Skip to main content
Erschienen in: The International Journal of Advanced Manufacturing Technology 5-6/2020

18.07.2020 | ORIGINAL ARTICLE

Construction of 6061-T6 aluminum alloy constitutive model based on hot bulging test and study on the non-isothermal hydroforming process

verfasst von: Xiao Jing Liu, Hong Ying Cao, Chao Li, Jin Qin, Ji Cheng Gao

Erschienen in: The International Journal of Advanced Manufacturing Technology | Ausgabe 5-6/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the high requirements of drawing equipment and process, it is relatively rare in the field of aluminum alloy sheet forming to introduce soft or sticky fluid medias as soft mold into the course of hydroforming with a non-isothermal condition that maintaining the temperature of high pressure liquid differs to the ones of molds. Consequently, in this paper, the material stress-strain curve in the temperature range is obtained by the bidirectional tensile hot bulging test which contains compress to sheet’s thickness, and can best meet the characteristics of non-isothermal hydroforming in mechanics compared with unidirectional hot stretching. Based on analysis of stress-strain of 6061-T6 aluminum alloy, its constitutive equation on the basis of an original model of processing hardening rate is established for finite elements numerical simulation, and a highly accurate setting range of forming temperature can be confirmed to provide guidance for practical manufacturing accordingly. Result of the study suggests, by applying the constitutive model mentioned above, simulation on non-isothermal hydroforming can reach a desirable effect; The non-isothermal condition set reasonably causes an enhance to the junction of straight wall and round corner, and a deduce of thickness reduction rate simultaneously, limit height increases as a result. Besides, the fluency of blank located in the flange improves to a great extent when its temperature is well set. The position of the 1 mm wall thickness constant line of the workpiece is further reduced, so that the forming quality of the workpiece is remarkably improved.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Dong GJ, Zhao CC, Zhao JP, Ya YY, Cao MY (2016) Research on technological parameters of pressure forming with hot granule medium on AA7075 sheet. J Cent South Univ 23(4):765–777CrossRef Dong GJ, Zhao CC, Zhao JP, Ya YY, Cao MY (2016) Research on technological parameters of pressure forming with hot granule medium on AA7075 sheet. J Cent South Univ 23(4):765–777CrossRef
2.
Zurück zum Zitat Sun ZY, Lang LH, Li K, Wang Y, Zhang QD (2016) Study on the mechanism and the suppression method of wrinkling in side wall using hydroforming of the fairing. Int J Adv Manuf Technol 90(9–12):2527–2535 Sun ZY, Lang LH, Li K, Wang Y, Zhang QD (2016) Study on the mechanism and the suppression method of wrinkling in side wall using hydroforming of the fairing. Int J Adv Manuf Technol 90(9–12):2527–2535
3.
Zurück zum Zitat Kong DS, Lang LH, Sun ZY, Ruan SW, Gu SS (2016) A technology to improve the formability of thin-walled aluminum alloy corrugated sheet components using hydroforming. Int J Adv Manuf Technol 84(1–4):737–748CrossRef Kong DS, Lang LH, Sun ZY, Ruan SW, Gu SS (2016) A technology to improve the formability of thin-walled aluminum alloy corrugated sheet components using hydroforming. Int J Adv Manuf Technol 84(1–4):737–748CrossRef
4.
Zurück zum Zitat Xiang N, Wang ZJ, Yi J, Song H (2017) Controlling of material flow in the quasi-bulk forming of thin-walled corrugated rings through optimization of contact pressure. Int J Adv Manuf Technol 91:2077–2088CrossRef Xiang N, Wang ZJ, Yi J, Song H (2017) Controlling of material flow in the quasi-bulk forming of thin-walled corrugated rings through optimization of contact pressure. Int J Adv Manuf Technol 91:2077–2088CrossRef
5.
Zurück zum Zitat Serhat K (2016) Nonisothermal warm deep drawing of SS304: FE modeling and experiments using servo press. Int J Adv Manuf Technol 83(5–8):1047–1056 Serhat K (2016) Nonisothermal warm deep drawing of SS304: FE modeling and experiments using servo press. Int J Adv Manuf Technol 83(5–8):1047–1056
6.
Zurück zum Zitat Cai GS, Wu CY, Lang LH, Gao ZP (2018) Effect of flow stress calculation on liquid-filled hot formability of aluminum alloy sheets. J Beijing Univ Aeronaut Astronaut 18:903–912 Cai GS, Wu CY, Lang LH, Gao ZP (2018) Effect of flow stress calculation on liquid-filled hot formability of aluminum alloy sheets. J Beijing Univ Aeronaut Astronaut 18:903–912
7.
Zurück zum Zitat Tai AY, Wang HY, Yan J (2014) Numerical simulation analysis of temperature-filled deep drawing of temperature. J Anhui Univ Technol 746:99–107 Tai AY, Wang HY, Yan J (2014) Numerical simulation analysis of temperature-filled deep drawing of temperature. J Anhui Univ Technol 746:99–107
8.
Zurück zum Zitat Shao TW, Lang LH, Zhao XN, Sheng SJ, Zhang Y (2017) Study on loading conditions and temperature field effects of liquid-filled forming of aluminum-magnesium alloy. Precis Form Eng 28:1–10 Shao TW, Lang LH, Zhao XN, Sheng SJ, Zhang Y (2017) Study on loading conditions and temperature field effects of liquid-filled forming of aluminum-magnesium alloy. Precis Form Eng 28:1–10
9.
Zurück zum Zitat Martins JMP, Alves JL, Neto DM, Oliveira MC, Menezes LF (2016) Numerical analysis of different heating systems for warm sheet metal forming. Int J Adv Manuf Technol 83(5–8):897–909CrossRef Martins JMP, Alves JL, Neto DM, Oliveira MC, Menezes LF (2016) Numerical analysis of different heating systems for warm sheet metal forming. Int J Adv Manuf Technol 83(5–8):897–909CrossRef
10.
Zurück zum Zitat Cai GS, Lang LH, Liu KN, Sergei A, Zhang DX, Yang XY, Guo C (2015) Research on the effect of flow stress calculation on aluminum alloy sheet deformation behavior based on warm bulging test. Met Mater Int 21(2):365–373CrossRef Cai GS, Lang LH, Liu KN, Sergei A, Zhang DX, Yang XY, Guo C (2015) Research on the effect of flow stress calculation on aluminum alloy sheet deformation behavior based on warm bulging test. Met Mater Int 21(2):365–373CrossRef
11.
Zurück zum Zitat Sun ZY, Zhuang H (2019) Experimental study on forming limit diagram obtained by bulging uniformly in thickness direction. Int J Adv Manuf Technol 104(1–4):967–977CrossRef Sun ZY, Zhuang H (2019) Experimental study on forming limit diagram obtained by bulging uniformly in thickness direction. Int J Adv Manuf Technol 104(1–4):967–977CrossRef
12.
Zurück zum Zitat Mohamed K, Moufida M, Chedly B (2015) Development of bulge test for aluminum sheet metal. Des Model Mech Syst II:331–338 Mohamed K, Moufida M, Chedly B (2015) Development of bulge test for aluminum sheet metal. Des Model Mech Syst II:331–338
13.
Zurück zum Zitat Choudhary BK, Rao Palaparti DP, Isaac Samuel E (2013) Analysis of tensile stress-strain and work-hardening behavior in 9Cr-1Mo ferritic steel. Metall Mater Trans A 44(1):212–223CrossRef Choudhary BK, Rao Palaparti DP, Isaac Samuel E (2013) Analysis of tensile stress-strain and work-hardening behavior in 9Cr-1Mo ferritic steel. Metall Mater Trans A 44(1):212–223CrossRef
14.
Zurück zum Zitat Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415CrossRef Peirs J, Verleysen P, Van Paepegem W, Degrieck J (2011) Determining the stress–strain behaviour at large strains from high strain rate tensile and shear experiments. Int J Impact Eng 38(5):406–415CrossRef
15.
Zurück zum Zitat Ryan ND, McQueen HJ (1989) Dynamic recovery, strain hardening and flow stress in hot working of 316 steel. Czechoslovak J Phys B 39(4):458–465CrossRef Ryan ND, McQueen HJ (1989) Dynamic recovery, strain hardening and flow stress in hot working of 316 steel. Czechoslovak J Phys B 39(4):458–465CrossRef
16.
Zurück zum Zitat Zhou ZM, Sun YR (2004) Evolution of dislocation patterns and its application in prediction of flow stress. Chin Sci Bull 49(14):1527–1531CrossRef Zhou ZM, Sun YR (2004) Evolution of dislocation patterns and its application in prediction of flow stress. Chin Sci Bull 49(14):1527–1531CrossRef
17.
Zurück zum Zitat Zhou YX, Xia YM (1997) The impact of the dual-phase steel tensile deformation behavior of the constitutive equation. Mater Sci Technol 15:72–76 Zhou YX, Xia YM (1997) The impact of the dual-phase steel tensile deformation behavior of the constitutive equation. Mater Sci Technol 15:72–76
18.
Zurück zum Zitat Wang J, Chen J, Zhang B (2005) Flow stress model of thermoplastic deformation of 35GrMo structural steel. J Shanghai Jiaotong Univ 39:1784–1786 Wang J, Chen J, Zhang B (2005) Flow stress model of thermoplastic deformation of 35GrMo structural steel. J Shanghai Jiaotong Univ 39:1784–1786
19.
Zurück zum Zitat Zhou M, Clode MP (1998) Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation. Mech Mater 27:63–76CrossRef Zhou M, Clode MP (1998) Constitutive equations for modelling flow softening due to dynamic recovery and heat generation during plastic deformation. Mech Mater 27:63–76CrossRef
20.
Zurück zum Zitat Zheng LH, Wang ZJ, Liu ZG, Song H (2018) Formability and performance of 6K21-T4 aluminum automobile panels in VPF under variable blank holder force. Int J Adv Manuf Technol 94:571–584CrossRef Zheng LH, Wang ZJ, Liu ZG, Song H (2018) Formability and performance of 6K21-T4 aluminum automobile panels in VPF under variable blank holder force. Int J Adv Manuf Technol 94:571–584CrossRef
Metadaten
Titel
Construction of 6061-T6 aluminum alloy constitutive model based on hot bulging test and study on the non-isothermal hydroforming process
verfasst von
Xiao Jing Liu
Hong Ying Cao
Chao Li
Jin Qin
Ji Cheng Gao
Publikationsdatum
18.07.2020
Verlag
Springer London
Erschienen in
The International Journal of Advanced Manufacturing Technology / Ausgabe 5-6/2020
Print ISSN: 0268-3768
Elektronische ISSN: 1433-3015
DOI
https://doi.org/10.1007/s00170-020-05776-y

Weitere Artikel der Ausgabe 5-6/2020

The International Journal of Advanced Manufacturing Technology 5-6/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.