpha\beta>0\), and hence \(\theta>0\). When \(\beta<1\), \(2\beta-1<1\), then \(0<\theta<1\). □
Lemma 2.7
Let \(\tilde{q}^{n}(t)=(\tilde{q}^{n}_{1}(t),\ldots,\tilde{q}_{N}^{n}(t))\) be critical points corresponding to the minimizing critical values \(\min_{H_{n}}f(q)\), where \(H_{n}\) was defined in (2.2) when \(\tau =n\). Then the maximum distance between \(\tilde{q}^{n}_{i}\) and \(\tilde{q}^{n}_{j}\) on \(R^{+}\) satisfies
$$ \bigl\Vert \tilde{q}_{i}^{n}(t) - \tilde{q}_{j}^{n}(t) \bigr\Vert _{\infty}\rightarrow +\infty, \quad \textit{when } n\rightarrow+ \infty. $$
(2.17)
Proof
By the definition of \(f(\tilde{q}^{n})\) and Lemma 2.6, we have the inequalities
$$ cn^{\theta}\geq f\bigl(\tilde{q}^{n}\bigr)\geq\int _{0}^{n} \sum _{1\leq i< j\leq N} \frac{m_{i}m_{j}}{|\tilde{q}_{i}^{n}(t) - \tilde{q}_{j}^{n}(t)|^{\alpha}}\, dt. $$
(2.18)
Hence
$$ \sum _{1\leq i< j\leq N}\frac{m_{i}m_{j}}{\|\tilde{q}_{i}^{n}(t) - \tilde{q}_{j}^{n}(t)\|^{\alpha}_{\infty}}\leq c n^{\theta-1} \rightarrow0, $$
(2.19)
from which it follows that \(\forall1\leq i< j\leq N\), \(\|\tilde {q}_{i}^{n}(t) - \tilde{q}_{j}^{n}(t)\|_{\infty}\rightarrow +\infty\), \(n\rightarrow+\infty\). □
Lemma 2.8
\(\{\tilde{q}^{n}(t)\}\) is equi-continuous and uniformly bounded on any compact interval.
Proof
By the proof of Lemma 2.6, we can see \(\forall T>0\),
$$ \sum_{i=1}^{N}m_{i}\int _{0}^{T}\bigl\vert \dot{\tilde{q}}_{i}^{n}(t) \bigr\vert ^{2}\, dt \leq cT^{\theta}. $$
(2.20)
Then, for any \(0\leq s,r\leq T\), we have
$$\begin{aligned} \bigl|\tilde{q}_{i}^{n}(s)-\tilde{q}_{i}^{n}(r)\bigr| &\leq\int_{r}^{s}\bigl|\dot{\tilde{q}}_{i}^{n}(t)\bigr| \, dt \\ &\leq|s-r|^{1/2} \biggl(\int_{r}^{s} \bigl\vert \dot{\tilde{q}}_{i}^{n}(t)\bigr\vert ^{2}\, dt \biggr)^{1/2} \\ &\leq \biggl(\frac{cT^{\theta}}{m_{i}} \biggr)^{1/2}|s-r|^{1/2}. \end{aligned}$$
(2.21)
By \(q^{n}(0)=0\) and the above inequality, for \(0< s< T\), we have
$$ \bigl\vert \tilde{q}_{i}^{n}(s)\bigr\vert \leq \biggl( \frac{cT^{\theta}}{m_{i}} \biggr)^{1/2}|s|^{1/2}\leq \biggl( \frac{cT^{\theta}}{m_{i}} \biggr)^{1/2}T^{1/2}. $$
(2.22)
 □
Now we can prove Theorem 1.1.
Proof of Theorem 1.1
For any compact interval \([a,b]\) of \(R^{+}\), Marchal’s theorem [17] implies that \(\tilde{q}^{n}(t)\) has no collision on \((a,b)\), so, by the Ascoli-Arzelà theorem, we know \(\{\tilde {q}^{n}\}\) has a sub-sequence converging uniformly to a limit \(\tilde{q}(t)\) on any compact set \([c,d]\subset(a,b)\), and \(\tilde{q}(t)\in C^{2}(R^{+},R^{k})\) is a solution of (1.1). By the energy conservation law and (2.17), we have
$$ E=\sum_{i=1}^{N}\frac{1}{2}m_{i}| \dot{\tilde{q}}_{i}|^{2}- \sum _{1\leq i< j\leq N} \frac{m_{i}m_{j}}{|\tilde{q}_{i}-\tilde{q}_{j}|^{\alpha}}\geq0, $$
(2.23)
rewritten as
$$ \sum _{i=1}^{N}\frac{1}{2}m_{i}| \dot{\tilde{q}}_{i}|^{2}= \sum _{1\leq i< j\leq N} \frac{m_{i}m_{j}}{|\tilde{q}_{i}-\tilde{q}_{j}|^{\alpha}}+E. $$
(2.24)
Now we claim:
(i) for any \(1\leq i\neq j\leq N\),
$$ \max_{t\in R^{+}}\bigl\vert \tilde{q}_{i}(t)- \tilde{q}_{j}(t)\bigr\vert = +\infty $$
(2.25)
suppose there exist \(1\leq i_{0}< j_{0}\leq N\) and \(d>0\) such that
$$ \bigl\vert \tilde{q}_{i_{0}}(t)-\tilde{q}_{j_{0}}(t)\bigr\vert < d,\quad \forall t\in R^{+}. $$
(2.26)
By (2.24), there exist \(1\leq k_{0}\leq N\) and \(e>0\) such that
$$ \vert \dot{\tilde{q}}_{k_{0}}\vert >e, \quad \forall t\in R^{+}, $$
(2.27)
then we have
$$ ct^{\theta}\geq\frac{1}{2}\int_{0}^{t} \sum_{i=1}^{N} m_{i}\vert \dot{ \tilde{q}}_{i}\vert ^{2}\, dt\geq\frac{1}{2}\int _{0}^{t} m_{k_{0}}\vert \dot{ \tilde{q}}_{k_{0}}\vert ^{2}\, dt\geq\frac{1}{2}m_{k_{0}}e^{2}t. $$
(2.28)
This is a contradiction, since \(0<\theta<1\) and \(t\in R^{+}\).
Now by (2.24), we have:
$$ (\mathrm{ii})\quad \min_{t\in R^{+}}\sum_{i=1}^{N}m_{i} \bigl\vert \dot{\tilde{q}}_{i}(t)\bigr\vert ^{2}=2E\geq0. $$
(2.29)
 □

Acknowledgements

The authors sincerely thank the referees for their many valuable comments which help us improving the paper. This paper was partially supported by NSF of China (No. 11071175 and No. 11426181) and Fundamental Research Funds for the Central Universities (JBK 130401 and JBK 150931).
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

The research and writing of this manuscript was a collaborative effort from all the authors. All authors read and approved the final manuscript.
Literatur
1.
Zurück zum Zitat Rabinowitz, PH: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6(5), 331-346 (1989) MATHMathSciNet Rabinowitz, PH: Periodic and heteroclinic orbits for a periodic Hamiltonian system. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 6(5), 331-346 (1989) MATHMathSciNet
2.
Zurück zum Zitat Caldiroli, P, Jeanjean, L: Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems. J. Differ. Equ. 136(1), 76-114 (1997) MATHMathSciNetCrossRef Caldiroli, P, Jeanjean, L: Homoclinics and heteroclinics for a class of conservative singular Hamiltonian systems. J. Differ. Equ. 136(1), 76-114 (1997) MATHMathSciNetCrossRef
3.
Zurück zum Zitat Chen, C-N, Tzeng, S-Y: Periodic solutions and their connecting orbits of Hamiltonian systems. J. Differ. Equ. 177(1), 121-145 (2001) MATHMathSciNetCrossRef Chen, C-N, Tzeng, S-Y: Periodic solutions and their connecting orbits of Hamiltonian systems. J. Differ. Equ. 177(1), 121-145 (2001) MATHMathSciNetCrossRef
4.
Zurück zum Zitat Felmer, PL: Heteroclinic orbits for spatially periodic Hamiltonian systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8(5), 477-497 (1991) MATHMathSciNet Felmer, PL: Heteroclinic orbits for spatially periodic Hamiltonian systems. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 8(5), 477-497 (1991) MATHMathSciNet
5.
Zurück zum Zitat Mather, JN: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 4, 1349-1386 (1993) MathSciNetCrossRef Mather, JN: Variational construction of connecting orbits. Ann. Inst. Fourier (Grenoble) 4, 1349-1386 (1993) MathSciNetCrossRef
6.
Zurück zum Zitat Maxwell, TO: Heteroclinic chains for a reversible Hamiltonian system. Nonlinear Anal., Theory Methods Appl. 28, 871-887 (1997) MATHMathSciNetCrossRef Maxwell, TO: Heteroclinic chains for a reversible Hamiltonian system. Nonlinear Anal., Theory Methods Appl. 28, 871-887 (1997) MATHMathSciNetCrossRef
7.
Zurück zum Zitat Rabinowitz, PH: A variational approach to heteroclinic orbits for a class of Hamiltonian systems. In: Dautry, R (ed.) Frontiers in Pure and Applied Mathematics, pp. 267-278. North-Holland, Amsterdam (1991) Rabinowitz, PH: A variational approach to heteroclinic orbits for a class of Hamiltonian systems. In: Dautry, R (ed.) Frontiers in Pure and Applied Mathematics, pp. 267-278. North-Holland, Amsterdam (1991)
8.
Zurück zum Zitat Rabinowitz, PH: Heteroclinics for a reversible Hamiltonian system II. Differ. Integral Equ. 7(5-6), 1557-1572 (1994) MATHMathSciNet Rabinowitz, PH: Heteroclinics for a reversible Hamiltonian system II. Differ. Integral Equ. 7(5-6), 1557-1572 (1994) MATHMathSciNet
10.
11.
Zurück zum Zitat Rabinowitz, PH: A note on a class of reversible Hamiltonian systems. Adv. Nonlinear Stud. 9(4), 815-823 (2009) MATHMathSciNet Rabinowitz, PH: A note on a class of reversible Hamiltonian systems. Adv. Nonlinear Stud. 9(4), 815-823 (2009) MATHMathSciNet
12.
Zurück zum Zitat Rabinowitz, PH, Tanaka, K: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206(3), 473-499 (1991) MATHMathSciNetCrossRef Rabinowitz, PH, Tanaka, K: Some results on connecting orbits for a class of Hamiltonian systems. Math. Z. 206(3), 473-499 (1991) MATHMathSciNetCrossRef
13.
Zurück zum Zitat Souissi, C: Existence of parabolic orbits for the restricted three-body problem. An. Univ. Craiova, Ser. Mat. Inform. 31, 85-93 (2004) MATHMathSciNet Souissi, C: Existence of parabolic orbits for the restricted three-body problem. An. Univ. Craiova, Ser. Mat. Inform. 31, 85-93 (2004) MATHMathSciNet
14.
Zurück zum Zitat Maderna, E, Venturelli, A: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. Anal. 194, 283-313 (2009) MATHMathSciNetCrossRef Maderna, E, Venturelli, A: Globally minimizing parabolic motions in the Newtonian N-body problem. Arch. Ration. Mech. Anal. 194, 283-313 (2009) MATHMathSciNetCrossRef
15.
Zurück zum Zitat Zhang, S: Variational minimizing parabolic and hyperbolic orbits for the restricted 3-body problems. Sci. China Math. 55, 721-725 (2012) MATHMathSciNetCrossRef Zhang, S: Variational minimizing parabolic and hyperbolic orbits for the restricted 3-body problems. Sci. China Math. 55, 721-725 (2012) MATHMathSciNetCrossRef
16.
Zurück zum Zitat Tonelli, L: Sull’integrazione per parti. Atti Accad. Naz. Lincei (5) 18(2), 246-253 (1909) MATH Tonelli, L: Sull’integrazione per parti. Atti Accad. Naz. Lincei (5) 18(2), 246-253 (1909) MATH
Metadaten
Titel
Connecting orbits for Newtonian-like N-body problems
verfasst von
Kaili Xiang
Fengying Li
Xiang Yu
Publikationsdatum
01.12.2015
Verlag
Springer International Publishing
Erschienen in
Journal of Inequalities and Applications / Ausgabe 1/2015
Elektronische ISSN: 1029-242X
DOI
https://doi.org/10.1186/s13660-015-0715-3

Weitere Artikel der Ausgabe 1/2015

Journal of Inequalities and Applications 1/2015 Zur Ausgabe

Premium Partner