Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Constructing the fractional series solutions for time-fractional K-dV equation using Laplace residual power series technique

verfasst von: Sanjeev Yadav, Ramesh Kumar Vats, Anjali Rao

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this article, we construct the series solution of the time-fractional Korteveg de Vries (K-dV) equation through a computational approach named as Laplace residual power series (LRPS) that combines the Laplace transform with the residual power series method (RPS). Time-fractional K-dV equation is used to modeled various real life phenomena like propagation of waves in elastic rods, dispersion effects in shallow coastal regions, anomalous diffusion observed in financial markets. The Caputo fractional derivative is used in the formulation of time-fractional K-dV equation. LRPS method is characterized by its rapid convergence and easy finding of the unknown coefficients using the concept of limit at infinity without any perturbation, discretization and linearization. To assess the effectiveness of proposed computational strategy, we perform a comparative analysis among the fractional residual power series method, the Adomian decomposition method, and the RPS method. Additionally, we examine the convergence of the fractional series solution across different \(\alpha \) values and assess the solution’s behavior as the time domain increased. The efficiency and authenticity of the LRPS method is shown by computing the absolute error, relative error and residual error. This work is supported by 2D and 3D graphical representations made in accordance with Maple and MATLAB.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Akram, S., Ahmad, J., Rehman, S.U., Younas, T.: Stability analysis and dispersive optical solitons of fractional Schrödinger–Hirota equation. Opt. Quant. Electron. 55(8), 664–684 (2023) Akram, S., Ahmad, J., Rehman, S.U., Younas, T.: Stability analysis and dispersive optical solitons of fractional Schrödinger–Hirota equation. Opt. Quant. Electron. 55(8), 664–684 (2023)
Zurück zum Zitat Aljahdaly, N.H., Naeem, M., Wyal, N.: Analysis of Fuzzy Kuramoto-Sivashinsky equations under a generalized Fuzzy fractional derivative operator. J. Funct. Spaces 2022, 1–11 (2022)MathSciNet Aljahdaly, N.H., Naeem, M., Wyal, N.: Analysis of Fuzzy Kuramoto-Sivashinsky equations under a generalized Fuzzy fractional derivative operator. J. Funct. Spaces 2022, 1–11 (2022)MathSciNet
Zurück zum Zitat Arafa, A.A., Hagag, A.M.S.: A new analytic solution of fractional coupled Ramani equation. Chin. J. Phys. 60, 388–406 (2019)MathSciNet Arafa, A.A., Hagag, A.M.S.: A new analytic solution of fractional coupled Ramani equation. Chin. J. Phys. 60, 388–406 (2019)MathSciNet
Zurück zum Zitat Arafa, A., Khalil, M., Sayed, A.: A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay. Complexity 2019, 1–13 (2019) Arafa, A., Khalil, M., Sayed, A.: A non-integer variable order mathematical model of human immunodeficiency virus and malaria coinfection with time delay. Complexity 2019, 1–13 (2019)
Zurück zum Zitat Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)ADS Caputo, M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. Int. 13(5), 529–539 (1967)ADS
Zurück zum Zitat Dhawan, K., Vats, R.K., Agarwal, R.P.: Qualitative analysis of coupled fractional differential equations involving Hilfer derivative. Analele ştiinţifice ale Universităţii" Ovidius Constanţa. Seria Matematică 30(1), 191–217 (2022)MathSciNet Dhawan, K., Vats, R.K., Agarwal, R.P.: Qualitative analysis of coupled fractional differential equations involving Hilfer derivative. Analele ştiinţifice ale Universităţii" Ovidius Constanţa. Seria Matematică 30(1), 191–217 (2022)MathSciNet
Zurück zum Zitat Duran, S., Durur, H., Yavuz, M., Yokus, A.: Discussion of numerical and analytical techniques for the emerging fractional order Murnaghan model in materials science. Opt. Quant. Electron. 55(6), 1–19 (2023) Duran, S., Durur, H., Yavuz, M., Yokus, A.: Discussion of numerical and analytical techniques for the emerging fractional order Murnaghan model in materials science. Opt. Quant. Electron. 55(6), 1–19 (2023)
Zurück zum Zitat El-Ajou, A.: Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 136(2), 229–251 (2021) El-Ajou, A.: Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach. Eur. Phys. J. Plus 136(2), 229–251 (2021)
Zurück zum Zitat El-Ajou, A., Arqub, O.A., Momani, S.: Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng. J. 4(3), 539–547 (2013) El-Ajou, A., Arqub, O.A., Momani, S.: Solving fractional two-point boundary value problems using continuous analytic method. Ain Shams Eng. J. 4(3), 539–547 (2013)
Zurück zum Zitat El-Saka, H., Arafa, A., Gouda, M.: Dynamical analysis of a fractional SIRS model on homogenous networks. Adv. Differ. Equ. 2019(1), 1–15 (2019)MathSciNet El-Saka, H., Arafa, A., Gouda, M.: Dynamical analysis of a fractional SIRS model on homogenous networks. Adv. Differ. Equ. 2019(1), 1–15 (2019)MathSciNet
Zurück zum Zitat Eriqat, T., El-Ajou, A., Moa’ath, N.O., Al-Zhour, Z., Momani, S.: A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 138, 109957–109968 (2020)MathSciNet Eriqat, T., El-Ajou, A., Moa’ath, N.O., Al-Zhour, Z., Momani, S.: A new attractive analytic approach for solutions of linear and nonlinear neutral fractional pantograph equations. Chaos Solitons Fractals 138, 109957–109968 (2020)MathSciNet
Zurück zum Zitat Fang, J., Nadeem, M., Habib, M., Akgül, A.: Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance. Symmetry 14(6), 1179–1193 (2022a)ADS Fang, J., Nadeem, M., Habib, M., Akgül, A.: Numerical investigation of nonlinear shock wave equations with fractional order in propagating disturbance. Symmetry 14(6), 1179–1193 (2022a)ADS
Zurück zum Zitat Fang, J., Nadeem, M., Habib, M., Karim, S., Wahash, H.A.: A new iterative method for the approximate solution of Klein–Gordon and Sine–Gordon equations. J. Funct. Spaces 2022, 1–9 (2022b)MathSciNet Fang, J., Nadeem, M., Habib, M., Karim, S., Wahash, H.A.: A new iterative method for the approximate solution of Klein–Gordon and Sine–Gordon equations. J. Funct. Spaces 2022, 1–9 (2022b)MathSciNet
Zurück zum Zitat Hanna, J.R., Rowland, J.H.: Fourier Series, Transforms, and Boundary Value Problems. Courier Corporation, North Chelmsford (2008) Hanna, J.R., Rowland, J.H.: Fourier Series, Transforms, and Boundary Value Problems. Courier Corporation, North Chelmsford (2008)
Zurück zum Zitat Iqbal, N., Khan, I., Shah, R., Nonlaopon, K.: The Fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator. AIMS Math. 8(1), 1770–1783 (2023)MathSciNet Iqbal, N., Khan, I., Shah, R., Nonlaopon, K.: The Fuzzy fractional acoustic waves model in terms of the Caputo-Fabrizio operator. AIMS Math. 8(1), 1770–1783 (2023)MathSciNet
Zurück zum Zitat Jaimini, B., Shrivastava, N., Srivastava, H.: The integral analogue of the Leibniz rule for fractional calculus and its applications involving functions of several variables. Comput. Math. Appl. 41(1–2), 149–155 (2001)MathSciNet Jaimini, B., Shrivastava, N., Srivastava, H.: The integral analogue of the Leibniz rule for fractional calculus and its applications involving functions of several variables. Comput. Math. Appl. 41(1–2), 149–155 (2001)MathSciNet
Zurück zum Zitat Jena, R.M., Chakraverty, S.: Residual power series method for solving time-fractional model of vibration equation of large membranes. J. Appl. Comput. Mech. 5(4), 603–615 (2019) Jena, R.M., Chakraverty, S.: Residual power series method for solving time-fractional model of vibration equation of large membranes. J. Appl. Comput. Mech. 5(4), 603–615 (2019)
Zurück zum Zitat Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16(1), 3–11 (2013)MathSciNet Kazem, S.: Exact solution of some linear fractional differential equations by Laplace transform. Int. J. Nonlinear Sci. 16(1), 3–11 (2013)MathSciNet
Zurück zum Zitat Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021) Khan, M.A., Ullah, S., Kumar, S.: A robust study on 2019-nCOV outbreaks through non-singular derivative. Eur. Phys. J. Plus 136, 1–20 (2021)
Zurück zum Zitat Khan, A., Liaqat, M.I., Alqudah, M.A., Abdeljawad, T.: Analysis of the conformable temporal-fractional Swift-Hohenberg equation using a novel computational technique. Fractals 31(4), 2340050–2340067 (2023)ADS Khan, A., Liaqat, M.I., Alqudah, M.A., Abdeljawad, T.: Analysis of the conformable temporal-fractional Swift-Hohenberg equation using a novel computational technique. Fractals 31(4), 2340050–2340067 (2023)ADS
Zurück zum Zitat Khirsariya, S., Snehal, R., Chauhan, J.: Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method. Results Nonlinear Anal. 5(3), 222–234 (2022) Khirsariya, S., Snehal, R., Chauhan, J.: Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method. Results Nonlinear Anal. 5(3), 222–234 (2022)
Zurück zum Zitat Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006) Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations. Elsevier, New York (2006)
Zurück zum Zitat Kumar, S., Chauhan, R., Momani, S., Hadid, S.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. (2020a) Kumar, S., Chauhan, R., Momani, S., Hadid, S.: Numerical investigations on COVID-19 model through singular and non-singular fractional operators. Numer. Methods Partial Differ. Equ. (2020a)
Zurück zum Zitat Kumar, S., Kumar, R., Cattani, C., Samet, B.: Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 135, 109811–109823 (2020b)MathSciNet Kumar, S., Kumar, R., Cattani, C., Samet, B.: Chaotic behaviour of fractional predator-prey dynamical system. Chaos Solitons Fractals 135, 109811–109823 (2020b)MathSciNet
Zurück zum Zitat Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ. 37(2), 1673–1692 (2021a)MathSciNet Kumar, S., Kumar, A., Samet, B., Dutta, H.: A study on fractional host-parasitoid population dynamical model to describe insect species. Numer. Methods Partial Differ. Equ. 37(2), 1673–1692 (2021a)MathSciNet
Zurück zum Zitat Kumar, S., Kumar, R., Osman, M., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021b)MathSciNet Kumar, S., Kumar, R., Osman, M., Samet, B.: A wavelet based numerical scheme for fractional order SEIR epidemic of measles by using Genocchi polynomials. Numer. Methods Partial Differ. Equ. 37(2), 1250–1268 (2021b)MathSciNet
Zurück zum Zitat Liaqat, M.I., Akgül, A.: A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. Chaos Solitons Fractals 162, 112487–112506 (2022a) Liaqat, M.I., Akgül, A.: A novel approach for solving linear and nonlinear time-fractional Schrödinger equations. Chaos Solitons Fractals 162, 112487–112506 (2022a)
Zurück zum Zitat Liaqat, M.I., Khan, A., Akgül, A., Ali, M.S.: A novel numerical technique for fractional ordinary differential equations with proportional delay. J. Funct. Spaces 2022, 1–25 (2022b)MathSciNet Liaqat, M.I., Khan, A., Akgül, A., Ali, M.S.: A novel numerical technique for fractional ordinary differential equations with proportional delay. J. Funct. Spaces 2022, 1–25 (2022b)MathSciNet
Zurück zum Zitat Liaqat, M.I., Etemad, S., Rezapour, S., Park, C.: A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Math. 7(9), 16917–16948 (2022)MathSciNet Liaqat, M.I., Etemad, S., Rezapour, S., Park, C.: A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Math. 7(9), 16917–16948 (2022)MathSciNet
Zurück zum Zitat Liaqat, M.I., Akgül, A., Abu-Zinadah, H.: Analytical investigation of some time-fractional black-scholes models by the Aboodh residual power series method. Mathematics 11(2), 276–295 (2023) Liaqat, M.I., Akgül, A., Abu-Zinadah, H.: Analytical investigation of some time-fractional black-scholes models by the Aboodh residual power series method. Mathematics 11(2), 276–295 (2023)
Zurück zum Zitat Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2022) Mainardi, F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. World Scientific, Singapore (2022)
Zurück zum Zitat Mehmet Şenol, A.A.: Approximate solution of time-fractional K-dV equations by residual power series method. J. Balıkesir Inst. Sci. Technol. 20(1), 430–439 (2018) Mehmet Şenol, A.A.: Approximate solution of time-fractional K-dV equations by residual power series method. J. Balıkesir Inst. Sci. Technol. 20(1), 430–439 (2018)
Zurück zum Zitat Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993) Miller, K.S., Ross, B.: An Introduction to the Fractional Calculus and Fractional Differential Equations. Wiley, New York (1993)
Zurück zum Zitat Moa’ath, N.O., El-Ajou, A., Al-Zhour, Z., Alkhasawneh, R., Alrabaiah, H.: Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives. Alex. Eng. J. 59(4), 2101–2114 (2020) Moa’ath, N.O., El-Ajou, A., Al-Zhour, Z., Alkhasawneh, R., Alrabaiah, H.: Series solutions for nonlinear time-fractional Schrödinger equations: comparisons between conformable and Caputo derivatives. Alex. Eng. J. 59(4), 2101–2114 (2020)
Zurück zum Zitat Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668–110681 (2021)MathSciNet Mohammadi, H., Kumar, S., Rezapour, S., Etemad, S.: A theoretical study of the Caputo-Fabrizio fractional modeling for hearing loss due to Mumps virus with optimal control. Chaos Solitons Fractals 144, 110668–110681 (2021)MathSciNet
Zurück zum Zitat Mohan, L., Prakash, A.: Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative. Opt. Quant. Electron. 56(1), 26–50 (2024)ADS Mohan, L., Prakash, A.: Stability and numerical analysis of fractional BBM-Burger equation and fractional diffusion-wave equation with Caputo derivative. Opt. Quant. Electron. 56(1), 26–50 (2024)ADS
Zurück zum Zitat Momani, S.: An explicit and numerical solutions of the fractional K-dV equation. Math. Comput. Simul. 70(2), 110–118 (2005) Momani, S.: An explicit and numerical solutions of the fractional K-dV equation. Math. Comput. Simul. 70(2), 110–118 (2005)
Zurück zum Zitat Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 28(4), 930–937 (2006)ADSMathSciNet Momani, S.: Non-perturbative analytical solutions of the space-and time-fractional Burgers equations. Chaos Solitons Fractals 28(4), 930–937 (2006)ADSMathSciNet
Zurück zum Zitat Momani, S., Odibat, Z., Alawneh, A.: Variational iteration method for solving the space-and time-fractional KdV equation. Numer. Methods Partial Differ. Equ. 24(1), 262–271 (2008)MathSciNet Momani, S., Odibat, Z., Alawneh, A.: Variational iteration method for solving the space-and time-fractional KdV equation. Numer. Methods Partial Differ. Equ. 24(1), 262–271 (2008)MathSciNet
Zurück zum Zitat Nadeem, M., He, J.-H.: The homotopy perturbation method for fractional differential equations: part 2, two-scale transform. Int. J. Numer. Methods Heat Fluid Flow 32(2), 559–567 (2022) Nadeem, M., He, J.-H.: The homotopy perturbation method for fractional differential equations: part 2, two-scale transform. Int. J. Numer. Methods Heat Fluid Flow 32(2), 559–567 (2022)
Zurück zum Zitat Nain, A.K., Vats, R.K., Verma, S.K.: Existence of solutions for non-linear Hadamard fractional differential equation with mixed fractional boundary conditions, dynamics of continuous, discrete and impulsive systems. Dyn. Contin. Discrete Impulsive Syst. 28, 193–206 (2021) Nain, A.K., Vats, R.K., Verma, S.K.: Existence of solutions for non-linear Hadamard fractional differential equation with mixed fractional boundary conditions, dynamics of continuous, discrete and impulsive systems. Dyn. Contin. Discrete Impulsive Syst. 28, 193–206 (2021)
Zurück zum Zitat Pandey, P., Kumar, S., Gómez-Aguilar, J.F., Baleanu, D.: An efficient technique for solving the space-time fractional reaction–diffusion equation in porous media. Chin. J. Phys. 68, 483–492 (2020)MathSciNet Pandey, P., Kumar, S., Gómez-Aguilar, J.F., Baleanu, D.: An efficient technique for solving the space-time fractional reaction–diffusion equation in porous media. Chin. J. Phys. 68, 483–492 (2020)MathSciNet
Zurück zum Zitat Rao, A., Vats, R.K., Yadav, S.: Analytical solution for time-fractional cold plasma equations via novel computational method. Int. J. Appl. Comput. Math. 10(1), 1–22 (2024)MathSciNet Rao, A., Vats, R.K., Yadav, S.: Analytical solution for time-fractional cold plasma equations via novel computational method. Int. J. Appl. Comput. Math. 10(1), 1–22 (2024)MathSciNet
Zurück zum Zitat Saad, K., AL-Shareef, E.H., Alomari, A., Baleanu, D., Gómez-Aguilar, J.: On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries–Burger’s equations using homotopy analysis transform method. Chin. J. Phys. 63, 149–162 (2020) Saad, K., AL-Shareef, E.H., Alomari, A., Baleanu, D., Gómez-Aguilar, J.: On exact solutions for time-fractional Korteweg-de Vries and Korteweg-de Vries–Burger’s equations using homotopy analysis transform method. Chin. J. Phys. 63, 149–162 (2020)
Zurück zum Zitat Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Yverdon (1993) Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach Science, Yverdon (1993)
Zurück zum Zitat Srivastava, H., Nain, A.K., Vats, R.K., Das, P.: A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam-Hyers stability. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 117(4), 160–179 (2023)MathSciNet Srivastava, H., Nain, A.K., Vats, R.K., Das, P.: A theoretical study of the fractional-order p-Laplacian nonlinear Hadamard type turbulent flow models having the Ulam-Hyers stability. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas 117(4), 160–179 (2023)MathSciNet
Zurück zum Zitat Syam, M.I.: Adomian decomposition method for approximating the solution of the Korteweg-deVries equation. Appl. Math. Comput. 162(3), 1465–1473 (2005)MathSciNet Syam, M.I.: Adomian decomposition method for approximating the solution of the Korteweg-deVries equation. Appl. Math. Comput. 162(3), 1465–1473 (2005)MathSciNet
Zurück zum Zitat Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)ADSMathSciNet Zhang, S., Zhang, H.-Q.: Fractional sub-equation method and its applications to nonlinear fractional PDEs. Phys. Lett. A 375(7), 1069–1073 (2011)ADSMathSciNet
Metadaten
Titel
Constructing the fractional series solutions for time-fractional K-dV equation using Laplace residual power series technique
verfasst von
Sanjeev Yadav
Ramesh Kumar Vats
Anjali Rao
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-024-06412-9

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt