Skip to main content
Erschienen in: Journal of Computational Neuroscience 2/2016

01.10.2016

Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse “shotgun” neuronal activity sampling

verfasst von: Yuriy Mishchenko

Erschienen in: Journal of Computational Neuroscience | Ausgabe 2/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We investigate the properties of recently proposed “shotgun” sampling approach for the common inputs problem in the functional estimation of neuronal connectivity. We study the asymptotic correctness, the speed of convergence, and the data size requirements of such an approach. We show that the shotgun approach can be expected to allow the inference of complete connectivity matrix in large neuronal populations under some rather general conditions. However, we find that the posterior error of the shotgun connectivity estimator grows quickly with the size of unobserved neuronal populations, the square of average connectivity strength, and the square of observation sparseness. This implies that the shotgun connectivity estimation will require significantly larger amounts of neuronal activity data whenever the number of neurons in observed neuronal populations remains small. We present a numerical approach for solving the shotgun estimation problem in general settings and use it to demonstrate the shotgun connectivity inference in the examples of simulated synfire and weakly coupled cortical neuronal networks.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abeles, M. (1991). Corticonics: Cambridge University Press. Abeles, M. (1991). Corticonics: Cambridge University Press.
Zurück zum Zitat Bellet, L.R. (2006). Ergodic properties of Markov processes. In Open Quantum Systems II (pp. 1–39). Berlin: Springer. Bellet, L.R. (2006). Ergodic properties of Markov processes. In Open Quantum Systems II (pp. 1–39). Berlin: Springer.
Zurück zum Zitat Berk, K.N. (1973). A Central Limit Theorem for m-Dependent Random Variables with Unbounded m. Annals of Probability, 1(2), 352–354.CrossRef Berk, K.N. (1973). A Central Limit Theorem for m-Dependent Random Variables with Unbounded m. Annals of Probability, 1(2), 352–354.CrossRef
Zurück zum Zitat Boyd, S.P. (2004). Convex optimization: Cambridge University Press. Boyd, S.P. (2004). Convex optimization: Cambridge University Press.
Zurück zum Zitat Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability surveys, 2, 107–144.CrossRef Bradley, R.C. (2005). Basic properties of strong mixing conditions. A survey and some open questions. Probability surveys, 2, 107–144.CrossRef
Zurück zum Zitat Braitenberg, V., & Schuz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.CrossRef Braitenberg, V., & Schuz, A. (1998). Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer.CrossRef
Zurück zum Zitat Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cyberkinetics, 59, 189–200.CrossRef Brillinger, D. (1988). Maximum likelihood analysis of spike trains of interacting nerve cells. Biological Cyberkinetics, 59, 189–200.CrossRef
Zurück zum Zitat Brillinger, D. (1992). Nerve cell spike train data analysis: a progression of technique. Journal of the American Statistical Association, 87, 260–271.CrossRef Brillinger, D. (1992). Nerve cell spike train data analysis: a progression of technique. Journal of the American Statistical Association, 87, 260–271.CrossRef
Zurück zum Zitat Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.CrossRefPubMed Chornoboy, E., Schramm, L., & Karr, A. (1988). Maximum likelihood identification of neural point process systems. Biological Cybernetics, 59, 265–275.CrossRefPubMed
Zurück zum Zitat Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., & Tolias, A.S. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits, 7, 151.CrossRefPubMedPubMedCentral Cotton, R.J., Froudarakis, E., Storer, P., Saggau, P., & Tolias, A.S. (2013). Three-dimensional mapping of microcircuit correlation structure. Frontiers in Neural Circuits, 7, 151.CrossRefPubMedPubMedCentral
Zurück zum Zitat Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.CrossRefPubMed Cossart, R., Aronov, D., & Yuste, R. (2003). Attractor dynamics of network up states in the neocortex. Nature, 423, 283–288.CrossRefPubMed
Zurück zum Zitat Coulon-Prieur, C., & Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Stat. Probab. Lett., 27(1), 61–68.CrossRef Coulon-Prieur, C., & Doukhan, P. (2000). A triangular central limit theorem under a new weak dependence condition. Stat. Probab. Lett., 27(1), 61–68.CrossRef
Zurück zum Zitat Davidson, J. (2006). Asymptotic methods and functional central limit theorems. In T.C. Mills, & K. Patterson (Eds.), Palgrave Handbooks of Econometrics: Palgrave-Macmillan. Davidson, J. (2006). Asymptotic methods and functional central limit theorems. In T.C. Mills, & K. Patterson (Eds.), Palgrave Handbooks of Econometrics: Palgrave-Macmillan.
Zurück zum Zitat Dedecker, J., & Merlevede, F. (2002). Necessary and sufficient conditions for the conditional central limit theorem. Annals of Probability, 30, 1044–1081.CrossRef Dedecker, J., & Merlevede, F. (2002). Necessary and sufficient conditions for the conditional central limit theorem. Annals of Probability, 30, 1044–1081.CrossRef
Zurück zum Zitat Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38. Dempster, A., Laird, N., & Rubin, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39, 1–38.
Zurück zum Zitat Djurisic, M., Antic, S., Chen, W.R., & Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. Journal of Neuroscience, 24(30), 6703–6714.CrossRefPubMed Djurisic, M., Antic, S., Chen, W.R., & Zecevic, D. (2004). Voltage imaging from dendrites of mitral cells: EPSP attenuation and spike trigger zones. Journal of Neuroscience, 24(30), 6703–6714.CrossRefPubMed
Zurück zum Zitat Furedi, Z., & Komlos, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica, 1, 233.CrossRef Furedi, Z., & Komlos, J. (1981). The eigenvalues of random symmetric matrices. Combinatorica, 1, 233.CrossRef
Zurück zum Zitat Doukhan, P. (1994). Mixing: Properties and Examples: Springer. Lect. Notes. Stat. 85. Doukhan, P. (1994). Mixing: Properties and Examples: Springer. Lect. Notes. Stat. 85.
Zurück zum Zitat Godsill, S., Doucet, A., & West, M. (2001). Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters. Annals of the Institute of Statistical Mathematics, 53(1), 82–96.CrossRef Godsill, S., Doucet, A., & West, M. (2001). Maximum a Posteriori Sequence Estimation Using Monte Carlo Particle Filters. Annals of the Institute of Statistical Mathematics, 53(1), 82–96.CrossRef
Zurück zum Zitat Gomez-Urquijo, S.M., Reblet, C., Bueno-Lopez, J.L., & Gutierrez-Ibarluzea, I. (2000). Gabaergic neurons in the rabbit visual cortex: percentage, distribution and cortical projections. Brain Research, 862, 171–9.CrossRefPubMed Gomez-Urquijo, S.M., Reblet, C., Bueno-Lopez, J.L., & Gutierrez-Ibarluzea, I. (2000). Gabaergic neurons in the rabbit visual cortex: percentage, distribution and cortical projections. Brain Research, 862, 171–9.CrossRefPubMed
Zurück zum Zitat Grewe, B., Langer, D., Kasper, H., Kampa, B., & Helmchen, F. (2010). High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods, 399–405. Grewe, B., Langer, D., Kasper, H., Kampa, B., & Helmchen, F. (2010). High-speed in vivo calcium imaging reveals neuronal network activity with near-millisecond precision. Nature Methods, 399–405.
Zurück zum Zitat Guillotin-Plantard, N., & Prieur, C. (2010). Central limit theorem for sampled sums of dependent random variables. ESAIM: Probability and Statistics, 14, 299–314.CrossRef Guillotin-Plantard, N., & Prieur, C. (2010). Central limit theorem for sampled sums of dependent random variables. ESAIM: Probability and Statistics, 14, 299–314.CrossRef
Zurück zum Zitat Hairer, M. (2010). “Convergence of Markov processes.” Lecture notes. Hairer, M. (2010). “Convergence of Markov processes.” Lecture notes.
Zurück zum Zitat Hall, P., & Heyde, C.C. (2014). Martingale limit theory and its applications, (p. 320): Academic Press. Chapter 3. Hall, P., & Heyde, C.C. (2014). Martingale limit theory and its applications, (p. 320): Academic Press. Chapter 3.
Zurück zum Zitat Iyer, V., Hoogland, T.M., & Saggau, P. (2006). Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. Journal of Neurophysiology, 95(1), 535– 545.CrossRefPubMed Iyer, V., Hoogland, T.M., & Saggau, P. (2006). Fast functional imaging of single neurons using random-access multiphoton (RAMP) microscopy. Journal of Neurophysiology, 95(1), 535– 545.CrossRefPubMed
Zurück zum Zitat Johnson, O. (2001). An Information-Theoretic Central Limit Theorem for Finitely Susceptible FKG Systems. Theory Probab. Appl., 50(2), 214–224.CrossRef Johnson, O. (2001). An Information-Theoretic Central Limit Theorem for Finitely Susceptible FKG Systems. Theory Probab. Appl., 50(2), 214–224.CrossRef
Zurück zum Zitat Kantas, N., Doucet, A., Singh, S.S., & Maciejowski, J.H. (2009). An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In 15th IFAC Symposium on System Identification (SYSID), Saint-Malo, France, 2009 Jul 6, (Vol. 102 p. 117). Kantas, N., Doucet, A., Singh, S.S., & Maciejowski, J.H. (2009). An overview of sequential Monte Carlo methods for parameter estimation in general state-space models. In 15th IFAC Symposium on System Identification (SYSID), Saint-Malo, France, 2009 Jul 6, (Vol. 102 p. 117).
Zurück zum Zitat Klartag, B. (2007). A central limit theorem for convex sets. Inventiones Mathematicae, 168, 91–131.CrossRef Klartag, B. (2007). A central limit theorem for convex sets. Inventiones Mathematicae, 168, 91–131.CrossRef
Zurück zum Zitat Koch, C. (1999). Biophysics of Computation: Oxford University Press. Koch, C. (1999). Biophysics of Computation: Oxford University Press.
Zurück zum Zitat Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef Kulkarni, J., & Paninski, L. (2007). Common-input models for multiple neural spike-train data. Network: Computation in Neural Systems, 18, 375–407.CrossRef
Zurück zum Zitat Lefort, S., Tomm, C., Floyd Sarria, J. -C., & Petersen, C.C.H. (2009). The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex. Neuron, 61, 301–16.CrossRefPubMed Lefort, S., Tomm, C., Floyd Sarria, J. -C., & Petersen, C.C.H. (2009). The excitatory neuronal network of the c2 barrel column in mouse primary somatosensory cortex. Neuron, 61, 301–16.CrossRefPubMed
Zurück zum Zitat Lehmann, E.L. (1999). Elements of large-sample theory. New York: Springer. Chapter 2.8.CrossRef Lehmann, E.L. (1999). Elements of large-sample theory. New York: Springer. Chapter 2.8.CrossRef
Zurück zum Zitat Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Annals of Applied Statistics, 5, 1229– 61.CrossRef Mishchenko, Y., Vogelstein, J., & Paninski, L. (2011). A Bayesian approach for inferring neuronal connectivity from calcium fluorescent imaging data. Annals of Applied Statistics, 5, 1229– 61.CrossRef
Zurück zum Zitat Mishchenko, Y., & Paninski, L. (2011). Efficient methods for sampling spike trains in networks of coupled neurons. The Annals of Mathematical Statistics, 5(3), 1893–1919. Mishchenko, Y., & Paninski, L. (2011). Efficient methods for sampling spike trains in networks of coupled neurons. The Annals of Mathematical Statistics, 5(3), 1893–1919.
Zurück zum Zitat Newman, C. (1984). Asymptotic Independence and Limit Theorems for Positively and Negatively Dependent Random Variables. Lecture Notes-Monograph Series, 127–140. Newman, C. (1984). Asymptotic Independence and Limit Theorems for Positively and Negatively Dependent Random Variables. Lecture Notes-Monograph Series, 127–140.
Zurück zum Zitat Neumann, M.H. (2013). A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM: Probability and Statistics, 17, 120–134.CrossRef Neumann, M.H. (2013). A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM: Probability and Statistics, 17, 120–134.CrossRef
Zurück zum Zitat Nguyen, Q.T., Callamaras, N., Hsieh, C., & Parker, I. (2001). Construction of a two-photon microscope for video-rate Ca 2+ imaging. Cell Calcium, 30(6), 383–393.CrossRefPubMed Nguyen, Q.T., Callamaras, N., Hsieh, C., & Parker, I. (2001). Construction of a two-photon microscope for video-rate Ca 2+ imaging. Cell Calcium, 30(6), 383–393.CrossRefPubMed
Zurück zum Zitat Nykamp, D. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.CrossRefPubMed Nykamp, D. (2007). A mathematical framework for inferring connectivity in probabilistic neuronal networks. Mathematical Biosciences, 205, 204–251.CrossRefPubMed
Zurück zum Zitat Nykamp, D.Q. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal of Applied Mathematics, 65(6), 2005–2032.CrossRef Nykamp, D.Q. (2005). Revealing pairwise coupling in linear-nonlinear networks. SIAM Journal of Applied Mathematics, 65(6), 2005–2032.CrossRef
Zurück zum Zitat Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed Ohki, K., Chung, S., Ch’ng, Y., Kara, P., & Reid, C. (2005). Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature, 433, 597–603.CrossRefPubMed
Zurück zum Zitat Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef Paninski, L. (2004). Maximum likelihood estimation of cascade point-process neural encoding models. Network: Computation in Neural Systems, 15, 243–262.CrossRef
Zurück zum Zitat Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama, K., Vidne, M., Vogelstein, J., & Wu, W. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126.CrossRefPubMed Paninski, L., Ahmadian, Y., Ferreira, D., Koyama, S., Rahnama, K., Vidne, M., Vogelstein, J., & Wu, W. (2010). A new look at state-space models for neural data. Journal of Computational Neuroscience, 29, 107–126.CrossRefPubMed
Zurück zum Zitat Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. Journal of Neuroscience, 24, 8551–8561.CrossRefPubMed Paninski, L., Fellows, M., Shoham, S., Hatsopoulos, N., & Donoghue, J. (2004). Superlinear population encoding of dynamic hand trajectory in primary motor cortex. Journal of Neuroscience, 24, 8551–8561.CrossRefPubMed
Zurück zum Zitat Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. NIPS. Pillow, J., & Latham, P. (2007). Neural characterization in partially observed populations of spiking neurons. NIPS.
Zurück zum Zitat Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., & Simoncelli, E. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMedPubMedCentral Pillow, J., Shlens, J., Paninski, L., Sher, A., Litke, A., Chichilnisky, E., & Simoncelli, E. (2008). Spatiotemporal correlations and visual signaling in a complete neuronal population. Nature, 454, 995–999.CrossRefPubMedPubMedCentral
Zurück zum Zitat Plesser, H., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation, 12, 367–384.CrossRefPubMed Plesser, H., & Gerstner, W. (2000). Noise in integrate-and-fire neurons: From stochastic input to escape rates. Neural Computation, 12, 367–384.CrossRefPubMed
Zurück zum Zitat Rabiner, L.R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 72(2), 257–286.CrossRef Rabiner, L.R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 72(2), 257–286.CrossRef
Zurück zum Zitat Rasmussen, C.E., & Williams, C.K.I. (2006). Gaussian processes for Machinee Learning. MIT Press: Appendix B. Rasmussen, C.E., & Williams, C.K.I. (2006). Gaussian processes for Machinee Learning. MIT Press: Appendix B.
Zurück zum Zitat Reddy, G., Kelleher, K., Fink, R., & Saggau, P. (2008a). Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature neuroscience, 11, 713–720. Reddy, G., Kelleher, K., Fink, R., & Saggau, P. (2008a). Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature neuroscience, 11, 713–720.
Zurück zum Zitat Reddy, G., Kelleher, K., Fink, R., & Saggau, P. (2008b). Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neuroscience, 11(6), 713–720. Reddy, G., Kelleher, K., Fink, R., & Saggau, P. (2008b). Three-dimensional random access multiphoton microscopy for functional imaging of neuronal activity. Nature Neuroscience, 11(6), 713–720.
Zurück zum Zitat Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764.CrossRef Rigat, F., de Gunst, M., & van Pelt, J. (2006). Bayesian modelling and analysis of spatio-temporal neuronal networks. Bayesian Analysis, 1, 733–764.CrossRef
Zurück zum Zitat Salome, R., Kremer, Y., Dieudonne, S., Leger, J.-F., Krichevsky, O., Wyart, C., Chatenay, D., & Bourdieu, L. (2006). Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. Journal of Neuroscience Methods, 154(1–2), 161–174.CrossRefPubMed Salome, R., Kremer, Y., Dieudonne, S., Leger, J.-F., Krichevsky, O., Wyart, C., Chatenay, D., & Bourdieu, L. (2006). Ultrafast random-access scanning in two-photon microscopy using acousto-optic deflectors. Journal of Neuroscience Methods, 154(1–2), 161–174.CrossRefPubMed
Zurück zum Zitat Sayer, R.J., Friedlander, M.J., & Redman, S.J. (1990). The time course and amplitude of epsps evoked at synapses between pairs of ca3/ca1 neurons in the hippocampal slice. Journal of Neuroscience, 10, 826–36.PubMed Sayer, R.J., Friedlander, M.J., & Redman, S.J. (1990). The time course and amplitude of epsps evoked at synapses between pairs of ca3/ca1 neurons in the hippocampal slice. Journal of Neuroscience, 10, 826–36.PubMed
Zurück zum Zitat Soudry, D., Keshri, S., Stinson, P., Oh, M.-H., Iyengar, G., & Paninski, L. (2015). Efficient “Shotgun” inference of neural connectivity from highly sub-sampled activity data. PLOS Computational Biology, 11, e1004464.CrossRefPubMedPubMedCentral Soudry, D., Keshri, S., Stinson, P., Oh, M.-H., Iyengar, G., & Paninski, L. (2015). Efficient “Shotgun” inference of neural connectivity from highly sub-sampled activity data. PLOS Computational Biology, 11, e1004464.CrossRefPubMedPubMedCentral
Zurück zum Zitat Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Koerding, K. (2008a). Inferring network structure from spikes. Statistical Analysis of Neural Data meeting. Stevenson, I., Rebesco, J., Hatsopoulos, N., Haga, Z., Miller, L., & Koerding, K. (2008a). Inferring network structure from spikes. Statistical Analysis of Neural Data meeting.
Zurück zum Zitat Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., & Kording, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation, 17, 203–13.CrossRef Stevenson, I.H., Rebesco, J.M., Hatsopoulos, N.G., Haga, Z., Miller, L.E., & Kording, K.P. (2009). Bayesian inference of functional connectivity and network structure from spikes. IEEE Transactions on Neural Systems and Rehabilitation, 17, 203–13.CrossRef
Zurück zum Zitat Stevenson, I.H., Rebesco, J.M., Miller, L.E., & Kording, K.P. (2008b). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18, 582–8. Stevenson, I.H., Rebesco, J.M., Miller, L.E., & Kording, K.P. (2008b). Inferring functional connections between neurons. Current Opinion in Neurobiology, 18, 582–8.
Zurück zum Zitat Stosiek, C., Garaschuk, O., Holthoff, K., & Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of The National Academy Of Sciences Of The United States Of America, 100(12), 7319–7324.CrossRefPubMedPubMedCentral Stosiek, C., Garaschuk, O., Holthoff, K., & Konnerth, A. (2003). In vivo two-photon calcium imaging of neuronal networks. Proceedings of The National Academy Of Sciences Of The United States Of America, 100(12), 7319–7324.CrossRefPubMedPubMedCentral
Zurück zum Zitat Theis, L., Berens, P., Froudarakis, E., Reimer, J., Roman-Roson, M., Baden, T., Euler T., Tolias A.S., & Bethge, M. (2015). Supervised learning sets benchmark for robust spike detection from calcium imaging signals. bioRxiv, 010777. Theis, L., Berens, P., Froudarakis, E., Reimer, J., Roman-Roson, M., Baden, T., Euler T., Tolias A.S., & Bethge, M. (2015). Supervised learning sets benchmark for robust spike detection from calcium imaging signals. bioRxiv, 010777.
Zurück zum Zitat Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.CrossRefPubMed Truccolo, W., Eden, U., Fellows, M., Donoghue, J., & Brown, E. (2005). A point process framework for relating neural spiking activity to spiking history, neural ensemble and extrinsic covariate effects. Journal of Neurophysiology, 93, 1074–1089.CrossRefPubMed
Zurück zum Zitat Tsien, R.Y. (1989). Fluorescent probes of cell signaling. Annual Review of Neuroscience, 12, 227–253.CrossRefPubMed Tsien, R.Y. (1989). Fluorescent probes of cell signaling. Annual Review of Neuroscience, 12, 227–253.CrossRefPubMed
Zurück zum Zitat Turaga, S., Buesing, L., Packer, A., Dalgleish, H., Pettit, N., Hausser, M., & Macke, J. (2013). Inferring neural population dynamics from multiple partial recordings of the same neural circuit. NIPS. Turaga, S., Buesing, L., Packer, A., Dalgleish, H., Pettit, N., Hausser, M., & Macke, J. (2013). Inferring neural population dynamics from multiple partial recordings of the same neural circuit. NIPS.
Zurück zum Zitat Varadhan, S.R.S. (2001). Probability theory, volume 7 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences. Chapter 6. Varadhan, S.R.S. (2001). Probability theory, volume 7 of Courant Lecture Notes in Mathematics. New York: New York University Courant Institute of Mathematical Sciences. Chapter 6.
Zurück zum Zitat Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J., Kulkarni, J., Litke, A., Chilchilnisky, E., Simoncelli, E., & Paninski, L. (2012). The impact of common noise on the activity of a large network of retinal ganglion cells. Journal of Computational Neuroscience, 33, 97–121.CrossRefPubMed Vidne, M., Ahmadian, Y., Shlens, J., Pillow, J., Kulkarni, J., Litke, A., Chilchilnisky, E., Simoncelli, E., & Paninski, L. (2012). The impact of common noise on the activity of a large network of retinal ganglion cells. Journal of Computational Neuroscience, 33, 97–121.CrossRefPubMed
Zurück zum Zitat Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. COSYNE. Vidne, M., Kulkarni, J., Ahmadian, Y., Pillow, J., Shlens, J., Chichilnisky, E., Simoncelli, E., & Paninski, L. (2009). Inferring functional connectivity in an ensemble of retinal ganglion cells sharing a common input. COSYNE.
Zurück zum Zitat Vogelstein, J., Watson, B., Packer, A., Yuste, R., Jedynak, B., & Paninski, L. (2009). Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysical Journal, 97, 636.CrossRefPubMedPubMedCentral Vogelstein, J., Watson, B., Packer, A., Yuste, R., Jedynak, B., & Paninski, L. (2009). Spike inference from calcium imaging using sequential Monte Carlo methods. Biophysical Journal, 97, 636.CrossRefPubMedPubMedCentral
Zurück zum Zitat Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Babadi, B., Yuste, R., & Paninski, L. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104, 3691.CrossRefPubMedPubMedCentral Vogelstein, J.T., Packer, A.M., Machado, T.A., Sippy, T., Babadi, B., Yuste, R., & Paninski, L. (2010). Fast nonnegative deconvolution for spike train inference from population calcium imaging. Journal of Neurophysiology, 104, 3691.CrossRefPubMedPubMedCentral
Zurück zum Zitat Wallace, D., zum Alten Borgloh, S., Astori, S., Yang, Y., Bausen, M., K”ugler, S., Palmer, A., Tsien, R., Sprengel, R., Kerr, J., Denk, W., & Hasan, M. (2008). Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nature Methods, 5(9), 797–804.CrossRefPubMed Wallace, D., zum Alten Borgloh, S., Astori, S., Yang, Y., Bausen, M., K”ugler, S., Palmer, A., Tsien, R., Sprengel, R., Kerr, J., Denk, W., & Hasan, M. (2008). Single-spike detection in vitro and in vivo with a genetic Ca2+ sensor. Nature Methods, 5(9), 797–804.CrossRefPubMed
Zurück zum Zitat Yatsenko, D., Josi, K., Ecker, A.S., Froudarakis, E., Cotton, R.J., & Tolias, A.S. (2015). Improved Estimation and Interpretation of Correlations in Neural Circuits. PLoS Computational Biology, 11, e1004083.CrossRefPubMedPubMedCentral Yatsenko, D., Josi, K., Ecker, A.S., Froudarakis, E., Cotton, R.J., & Tolias, A.S. (2015). Improved Estimation and Interpretation of Correlations in Neural Circuits. PLoS Computational Biology, 11, e1004083.CrossRefPubMedPubMedCentral
Zurück zum Zitat Yuste, R., Konnerth, A., Masters, B., & et al. (2006). Imaging in Neuroscience and Development, A Laboratory Manual. Yuste, R., Konnerth, A., Masters, B., & et al. (2006). Imaging in Neuroscience and Development, A Laboratory Manual.
Metadaten
Titel
Consistent estimation of complete neuronal connectivity in large neuronal populations using sparse “shotgun” neuronal activity sampling
verfasst von
Yuriy Mishchenko
Publikationsdatum
01.10.2016
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 2/2016
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-016-0611-y

Weitere Artikel der Ausgabe 2/2016

Journal of Computational Neuroscience 2/2016 Zur Ausgabe

Premium Partner