Skip to main content

2019 | OriginalPaper | Buchkapitel

4. Constructing Michell Structures in Plane. Single Load Case

verfasst von : Tomasz Lewiński, Tomasz Sokół, Cezary Graczykowski

Erschienen in: Michell Structures

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter introduces the reader into the methods of construction of the planar frameworks being exact solutions to the Michell problems of optimum design. The layout of bars of these structures follows the trajectories of specific strain fields. The methods of their construction are given in Sects. 4.14.4. The simplest Michell structures are composed of straight and circular bars; they are described in Sect. 4.5. The next sections outline the construction of all available nowadays exact solutions of the Michell’s theory; some constructions are checked by the static method. The analytical results are compared with their numerical predictions found by the ground structure method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
  1. Carathéodory, C., & Schmidt, E. (1923). Über die Hencky-Prandtlschen Kurven. Zeitschrift für Angewandte Mathematik und Mechanik, 3, 468–475.View Article
  2. Chakrabarty, J. (2006). Theory of plasticity (3rd ed.). Oxford, UK: Butterworth-Heinemann.MATH
  3. Chan, A. S. L. (1960). The design of Michell optimum structures. Cranfield: The College of Aeronautics (Report 142).
  4. Chan, H. S. Y. (1963). Optimum Michell frameworks for three parallel forces. Cranfield: The College of Aeronautics (Report AERO 167).
  5. Chan, H. S. Y. (1964). Tabulation of some layouts and virtual displacement fields in the theory of Michell optimum structures. Cranfield: The College of Aeronautics (CoA Note Aero 161).
  6. Chan, H. S. Y. (1966). Minimum weight cantilever frames with specified reactions. University of Oxford, Department of Engineering Science Laboratory, Parks Road, Oxford, June 1966, No. 1, 010.66, p. 11 with 4 figures. (the paper cited for the first time in Sokół and Lewiński (2010)).
  7. Chan, H. S. Y. (1967). Half-plane slip-line fields and Michell structures. The Quarterly Journal of Mechanics and Applied Mathematics, 20, 453–469.View Article
  8. Chan, H. S. Y. (1975). Symmetric plane frameworks of least weight. In A. Sawczuk & Z. Mróz (Eds.), Optimization in structural design (pp. 313–326). Berlin: Springer.View Article
  9. Cox, H. L. (1965). The design of structures of least weight. Oxford: Pergamon Press.View Article
  10. Darwich, W., Gilbert, M., & Tyas, A. (2010). Optimum structure to carry a uniform load between pinned supports. Structural and Multidisciplinary Optimization, 42, 33–42.View Article
  11. Dewhurst, P., & Srithongchai, S. (2005). An investigaton of minimum-weight dual-material symmetrically loaded wheels and torsion arms. Journal of Applied Mechanics, Transactions ASME, 72, 196–202.View Article
  12. Dewhurst, P., Fang, N., & Srithongchai, S. (2009). A general boundary approach to the construction of Michell truss structures. Structural and Multidisciplinary Optimization, 39, 373–384.MathSciNetView Article
  13. Fung, Y. C. (1965). Foundations of solid mechanics. New Jersey: Prentice Hall.
  14. Geiringer, H. (1937). Fondements mathématiques de la theorie des corps plastiques isotropes (Vol. 86). Mémorial des sciences mathématiques. Paris: Gauthier-Villard.
  15. Graczykowski, C., & Lewiński, T. (2005). The lightest plane structures of a bounded stress level transmitting a point load to a circular support. Control and Cybernetics, 34(1), 227–253.MathSciNetMATH
  16. Graczykowski, C., & Lewiński, T. (2006a). Michell cantilevers constructed within trapezoidal domains - Part I: Geometry of Hencky nets. Structural and Multidisciplinary Optimization, 32(5), 347–368.MathSciNetView Article
  17. Graczykowski, C., & Lewiński, T. (2006b). Michell cantilevers constructed within trapezoidal domains - Part II: Virtual displacement fields. Structural and Multidisciplinary Optimization, 32(6), 463–471.MathSciNetView Article
  18. Graczykowski, C., & Lewiński, T. (2007a). Michell cantilevers constructed within trapezoidal domains - Part III: Force fields. Structural and Multidisciplinary Optimization, 33(1), 27–46.MathSciNetMATH
  19. Graczykowski, C., & Lewiński, T. (2007b). Michell cantilevers constructed within trapezoidal domains - Part IV: Complete exact solutions of selected optimal designs and their approximations by trusses of finite number of joints. Structural and Multidisciplinary Optimization, 33(2), 113–129.MathSciNetView Article
  20. Graczykowski, C., & Lewiński, T. (2010). Michell cantilevers constructed within a halfstrip. Tabulation of selected benchmark results. Structural and Multidisciplinary Optimization, 42(6), 869–877.View Article
  21. Green, A. E., & Zerna, W. (1968). Theoretical elasticity. Oxford: Clarendon Press.MATH
  22. Hemp, W. S. (1973). Optimum structures. Oxford: Clarendon Press.
  23. Hemp, W. S. (1975). Michell framework for uniform load between fixed supports. Engineering Optimization, 1, 61–69.View Article
  24. Hill, R. (1950). The mathematical theory of plasticity. Oxford: Clarendon Press.MATH
  25. Hu, T.-C., & Shield, T. T. (1961). Minimum weight design of discs. Zeitschrift für angewandte Mathematik und Physik, 12, 414–433.View Article
  26. Jacot, B. P., & Mueller, C. T. (2017). A strain tensor method for three-dimensional Michell structures. Structural and Multidisciplinary Optimization, 55, 1819–1829.MathSciNetView Article
  27. Lewiński, T. (2004). Michell structures formed on surfaces of revolution. Structural and Multidisciplinary Optimization, 28(1), 20–30.MathSciNetView Article
  28. Lewiński, T., & Rozvany, G. I. N. (2007). Exact analytical solutions for some popular benchmark problems in topology optimization II: Three-sided polygonal supports. Structural and Multidisciplinary Optimization, 33(4–5), 337–349.MathSciNetView Article
  29. Lewiński, T., & Rozvany, G. I. N. (2008a). Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains. Structural and Multidisciplinary Optimization, 35(2), 165–174.MathSciNetView Article
  30. Lewiński, T., & Rozvany, G. I. N. (2008b). Analytical benchmarks for topological optimization IV: Square-shaped line support. Structural and Multidisciplinary Optimization, 36(2), 143–158.MathSciNetView Article
  31. Lewiński, T., Zhou, M., & Rozvany, G. I. N. (1994a). Extended exact solutions for least-weight truss layouts - Part I: Cantilever with a horizontal axis of symmetry. International Journal of Mechanical Sciences, 36(5), 375–398.View Article
  32. Lewiński, T., Zhou, M., & Rozvany, G. I. N. (1994b). Extended exact solutions for least-weight truss layouts - Part II: Unsymmetric cantilevers. International Journal of Mechanical Sciences, 36(5), 399–419.View Article
  33. Lewiński, T., Rozvany, G. I. N., Sokół, T., & Bołbotowski, K. (2013). Exact analytical solutions for some popular benchmark problems in topology optimization III: L-shaped domains revisited. Structural and Multidisciplinary Optimization, 47, 937–942.MathSciNetView Article
  34. Melchers, R. E. (2005). On extending the range of Michell-like optimal topology structures. Structural and Multidisciplinary Optimization, 29, 85–92.View Article
  35. Mazurek, A. (2012). Geometrical aspects of optimum truss like structures for three-force problem. Structural and Multidisciplinary Optimization, 45, 21–32.MathSciNetView Article
  36. Mazurek, A., Baker, W., & Tort, C. (2011). Geometrical aspects of optimum truss like structures. Structural and Multidisciplinary Optimization, 43, 231–242.View Article
  37. Mazurek, A., Carrion, J., Beghini, A., & Baker, W. F. (2015). Minimum weight single span bridge obtained using graphic statics. In Proceedings of International Association for Shell and Spatial Structures (IASS) Symposium, 17–20 August 2015 (11 pp.). Amsterdam, The Netherlands: Future Visions.
  38. Mazurkiewicz, Z. E. (2004). Thin elastic shells. Linear theory. Warszawa (in Polish): Oficyna Wydawnicza PW.
  39. McConnel, R. E. (1974). Least-weight frameworks for loads across span. Journal of the Engineering Mechanics Division, 100(5), 885–901.
  40. Michell, A. G. M. (1904). The limits of economy of material in frame structures. Philosophical Magazine, 8(47), 589–597.MATH
  41. Novozhilov, V. V. (1970). Thin shell theory. Groningen: Walters-Nordhoff.MATH
  42. Pichugin, A. V., & Gilbert, M. (2011). Optimum structure to carry a uniform load between pinned supports: Exact analytical solution. Proceedings of the Royal Society A, 467(2128), 1101–1120.MathSciNetView Article
  43. Pichugin, A. V., Tyas, A., & Gilbert, M. (2011). Michell structure for a uniform load over multiple spans. In 9th World Congress on Structural and Multidisciplinary Optimization, CD ROM.
  44. Pichugin, A. V., Tyas, A., & Gilbert, M. (2012). On the optimality of Hemp’s arch with vertical hangers. Structural and Multidisciplinary Optimization, 46(1), 17–25.MathSciNetView Article
  45. Pichugin, A. V., Tyas, A., Gilbert, M., & He, L. (2015). Optimum structure for a uniform load over multiple spans. Structural and Multidisciplinary Optimization, 52, 1041–1050.MathSciNetView Article
  46. Prager, W. (1978a). Optimal layout of trusses of finite number of joints. Journal of the Mechanics and Physics of Solids, 26, 241–250.View Article
  47. Prager, W. (1978b). Nearly optimal design of trusses. Computers and Structures, 8, 451–454.View Article
  48. Prager, W. (1985). Optimal design of trusses. In M. Save & W. Prager (Eds.), Structural optimization (Vol. 1, pp. 121–151). Optimality criteria. New York and London: Plenum Press.View Article
  49. Rojas, C. O., Bravo, J. C., & Espi, M. V. (2015). Near-optimal solutions for two point loads between two supports. Structural and Multidisciplinary Optimization, 52, 663–675.MathSciNetView Article
  50. Rozvany, G. I. N. (2010). On symmetry and non-uniqueness in exact topology optimization. Structural and Multidisciplinary Optimization, 43, 297–317.MathSciNetView Article
  51. Rozvany, G. I. N., & Sokół, T. (2012). Exact truss topology optimization: Allowance for support costs and different permissible stresses in tension and compression - Extensions of a classical solution by Michell. Structural and Multidisciplinary Optimization, 45(3), 367–376.MathSciNetView Article
  52. Sokół, T. (2011). A 99 line code for discretized Michell truss optimization written in Mathematica. Structural and Multidisciplinary Optimization, 43(2), 181–190.View Article
  53. Sokół, T. (2014). Multi-load truss topology optimization using the adaptive ground structure approach. In T. Łodygowski, J. Rakowski, & P. Litewka (Eds.), Recent advances in computational mechanics (pp. 9–16). London: CRC Press.View Article
  54. Sokół, T. (2016). A new adaptive ground structure method for multi-load spatial Michell structures. In M. Kleiber, T. Burczyski, K. Wilde, J. Gorski, K. Winkelmann, & T. Smakosz (Eds.), Advances in Mechanics: Theoretical, Computational and Interdisciplinary Issues (pp. 525–528). London: CRC Press.View Article
  55. Sokół, T. (2017). On the numerical approximation of Michell trusses and the improved ground structure method. In Proceedings of 12th World Congress on Structural and Multidisciplinary Optimisation, 05–09 June 2017, Braunschweig, Germany.
  56. Sokół, T., & Lewiński, T. (2010). On the solution of the three forces problem and its application to optimal designing of a class of symmetric plane frameworks of least weight. Structural and Multidisciplinary Optimization, 42(6), 835–853.MathSciNetView Article
  57. Sokół, T., & Lewiński, T. (2011a). Optimal design of a class of symmetric plane frameworks of least weight. Structural and Multidisciplinary Optimization, 44(5), 729–734.MathSciNetView Article
  58. Sokół, T., & Lewiński, T. (2011b). On the three forces problem in truss topology optimization. Analytical and numerical solutions. In 9th World Congress on Structural and Multidisciplinary Optimization, Book of Abstracts and CD-ROM (p. 76).
  59. Sokół, T., & Rozvany, G. I. N. (2012). New analytical benchmarks for topology optimization and their implications. Part I: Bi-symmetric trusses with two point loads between supports. Structural and Multidisciplinary Optimization, 46(4), 477–486.MathSciNetView Article
  60. Sokół, T., & Lewiński, T. (2016a). Simply supported Michell trusses generated by a lateral point load. Structural and Multidisciplinary Optimization, 54(5), 1209–1224.MathSciNetView Article
  61. Sokół, T., & Lewiński, T. (2016b). Solution of the three forces problem in a case of two forces being mutually orthogonal. Engineering Transactions, 64(4), 485–491.
  62. Tyas, A., Pichugin, A.V., & Gilbert, M. (2011). Optimum structure to carry a uniform load between pinned supports: exact analytical solution. Proceedings of the Royal Society A: Mathematical, Physical & Engineering Sciences, 467(2128), 1101–1120.MathSciNetView Article
  63. Watson, G. (1966). Theory of Bessel functions. Cambridge: Cambridge University Press.MATH
Metadaten
Titel
Constructing Michell Structures in Plane. Single Load Case
verfasst von
Tomasz Lewiński
Tomasz Sokół
Cezary Graczykowski
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-319-95180-5_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.