Skip to main content
Erschienen in: Optical and Quantum Electronics 8/2019

01.08.2019

Continual–quantum plasmonics with kinematical functions: dipolar resonance and nonlocal polarizability of simple metal made nanoparticles

verfasst von: Aleksey M. Serebrennikov

Erschienen in: Optical and Quantum Electronics | Ausgabe 8/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work we formulate the theory of a mesoscopic oscillator equivalent to sp-electron excitations in simple metal made nanoparticles illuminated by incident light. The principles of continuum mechanics have been applied to maintain this goal: the primary hypotheses about the dependences of electron density function upon kinematical generalized coordinates, the stationary action principle, and the perturbation method. On their grounds, dynamic equations describing the motion of electron gas subject to alternating potentials together with the ground state equations have been derived. A methodological advantage of the latter is in the correct (qualitative and quantitative) prediction of Friedel oscillations and electron spill-out through an ion lattice with no demands to use high power computer resources as opposed to the orbital density functional theory. The dynamic equations allow studying of the nanoparticle resonant properties in an analytical form without need of numerically solving them. It has been shown with their use that the resonant frequency of the main dipolar resonance becomes the density functional of the ground state. On the basis of the dynamic equations, the theory of nonlocal polarizability has been deduced that does not impose the homogeneity (or weak inhomogeneity) constraints on the electron gas density. In this context the two following results are of importance. We manage to: (1) to demonstrate the effect of giant nonlocality of the dipole moment—its formation by the events separated by distances significantly larger than nanoparticle dimensions and temporal intervals much larger than the mean free time; (2) to derive the expression of the volumetric mode of compression-tension that is resonant on frequency of the main dipolar resonance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Babar, S., Weaver, J.H.: Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54(3), 477–481 (2015)ADSCrossRef Babar, S., Weaver, J.H.: Optical constants of Cu, Ag, and Au revisited. Appl. Opt. 54(3), 477–481 (2015)ADSCrossRef
Zurück zum Zitat Banerjee, A., Harbola, M.K.: Hydrodynamic approach to time-dependent density functional theory; Response properties of metal clusters. J. Chem. Phys. 113(14), 5614–5623 (2000)ADSCrossRef Banerjee, A., Harbola, M.K.: Hydrodynamic approach to time-dependent density functional theory; Response properties of metal clusters. J. Chem. Phys. 113(14), 5614–5623 (2000)ADSCrossRef
Zurück zum Zitat Barbry, M., Koval, P., Marchesin, F., Esteban, R., Borisov, A.G., Aizpurua, J., Sánchez-Portal, D.: Atomistic near-field nanoplasmonics: reaching atomistic-scale resolution in nanooptics. Nano Lett. 15(5), 3410–3419 (2015)ADSCrossRef Barbry, M., Koval, P., Marchesin, F., Esteban, R., Borisov, A.G., Aizpurua, J., Sánchez-Portal, D.: Atomistic near-field nanoplasmonics: reaching atomistic-scale resolution in nanooptics. Nano Lett. 15(5), 3410–3419 (2015)ADSCrossRef
Zurück zum Zitat Bredov, M.M., Rumyantsev, V.V., Toptygin, I.N.: Classical Electrodynamics, p. 400. Lan Publishing Ltd., St.-Petersburg (2003) Bredov, M.M., Rumyantsev, V.V., Toptygin, I.N.: Classical Electrodynamics, p. 400. Lan Publishing Ltd., St.-Petersburg (2003)
Zurück zum Zitat Brongersma, M.L., Halas, N.J., Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015)ADSCrossRef Brongersma, M.L., Halas, N.J., Nordlander, P.: Plasmon-induced hot carrier science and technology. Nat. Nanotechnol. 10(1), 25–34 (2015)ADSCrossRef
Zurück zum Zitat Chan, G.K.-L., Cohen, A.J., Handy, N.C.: Thomas–Fermi–Dirac–von Weizsäcker models in finite systems. J. Chem. Phys. 114(2), 631–638 (2001)ADSCrossRef Chan, G.K.-L., Cohen, A.J., Handy, N.C.: Thomas–Fermi–Dirac–von Weizsäcker models in finite systems. J. Chem. Phys. 114(2), 631–638 (2001)ADSCrossRef
Zurück zum Zitat Charlé, K.-P., König, L., Nepijko, S., Rabin, I., Schulze, W.: The surface plasmon resonance of free and embedded Ag-clusters in the size range 1,5 nm < D < 30 nm. Cryst. Res. Technol. 33(7–8), 1085–1096 (1998)CrossRef Charlé, K.-P., König, L., Nepijko, S., Rabin, I., Schulze, W.: The surface plasmon resonance of free and embedded Ag-clusters in the size range 1,5 nm < D < 30 nm. Cryst. Res. Technol. 33(7–8), 1085–1096 (1998)CrossRef
Zurück zum Zitat Ciracì, C., Della Sala, F.: Quantum hydrodynamic theory for plasmonics: impact of the electron density tail. Phys. Rev. B. 93(20), 205405 (2016). arXiv:1601.01584 Ciracì, C., Della Sala, F.: Quantum hydrodynamic theory for plasmonics: impact of the electron density tail. Phys. Rev. B. 93(20), 205405 (2016). arXiv:​1601.​01584
Zurück zum Zitat David, C., Garcia de Abajo, F.J.: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8(9), 9558–9566 (2014)CrossRef David, C., Garcia de Abajo, F.J.: Surface plasmon dependence on the electron density profile at metal surfaces. ACS Nano 8(9), 9558–9566 (2014)CrossRef
Zurück zum Zitat Della Sala F., Fabiano, E., Constantin, L.A.: Kinetic–energy–density dependent semilocal exchange-correlation functionals. Int. J. Quantum Chem. 116(22), 1641–1694 (2016)CrossRef Della Sala F., Fabiano, E., Constantin, L.A.: Kinetic–energy–density dependent semilocal exchange-correlation functionals. Int. J. Quantum Chem. 116(22), 1641–1694 (2016)CrossRef
Zurück zum Zitat Diaw, A., Murillo, M.S.: A viscous quantum hydrodynamics model based on dynamic density functional theory. Sci. Rep. 7, 15352 (2017)ADSCrossRef Diaw, A., Murillo, M.S.: A viscous quantum hydrodynamics model based on dynamic density functional theory. Sci. Rep. 7, 15352 (2017)ADSCrossRef
Zurück zum Zitat Ding, K., Chan, C.T.: Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method. Phys. Rev. B 96(12), 125134 (2017). arXiv:1706.05465 Ding, K., Chan, C.T.: Plasmonic modes of polygonal rods calculated using a quantum hydrodynamics method. Phys. Rev. B 96(12), 125134 (2017). arXiv:​1706.​05465
Zurück zum Zitat Ding, K., Chan, C.T.: An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method. J. Phys.: Condens. Matter. 30(8), 084007 (2018). arXiv:1712.00719v1 ADS Ding, K., Chan, C.T.: An eigenvalue approach to quantum plasmonics based on a self-consistent hydrodynamics method. J. Phys.: Condens. Matter. 30(8), 084007 (2018). arXiv:​1712.​00719v1 ADS
Zurück zum Zitat Ekardt, W.: Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29(4), 1558–1564 (1984)ADSCrossRef Ekardt, W.: Work function of small metal particles: self-consistent spherical jellium-background model. Phys. Rev. B 29(4), 1558–1564 (1984)ADSCrossRef
Zurück zum Zitat Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J.: Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012)ADSCrossRef Esteban, R., Borisov, A.G., Nordlander, P., Aizpurua, J.: Bridging quantum and classical plasmonics with a quantum-corrected model. Nat. Commun. 3, 825 (2012)ADSCrossRef
Zurück zum Zitat Fitzgerald, J.M., Giannini, V.: Battling retardation and nonlocality: the hunt for the ultimate plasmonic cascade nanolens. ACS Photonics 5(6), 2459–2467 (2018). arXiv:1710.10157v2 CrossRef Fitzgerald, J.M., Giannini, V.: Battling retardation and nonlocality: the hunt for the ultimate plasmonic cascade nanolens. ACS Photonics 5(6), 2459–2467 (2018). arXiv:​1710.​10157v2 CrossRef
Zurück zum Zitat Ford, G.W., Weber, W.H.: Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113(4), 195–287 (1984)ADSCrossRef Ford, G.W., Weber, W.H.: Electromagnetic interactions of molecules with metal surfaces. Phys. Rep. 113(4), 195–287 (1984)ADSCrossRef
Zurück zum Zitat Ginzburg, P., Krasavin, A.V., Wurtz, G.A., Zayats, A.V.: Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2(1), 8–13 (2015)CrossRef Ginzburg, P., Krasavin, A.V., Wurtz, G.A., Zayats, A.V.: Nonperturbative hydrodynamic model for multiple harmonics generation in metallic nanostructures. ACS Photonics 2(1), 8–13 (2015)CrossRef
Zurück zum Zitat Gunnarsson, O., Lundqvist, B.I.: Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13(10), 4274–4298 (1976)ADSCrossRef Gunnarsson, O., Lundqvist, B.I.: Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13(10), 4274–4298 (1976)ADSCrossRef
Zurück zum Zitat Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRef Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6(12), 4370–4379 (1972)ADSCrossRef
Zurück zum Zitat Koval, P., Marchesin, F., Foerster, D., Sánches-Portal, D.: Optical response of silver clusters and their hollow shells from linear-response TDDFT. J. Phys.: Condens. Matter. 28(21), 214001 (2016). arXiv:1512.02104 ADS Koval, P., Marchesin, F., Foerster, D., Sánches-Portal, D.: Optical response of silver clusters and their hollow shells from linear-response TDDFT. J. Phys.: Condens. Matter. 28(21), 214001 (2016). arXiv:​1512.​02104 ADS
Zurück zum Zitat Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science, vol. 25, p. 535. Springer, Berlin (1995)CrossRef Kreibig, U., Vollmer, M.: Optical Properties of Metal Clusters. Springer Series in Materials Science, vol. 25, p. 535. Springer, Berlin (1995)CrossRef
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Electrodynamics of Continuous Media, vol. 8, p. 475. Pergamon Press Ltd., Oxford (1984) ISBN: 0080302769CrossRef Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: Electrodynamics of Continuous Media, vol. 8, p. 475. Pergamon Press Ltd., Oxford (1984) ISBN: 0080302769CrossRef
Zurück zum Zitat Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: The Classical Theory of Fields, vol. 2, p. 402. Butterworth-Heinemann, Oxford (1980) Landau, L.D., Lifshitz, E.M.: Course of Theoretical Physics: The Classical Theory of Fields, vol. 2, p. 402. Butterworth-Heinemann, Oxford (1980)
Zurück zum Zitat Letnes, P.A., Simonsen, I., Mills, D.L.: Substrate influence on the plasmonic response of clusters of spherical nanoparticles. Phys. Rev. B 83(7), 075426 (2011)ADSCrossRef Letnes, P.A., Simonsen, I., Mills, D.L.: Substrate influence on the plasmonic response of clusters of spherical nanoparticles. Phys. Rev. B 83(7), 075426 (2011)ADSCrossRef
Zurück zum Zitat Li, J.H., Hayashi, M., Guo, G.Y.: Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys. Rev. B. 88(15), 155437 (2013). arXiv:1307.3631v1 Li, J.H., Hayashi, M., Guo, G.Y.: Plasmonic excitations in quantum-sized sodium nanoparticles studied by time-dependent density functional calculations. Phys. Rev. B. 88(15), 155437 (2013). arXiv:​1307.​3631v1
Zurück zum Zitat Li, X., Fang, H., Weng, X., Zhang, L., Dou, X., Yang, A., Yuan, X.: Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics. Opt. Express 23(23), 29738–29745 (2015)ADSCrossRef Li, X., Fang, H., Weng, X., Zhang, L., Dou, X., Yang, A., Yuan, X.: Electronic spill-out induced spectral broadening in quantum hydrodynamic nanoplasmonics. Opt. Express 23(23), 29738–29745 (2015)ADSCrossRef
Zurück zum Zitat López–, X., Barron, H., Mottet, C., Weissker, H.C.: Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods—an ab initio TDDFT study. Phys. Chem. Chem. Phys. 16(5), 1820–1823 (2014)CrossRef López–, X., Barron, H., Mottet, C., Weissker, H.C.: Aspect-ratio- and size-dependent emergence of the surface-plasmon resonance in gold nanorods—an ab initio TDDFT study. Phys. Chem. Chem. Phys. 16(5), 1820–1823 (2014)CrossRef
Zurück zum Zitat Marques, M.A.L., Maitra, N.T., Nogueira, F.M.S., Gross, E.K.U., Rubio, A. (eds.): Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics, vol. 837, p. 559. Springer, Berlin (2012) Marques, M.A.L., Maitra, N.T., Nogueira, F.M.S., Gross, E.K.U., Rubio, A. (eds.): Fundamentals of Time-Dependent Density Functional Theory. Lecture Notes in Physics, vol. 837, p. 559. Springer, Berlin (2012)
Zurück zum Zitat Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, p. 387. Springer, Berlin (1996). (3rd rev. and extended ed.) MATHCrossRef Michalewicz, Z.: Genetic Algorithms + Data Structures = Evolution Programs, p. 387. Springer, Berlin (1996). (3rd rev. and extended ed.) MATHCrossRef
Zurück zum Zitat Moeferdt, M., Kiel, T., Sproll, T., Intravaia, F., Busch, K.: Plasmonic modes in nanowire dimers: a study based on the hydrodynamic Drude model including nonlocal and nonlinear effects. Phys. Rev. B 97(7), 075431 (2018). arXiv:1802.08446v1 Moeferdt, M., Kiel, T., Sproll, T., Intravaia, F., Busch, K.: Plasmonic modes in nanowire dimers: a study based on the hydrodynamic Drude model including nonlocal and nonlinear effects. Phys. Rev. B 97(7), 075431 (2018). arXiv:​1802.​08446v1
Zurück zum Zitat Montelongo, Y., Tenorio-Pearl, J.O., Williams, C., Zhang, S., Milne, W.I., Wilkinson, T.D.: Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. U. S. A. 111(35), 12679–12683 (2014)ADSCrossRef Montelongo, Y., Tenorio-Pearl, J.O., Williams, C., Zhang, S., Milne, W.I., Wilkinson, T.D.: Plasmonic nanoparticle scattering for color holograms. Proc. Natl. Acad. Sci. U. S. A. 111(35), 12679–12683 (2014)ADSCrossRef
Zurück zum Zitat Naik, G.V., Kim, J., Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1(6), 1090–1099 (2011)ADSCrossRef Naik, G.V., Kim, J., Boltasseva, A.: Oxides and nitrides as alternative plasmonic materials in the optical range [Invited]. Opt. Mater. Express 1(6), 1090–1099 (2011)ADSCrossRef
Zurück zum Zitat Narang, P., Sundararaman, R., Atwater, H.A.: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5(1), 96–111 (2016)CrossRef Narang, P., Sundararaman, R., Atwater, H.A.: Plasmonic hot carrier dynamics in solid-state and chemical systems for energy conversion. Nanophotonics 5(1), 96–111 (2016)CrossRef
Zurück zum Zitat Palik, E.D. (ed.): Handbook of Optical Constants of Solids, p. 999. Academic Press, San Diego (1998) Palik, E.D. (ed.): Handbook of Optical Constants of Solids, p. 999. Academic Press, San Diego (1998)
Zurück zum Zitat Parks, J.H., McDonald, S.A.: Evolution of the collective–mode resonance in small adsorbed sodium clusters. Phys. Rev. Lett. 62(19), 2301–2304 (1989)ADSCrossRef Parks, J.H., McDonald, S.A.: Evolution of the collective–mode resonance in small adsorbed sodium clusters. Phys. Rev. Lett. 62(19), 2301–2304 (1989)ADSCrossRef
Zurück zum Zitat Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules, p. 333. Oxford University Press Inc., Oxford (1989) Parr, R.G., Yang, W.: Density-Functional Theory of Atoms and Molecules, p. 333. Oxford University Press Inc., Oxford (1989)
Zurück zum Zitat Peng, S., McMahon, J.M., Schatz, G.C., Gray, S.K., Sun, Y.: Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U. S. A. 107(33), 14530–14534 (2010)ADSCrossRef Peng, S., McMahon, J.M., Schatz, G.C., Gray, S.K., Sun, Y.: Reversing the size-dependence of surface plasmon resonances. Proc. Natl. Acad. Sci. U. S. A. 107(33), 14530–14534 (2010)ADSCrossRef
Zurück zum Zitat Pustovit, V.N., Shahbazyan, T.V.: Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles. Phys. Rev. B 73(8), 085408 (2006). arXiv:0506205v2 Pustovit, V.N., Shahbazyan, T.V.: Microscopic theory of surface-enhanced Raman scattering in noble-metal nanoparticles. Phys. Rev. B 73(8), 085408 (2006). arXiv:​0506205v2
Zurück zum Zitat Rasa, S., et al.: Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2(2), 131–138 (2013a)ADS Rasa, S., et al.: Blueshift of the surface plasmon resonance in silver nanoparticles studied with EELS. Nanophotonics 2(2), 131–138 (2013a)ADS
Zurück zum Zitat Rasa, S., Christensen, T., Wubs, M., Bozhevolnyi, S.I., Mortensen, N.A.: Nonlocal response in thin–film waveguides: loss versus nonlocality and breaking of complementarity. Phys. Rev. B 88(11), 115401 (2013b)ADSCrossRef Rasa, S., Christensen, T., Wubs, M., Bozhevolnyi, S.I., Mortensen, N.A.: Nonlocal response in thin–film waveguides: loss versus nonlocality and breaking of complementarity. Phys. Rev. B 88(11), 115401 (2013b)ADSCrossRef
Zurück zum Zitat Rasa, S., Bozhevolnyi, S.I., Wubs, M., Mortensen, N.A.: Nonlocal optical response in metallic nanostructures. J. Phys.: Condens. Matter. 27(18), 183204 (2015)ADS Rasa, S., Bozhevolnyi, S.I., Wubs, M., Mortensen, N.A.: Nonlocal optical response in metallic nanostructures. J. Phys.: Condens. Matter. 27(18), 183204 (2015)ADS
Zurück zum Zitat Romero, I., Aizpurua, J., Bryant, G.W., Garcia de Abajo, F.J.: Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14(21), 9988–9999 (2006)ADSCrossRef Romero, I., Aizpurua, J., Bryant, G.W., Garcia de Abajo, F.J.: Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Opt. Express 14(21), 9988–9999 (2006)ADSCrossRef
Zurück zum Zitat Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984)ADSCrossRef Runge, E., Gross, E.K.U.: Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52(12), 997–1000 (1984)ADSCrossRef
Zurück zum Zitat Sanz, J.M., Ortiz, D., Alcaraz de la Osa, R., Saiz, J.M., González, F., Brown, A.S., Losurdo, M., Everitt, H.O., Moreno, F.: UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117(38), 19606–19615 (2013)CrossRef Sanz, J.M., Ortiz, D., Alcaraz de la Osa, R., Saiz, J.M., González, F., Brown, A.S., Losurdo, M., Everitt, H.O., Moreno, F.: UV plasmonic behavior of various metal nanoparticles in the near- and far-field regimes: geometry and substrate effects. J. Phys. Chem. C 117(38), 19606–19615 (2013)CrossRef
Zurück zum Zitat Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136(3), 031102 (2012)ADSCrossRef Schiff, J., Poirier, B.: Communication: quantum mechanics without wavefunctions. J. Chem. Phys. 136(3), 031102 (2012)ADSCrossRef
Zurück zum Zitat Schmidt, M., Haberland, H.: Optical spectra and their moments for sodium clusters, Na n + , with 3 ≤ n≤64. Eur. Phys. J. D 6(1), 109–118 (1999)ADS Schmidt, M., Haberland, H.: Optical spectra and their moments for sodium clusters, Na n + , with 3 ≤ n≤64. Eur. Phys. J. D 6(1), 109–118 (1999)ADS
Zurück zum Zitat Scholl, J.A., Koh, A.L., Dionne, J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390), 421–427 (2012)ADSCrossRef Scholl, J.A., Koh, A.L., Dionne, J.A.: Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390), 421–427 (2012)ADSCrossRef
Zurück zum Zitat Scholl, J.A., Garcia-Etxarri, A., Koh, A.L., Dionne, J.A.: Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13(2), 564–569 (2013)ADSCrossRef Scholl, J.A., Garcia-Etxarri, A., Koh, A.L., Dionne, J.A.: Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett. 13(2), 564–569 (2013)ADSCrossRef
Zurück zum Zitat Serebrennikov, A.M.: Multipolar resonant particle modes as elementary excitations in chain waveguides: theory, dispersion relations and mathematical modeling. Opt. Commun. 284(21), 5043–5054 (2011)ADSCrossRef Serebrennikov, A.M.: Multipolar resonant particle modes as elementary excitations in chain waveguides: theory, dispersion relations and mathematical modeling. Opt. Commun. 284(21), 5043–5054 (2011)ADSCrossRef
Zurück zum Zitat Serebrennikov, A.M.: Nonlinear continuum mechanical model for investigating plasmonic oscillations phenomena in nanostructured metals. Opt. Commun. 326, 105–113 (2014)ADSCrossRef Serebrennikov, A.M.: Nonlinear continuum mechanical model for investigating plasmonic oscillations phenomena in nanostructured metals. Opt. Commun. 326, 105–113 (2014)ADSCrossRef
Zurück zum Zitat Serebrennikov, A.M.: Four-wave mixing and transverse–longitudinal oscillatory modes in plasmonic nanoparticles: nonlinear theory from variational principles and mathematical simulation. Opt. Quantum Electron. 47(11), 3567–3587 (2015)CrossRef Serebrennikov, A.M.: Four-wave mixing and transverse–longitudinal oscillatory modes in plasmonic nanoparticles: nonlinear theory from variational principles and mathematical simulation. Opt. Quantum Electron. 47(11), 3567–3587 (2015)CrossRef
Zurück zum Zitat Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J.: Plasmon resonances in large noble-metal clusters. New J. Phys. 4(1), 93.1–93.8 (2002) Sönnichsen, C., Franzl, T., Wilk, T., von Plessen, G., Feldmann, J.: Plasmon resonances in large noble-metal clusters. New J. Phys. 4(1), 93.1–93.8 (2002)
Zurück zum Zitat Stout, B., Auger, J.C., Devilez, A.: Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations. JOSA A 25, 2549–2557 (2008)ADSCrossRef Stout, B., Auger, J.C., Devilez, A.: Recursive T matrix algorithm for resonant multiple scattering: applications to localized plasmon excitations. JOSA A 25, 2549–2557 (2008)ADSCrossRef
Zurück zum Zitat Sun, W.G., Wang, J.J., Lu, C., Xia, X.X., Kuang, X.Y., Hermann, A.: Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na 20 cluster. Inorg. Chem. 56(3), 1241–1248 (2017)CrossRef Sun, W.G., Wang, J.J., Lu, C., Xia, X.X., Kuang, X.Y., Hermann, A.: Evolution of the structural and electronic properties of medium-sized sodium clusters: a honeycomb-like Na 20 cluster. Inorg. Chem. 56(3), 1241–1248 (2017)CrossRef
Zurück zum Zitat Teperik, T.V., Nordlander, P., Aizpurua, J., Borisov, A.G.: Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21(22), 27306–27325 (2013). arXiv:1302.3339 ADSCrossRef Teperik, T.V., Nordlander, P., Aizpurua, J., Borisov, A.G.: Quantum effects and nonlocality in strongly coupled plasmonic nanowire dimers. Opt. Express 21(22), 27306–27325 (2013). arXiv:​1302.​3339 ADSCrossRef
Zurück zum Zitat Toscano, G., Straubel, J., Kwiatkowski, A., Rockstuhl, C., Evers, F., Xu, H., Mortensen, N.A., Wubs, M.: Resonance shifts and spill-out effects in self- consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)ADSCrossRef Toscano, G., Straubel, J., Kwiatkowski, A., Rockstuhl, C., Evers, F., Xu, H., Mortensen, N.A., Wubs, M.: Resonance shifts and spill-out effects in self- consistent hydrodynamic nanoplasmonics. Nat. Commun. 6, 7132 (2015)ADSCrossRef
Zurück zum Zitat van Zyl, B.P., Zaremba, E.: Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in laterally modulated electronic systems. Phys. Rev. B 59(3), 2079–2094 (1999)ADSCrossRef van Zyl, B.P., Zaremba, E.: Thomas–Fermi–Dirac–von Weizsäcker hydrodynamics in laterally modulated electronic systems. Phys. Rev. B 59(3), 2079–2094 (1999)ADSCrossRef
Zurück zum Zitat van Zyl, B.P., Farrell, A., Zaremba, E., Towers, J., Pisarski, P., Hutchinson, D.A.W.: Nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas. Phys. Rev. A 89(2), 022503 (2014). arXiv:1311.5608v1 van Zyl, B.P., Farrell, A., Zaremba, E., Towers, J., Pisarski, P., Hutchinson, D.A.W.: Nonlocal kinetic energy functional for an inhomogeneous two-dimensional Fermi gas. Phys. Rev. A 89(2), 022503 (2014). arXiv:​1311.​5608v1
Zurück zum Zitat Varas, A., García-González, P., Feist, J., García-Vidal, F.J., Rubio, A.: Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5(3), 409–426 (2016)CrossRef Varas, A., García-González, P., Feist, J., García-Vidal, F.J., Rubio, A.: Quantum plasmonics: from jellium models to ab initio calculations. Nanophotonics 5(3), 409–426 (2016)CrossRef
Zurück zum Zitat Wang, Y., Overvig, A.C., Shrestha, S., Zhang, R., Wang, R., Yu, N., Dal Negro, L.: Tunability of indium tin oxide materials for mid-infrared plasmonic applications. Opt. Mater. Express 7(8), 2727–2739 (2017)ADSCrossRef Wang, Y., Overvig, A.C., Shrestha, S., Zhang, R., Wang, R., Yu, N., Dal Negro, L.: Tunability of indium tin oxide materials for mid-infrared plasmonic applications. Opt. Mater. Express 7(8), 2727–2739 (2017)ADSCrossRef
Zurück zum Zitat Xia, C., Yin, C., Kresin, V.V.: Photoabsorption by volume plasmons in metal nanoclusters. Phys. Rev. Lett. 102(15), 156802 (2009)ADSCrossRef Xia, C., Yin, C., Kresin, V.V.: Photoabsorption by volume plasmons in metal nanoclusters. Phys. Rev. Lett. 102(15), 156802 (2009)ADSCrossRef
Zurück zum Zitat Yakubovsky, D.I., Arsenin, A.V., Stebunov, Y.V., Fedyanin, D.Y., Volkov, V.S.: Optical constants and structural properties of thin gold films. Opt. Express 25(21), 25574–25587 (2017)ADSCrossRef Yakubovsky, D.I., Arsenin, A.V., Stebunov, Y.V., Fedyanin, D.Y., Volkov, V.S.: Optical constants and structural properties of thin gold films. Opt. Express 25(21), 25574–25587 (2017)ADSCrossRef
Zurück zum Zitat Yan, W.: Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas. Phys. Rev. B 91(11), 115416 (2015)ADSCrossRef Yan, W.: Hydrodynamic theory for quantum plasmonics: linear-response dynamics of the inhomogeneous electron gas. Phys. Rev. B 91(11), 115416 (2015)ADSCrossRef
Zurück zum Zitat Yan, W., Wubs, M., Mortensen, N.A.: Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115(13), 137403 (2015). arXiv:1504.07113 Yan, W., Wubs, M., Mortensen, N.A.: Projected dipole model for quantum plasmonics. Phys. Rev. Lett. 115(13), 137403 (2015). arXiv:​1504.​07113
Zurück zum Zitat Yannouleas, C., Vigezzi, E., Broglia, R.A.: Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description. Phys. Rev. B 47(15), 9849–9861 (1993)ADSCrossRef Yannouleas, C., Vigezzi, E., Broglia, R.A.: Evolution of the optical properties of alkali-metal microclusters towards the bulk: the matrix random-phase-approximation description. Phys. Rev. B 47(15), 9849–9861 (1993)ADSCrossRef
Zurück zum Zitat Yin, J., Krishnamoorthy, H.N.S., Adamo, G., Dubrovkin, A.M., Chong, Y., Zheludev, N.I., Soci, C.: Plasmonics of topological insulators at optical frequencies. NPG Asia Mater. 9, e425 (2017). arXiv:1702.00302 CrossRef Yin, J., Krishnamoorthy, H.N.S., Adamo, G., Dubrovkin, A.M., Chong, Y., Zheludev, N.I., Soci, C.: Plasmonics of topological insulators at optical frequencies. NPG Asia Mater. 9, e425 (2017). arXiv:​1702.​00302 CrossRef
Zurück zum Zitat Zhang, Y., Zhai, F., Guo, B., Yi, L., Jiang, W.: Quantum hydrodynamic modeling of edge modes in chiral Berri plasmons. Phys. Rev. B 96(4), 045104 (2017). arXiv:1701.06281v2 Zhang, Y., Zhai, F., Guo, B., Yi, L., Jiang, W.: Quantum hydrodynamic modeling of edge modes in chiral Berri plasmons. Phys. Rev. B 96(4), 045104 (2017). arXiv:​1701.​06281v2
Zurück zum Zitat Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B.: Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016)ADSCrossRef Zhu, W., Esteban, R., Borisov, A.G., Baumberg, J.J., Nordlander, P., Lezec, H.J., Aizpurua, J., Crozier, K.B.: Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat. Commun. 7, 11495 (2016)ADSCrossRef
Metadaten
Titel
Continual–quantum plasmonics with kinematical functions: dipolar resonance and nonlocal polarizability of simple metal made nanoparticles
verfasst von
Aleksey M. Serebrennikov
Publikationsdatum
01.08.2019
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 8/2019
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-019-1967-9

Weitere Artikel der Ausgabe 8/2019

Optical and Quantum Electronics 8/2019 Zur Ausgabe

Neuer Inhalt