Skip to main content
Erschienen in: Designs, Codes and Cryptography 7/2021

05.05.2021

Construction of lightweight involutory MDS matrices

verfasst von: Yumeng Yang, Xiangyong Zeng, Shi Wang

Erschienen in: Designs, Codes and Cryptography | Ausgabe 7/2021

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose an efficient method to find lightweight involutory MDS matrices. To obtain involutory matrices, we give a necessary and sufficient condition for judging the involutory MDS property and propose a search method. For the \(n\times n\) involutory MDS matrices over \({\mathbb {F}}_{2^m}\), the amount of computation is reduced from \(2^{mn^2}\) to \(2^{(mn^2)/2}\). Especially, we can exhaustively search for involutory MDS matrices when \(n=4\), and for larger n, we add additional restrictions to reduce the search range. As for finding lightweight ones, we use the permutation-equivalent class to extend the input such that the efficiency of the heuristic designed by Xiang et al. can be improved. Applying our method, we obtain a class of \(16\times 16\) binary MDS matrices with branch number 5, which can be implemented with only 35 XOR gates. The results even reach the same implementation cost as the lightest non-involutory MDS matrix up to now. Concerning lightweight binary matrices with order 32, it is hard to obtain optimal results through search. Hence, we construct \(32\times 32\) matrices with the lightweight \(16 \times 16\) matrices that we found. In this way, we obtain two classes of \( 4 \times 4 \) involutory MDS matrices whose entries are \( 8 \times 8 \) binary matrices with 70 XOR gates while the previous lightest matrices with the same size cost 78 XOR gates. Moreover, we also generalize our search method to general cases and it is provable that the approach is feasible for MDS matrices of order 6 and 8 to achieve efficient search.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Altawy R., Youssef A.M.: Preimage analysis of the Maelstrom-0 hash function. In: Security, Privacy, and Applied Cryptography Engineering, pp. 113–126. Springer (2015). Altawy R., Youssef A.M.: Preimage analysis of the Maelstrom-0 hash function. In: Security, Privacy, and Applied Cryptography Engineering, pp. 113–126. Springer (2015).
2.
Zurück zum Zitat Banik S., Funabiki Y., Isobe T.: More results on shortest linear programs. In: IWSEC 2019, pp. 109–128. Springer (2019). Banik S., Funabiki Y., Isobe T.: More results on shortest linear programs. In: IWSEC 2019, pp. 109–128. Springer (2019).
3.
Zurück zum Zitat Barreto P.S.L.M., Nikov V., Nikova S., Rijmen V., Tischhauser E.: Whirlwind: a new cryptographic hash function. Des. Codes Cryptogr. 56(2), 141–162 (2010).MathSciNetCrossRef Barreto P.S.L.M., Nikov V., Nikova S., Rijmen V., Tischhauser E.: Whirlwind: a new cryptographic hash function. Des. Codes Cryptogr. 56(2), 141–162 (2010).MathSciNetCrossRef
4.
Zurück zum Zitat Beierle C., Kranz T., Leander G.: Lightweight multiplication in \(\rm GF(2^n)\) with applications to MDS matrices. In: CRYPTO 2016, pp. 625–653. Springer (2016). Beierle C., Kranz T., Leander G.: Lightweight multiplication in \(\rm GF(2^n)\) with applications to MDS matrices. In: CRYPTO 2016, pp. 625–653. Springer (2016).
6.
Zurück zum Zitat Boyar J., Peralta R.: A new combinational logic minimization technique with applications to cryptology. Exp. Algorithms 2010, 178–189 (2010).CrossRef Boyar J., Peralta R.: A new combinational logic minimization technique with applications to cryptology. Exp. Algorithms 2010, 178–189 (2010).CrossRef
7.
Zurück zum Zitat Boyar J., Matthews P., Peralta R.: Logic minimization techniques with applications to cryptology. J. Cryptol. 26(2), 280–312 (2013).MathSciNetCrossRef Boyar J., Matthews P., Peralta R.: Logic minimization techniques with applications to cryptology. J. Cryptol. 26(2), 280–312 (2013).MathSciNetCrossRef
8.
Zurück zum Zitat Choy J., Yap H., Khoo K., Guo J., Peyrin T., Poschmann A., Tan C.H.: SPN-Hash: improving the provable resistance against differential collision attacks. In: AFRICACRYPT 2012, pp. 270–286. Springer (2012). Choy J., Yap H., Khoo K., Guo J., Peyrin T., Poschmann A., Tan C.H.: SPN-Hash: improving the provable resistance against differential collision attacks. In: AFRICACRYPT 2012, pp. 270–286. Springer (2012).
9.
Zurück zum Zitat Cui T., Jin C., Kong Z.: On compact Cauchy matrices for substitution-permutation networks. J. Comput. 7(10), 2098–2102 (2015).MathSciNetMATH Cui T., Jin C., Kong Z.: On compact Cauchy matrices for substitution-permutation networks. J. Comput. 7(10), 2098–2102 (2015).MathSciNetMATH
10.
Zurück zum Zitat Daemen J., Rijmen V.: The Design of Rijndael: AES—The Advanced Encryption Standard. Springer, New York (2002).CrossRef Daemen J., Rijmen V.: The Design of Rijndael: AES—The Advanced Encryption Standard. Springer, New York (2002).CrossRef
11.
Zurück zum Zitat Duval S., Leurent G.: MDS matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2018(2), 48–78 (2018).CrossRef Duval S., Leurent G.: MDS matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2018(2), 48–78 (2018).CrossRef
12.
Zurück zum Zitat Guo J., Peyrin T., Poschmann A.: The PHOTON family of lightweight hash functions. In: CRYPTO 2011, pp. 222–239. Springer (2011). Guo J., Peyrin T., Poschmann A.: The PHOTON family of lightweight hash functions. In: CRYPTO 2011, pp. 222–239. Springer (2011).
13.
Zurück zum Zitat Guo Z., Liu R., Gao S., Wu W., Lin D.: Direct construction of optimal rotational-XOR diffusion primitives. IACR Trans. Symmetric Cryptol. 2017(4), 169–187 (2017).CrossRef Guo Z., Liu R., Gao S., Wu W., Lin D.: Direct construction of optimal rotational-XOR diffusion primitives. IACR Trans. Symmetric Cryptol. 2017(4), 169–187 (2017).CrossRef
14.
Zurück zum Zitat Gupta K.C., Ray I.G.: On constructions of involutory MDS matrices. In: AFRICA-CRYPT 2013, pp. 43–60. Springer (2013). Gupta K.C., Ray I.G.: On constructions of involutory MDS matrices. In: AFRICA-CRYPT 2013, pp. 43–60. Springer (2013).
15.
Zurück zum Zitat Gupta K.C., Ray I.G.: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015).MathSciNetCrossRef Gupta K.C., Ray I.G.: Cryptographically significant MDS matrices based on circulant and circulant-like matrices for lightweight applications. Cryptogr. Commun. 7(2), 257–287 (2015).MathSciNetCrossRef
16.
Zurück zum Zitat Güzel G.G., Sakallı M.T., Akleylek S., Rijmen V., Çngellenmiş Y.: A new matrix form to generate all \(3\times 3\) involutory MDS matrices over \({\mathbb{F}}_{2^m}\). Inf. Process. Lett. 147, 61–68 (2019).CrossRef Güzel G.G., Sakallı M.T., Akleylek S., Rijmen V., Çngellenmiş Y.: A new matrix form to generate all \(3\times 3\) involutory MDS matrices over \({\mathbb{F}}_{2^m}\). Inf. Process. Lett. 147, 61–68 (2019).CrossRef
17.
Zurück zum Zitat Jean J., Peyrin T., Sim S.M., Tourteaux J.: Optimizing implementations of lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017).CrossRef Jean J., Peyrin T., Sim S.M., Tourteaux J.: Optimizing implementations of lightweight building blocks. IACR Trans. Symmetric Cryptol. 2017(4), 130–168 (2017).CrossRef
18.
Zurück zum Zitat Khoo K., Peyrin T., Poschmann A., Yap H.: FOAM: searching for hardware optimal SPN structures and components with a fair comparison. Cryptogr. Hardware Embed. Syst. 2014, 433–456 (2014).MATH Khoo K., Peyrin T., Poschmann A., Yap H.: FOAM: searching for hardware optimal SPN structures and components with a fair comparison. Cryptogr. Hardware Embed. Syst. 2014, 433–456 (2014).MATH
19.
Zurück zum Zitat Kölsch L.: Xor-counts and lightweight multiplication with fixed elements in binary finite fields. In: EUROCRYPT 2019, pp. 285–312. Springer (2019). Kölsch L.: Xor-counts and lightweight multiplication with fixed elements in binary finite fields. In: EUROCRYPT 2019, pp. 285–312. Springer (2019).
20.
Zurück zum Zitat Kranz T., Leander G., Stoffelen K., Wiemer F.: Shorter linear straight-line programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211 (2017).CrossRef Kranz T., Leander G., Stoffelen K., Wiemer F.: Shorter linear straight-line programs for MDS matrices. IACR Trans. Symmetric Cryptol. 2017(4), 188–211 (2017).CrossRef
21.
Zurück zum Zitat Li Y., Wang M.: On the construction of lightweight circulant involutory MDS matrices. IACR Trans. Symmetric Cryptol. 2016(1), 121–139 (2016).MATH Li Y., Wang M.: On the construction of lightweight circulant involutory MDS matrices. IACR Trans. Symmetric Cryptol. 2016(1), 121–139 (2016).MATH
22.
Zurück zum Zitat Li Q., Wu B., Liu Z.: Direct constructions of (involutory) MDS matrices from block Vandermonde and Cauchy-like matrices. In: WAIFI 2018, pp. 275–290. Springer (2018). Li Q., Wu B., Liu Z.: Direct constructions of (involutory) MDS matrices from block Vandermonde and Cauchy-like matrices. In: WAIFI 2018, pp. 275–290. Springer (2018).
23.
Zurück zum Zitat Li S., Sun S., Li C., Wei Z., Hu L.: Constructing low-latency involutory MDS matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2019(1), 84–117 (2019).CrossRef Li S., Sun S., Li C., Wei Z., Hu L.: Constructing low-latency involutory MDS matrices with lightweight circuits. IACR Trans. Symmetric Cryptol. 2019(1), 84–117 (2019).CrossRef
24.
Zurück zum Zitat Liu M., Sim S.M.: Lightweight MDS generalized circulant matrices. IACR Trans. Symmetric Cryptol. 2016(1), 101–120 (2016).MATH Liu M., Sim S.M.: Lightweight MDS generalized circulant matrices. IACR Trans. Symmetric Cryptol. 2016(1), 101–120 (2016).MATH
25.
Zurück zum Zitat Maximov A., Ekdahl P.: New circuit minimization techniques for smaller and faster AES Sboxes. IACR Trans. Cryptogr. Hardware Embed. Syst. 2019(4), 91–125 (2019).CrossRef Maximov A., Ekdahl P.: New circuit minimization techniques for smaller and faster AES Sboxes. IACR Trans. Cryptogr. Hardware Embed. Syst. 2019(4), 91–125 (2019).CrossRef
26.
Zurück zum Zitat Paar, C.: Optimized arithmetic for reed-solomon encoders. In: Proceedings of IEEE International Symposium on Information Theory 1997, p. 250 (1997). Paar, C.: Optimized arithmetic for reed-solomon encoders. In: Proceedings of IEEE International Symposium on Information Theory 1997, p. 250 (1997).
27.
Zurück zum Zitat Reyhani-Masoleh A., Taha M.M.I., Ashmawy D.: Smashing the implementation records of AES S-Box. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(2), 298–336 (2018).CrossRef Reyhani-Masoleh A., Taha M.M.I., Ashmawy D.: Smashing the implementation records of AES S-Box. IACR Trans. Cryptogr. Hardware Embed. Syst. 2018(2), 298–336 (2018).CrossRef
28.
Zurück zum Zitat Sajadieh M.: On construction of involutory MDS matrices from Vandermonde matrices in GF(2, q). Des. Codes Cryptogr. 64(3), 287–308 (2012).MathSciNetCrossRef Sajadieh M.: On construction of involutory MDS matrices from Vandermonde matrices in GF(2, q). Des. Codes Cryptogr. 64(3), 287–308 (2012).MathSciNetCrossRef
29.
Zurück zum Zitat Sarkar S., Syed H.: Lightweight diffusion layer: importance of Toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016).CrossRef Sarkar S., Syed H.: Lightweight diffusion layer: importance of Toeplitz matrices. IACR Trans. Symmetric Cryptol. 2016(1), 95–113 (2016).CrossRef
30.
31.
Zurück zum Zitat Sim S.M., Khoo K., Oggier F.E., Peyrin T.: Lightweight MDS involution matrices. In: Fast Software Encryption 2015, pp. 471–493. Springer (2015). Sim S.M., Khoo K., Oggier F.E., Peyrin T.: Lightweight MDS involution matrices. In: Fast Software Encryption 2015, pp. 471–493. Springer (2015).
32.
Zurück zum Zitat Tan Q., Peyrin T.: Improved heuristics for short linear programs. IACR Trans. Cryptogr. Hardware Embed. Syst. 2020(1), 203–230 (2020). Tan Q., Peyrin T.: Improved heuristics for short linear programs. IACR Trans. Cryptogr. Hardware Embed. Syst. 2020(1), 203–230 (2020).
33.
Zurück zum Zitat Visconti A., Schiavo C.V., Peralta R.: Improved upper bounds for the excepted circuit complexity of dense systems of linear equations over GF(2). Inf. Process. Lett. 137, 1–5 (2018).CrossRef Visconti A., Schiavo C.V., Peralta R.: Improved upper bounds for the excepted circuit complexity of dense systems of linear equations over GF(2). Inf. Process. Lett. 137, 1–5 (2018).CrossRef
34.
Zurück zum Zitat Watanabe D., Furuya S., Yoshida H., Takaragi K., Preneel B.: A new keystream generator MUGI. In: Fast Software Encryption 2002, pp. 179–184. Springer (2002). Watanabe D., Furuya S., Yoshida H., Takaragi K., Preneel B.: A new keystream generator MUGI. In: Fast Software Encryption 2002, pp. 179–184. Springer (2002).
35.
Zurück zum Zitat Xiang Z., Zeng X., Lin D., Bao Z., Zhang S.: Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145 (2020).CrossRef Xiang Z., Zeng X., Lin D., Bao Z., Zhang S.: Optimizing implementations of linear layers. IACR Trans. Symmetric Cryptol. 2020(2), 120–145 (2020).CrossRef
36.
Zurück zum Zitat Zhou L., Wang L., Sun Y.: On efficient constructions of lightweight MDS matrices. IACR Trans. Symmetric Cryptol. 2018(1), 180–200 (2018).CrossRef Zhou L., Wang L., Sun Y.: On efficient constructions of lightweight MDS matrices. IACR Trans. Symmetric Cryptol. 2018(1), 180–200 (2018).CrossRef
Metadaten
Titel
Construction of lightweight involutory MDS matrices
verfasst von
Yumeng Yang
Xiangyong Zeng
Shi Wang
Publikationsdatum
05.05.2021
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 7/2021
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-021-00879-3

Weitere Artikel der Ausgabe 7/2021

Designs, Codes and Cryptography 7/2021 Zur Ausgabe