Skip to main content
Erschienen in: Optical and Quantum Electronics 5/2024

01.05.2024

Continuous irradiance adjustment system design for solar simulators with wide range and high uniformity

verfasst von: Yu Wang, Shi Su, FanLin Meng, YiYu Zhang, YongZhu Chen, DongLai Wang, ShiRui Ge

Erschienen in: Optical and Quantum Electronics | Ausgabe 5/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To overcome the limitations of conventional solar simulators, which suffer from inadequate irradiance adjustment range, poor adjustment accuracy, serious arc displacement of the xenon lamp at the low power supply, and insufficient consideration of irradiance uniformity, we have designed an electrically controlled irradiance continuous adjustment device. Our approach involves a theoretical analysis of the radiation distribution on the attenuation diaphragm using the annular aperture method of a condenser, enabling modulation of the radiation distribution of the converging light path using a sector-shaped mesh structure with carefully calculated and simulated structural parameters.We then determined the structural scheme of the electrically controlled irradiance continuous adjustment device, which incorporates an attenuation diaphragm, a dimming dial, rolling balls, a cage, pinions, a motor fixation plate, a triangular bracket, and an electric control system. Key components were designed and optimized using finite element analysis, and the control system was also studied.In the final step, we tested the performance of the electrically controlled irradiance continuous adjustment device. Experimental results demonstrated that the irradiance of the solar simulator can be adjusted within the range of 23.7–1315.5 W/m2, with a maximum relative error of the attenuation ratio within ± 0.2% and irradiance non-uniformity within ± 3%. Our device has achieved electrically controlled irradiance continuous adjustment, thereby expanding the application range of the solar simulator and improving its overall performance.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alxneit, I.: Measuring temperatures in a high concentration solar simulator—demonstration of the principle. Sol. Energy 85(3), 516–522 (2011)ADSCrossRef Alxneit, I.: Measuring temperatures in a high concentration solar simulator—demonstration of the principle. Sol. Energy 85(3), 516–522 (2011)ADSCrossRef
Zurück zum Zitat Domínguez, C., Antón, I., Sala, G.: Solar simulator for concentrator photovoltaic systems. Opt. Express 16(19), 14894–14901 (2008)ADSCrossRef Domínguez, C., Antón, I., Sala, G.: Solar simulator for concentrator photovoltaic systems. Opt. Express 16(19), 14894–14901 (2008)ADSCrossRef
Zurück zum Zitat Hirsch, D., Kinamore, J., Steinfeld, A., Zedtwitz, P.V., Osinga, T.: A new 75 kw high-flux solar simulator for high-temperature thermal and thermochemical research (2003) Hirsch, D., Kinamore, J., Steinfeld, A., Zedtwitz, P.V., Osinga, T.: A new 75 kw high-flux solar simulator for high-temperature thermal and thermochemical research (2003)
Zurück zum Zitat Jin, J., Hao, Y., Jin, H.: A universal solar simulator for focused and quasi-collimated beams. Appl. Energy 235, 1266–1276 (2019)ADSCrossRef Jin, J., Hao, Y., Jin, H.: A universal solar simulator for focused and quasi-collimated beams. Appl. Energy 235, 1266–1276 (2019)ADSCrossRef
Zurück zum Zitat Liu, S., Zhang, G., Sun, G., Wang, L., Gao, Y.: Design of an optical system for a solar simulator with high collimation degree and high irradiance. J. Opt. Technol. 84(2), 117–121 (2017)CrossRef Liu, S., Zhang, G., Sun, G., Wang, L., Gao, Y.: Design of an optical system for a solar simulator with high collimation degree and high irradiance. J. Opt. Technol. 84(2), 117–121 (2017)CrossRef
Zurück zum Zitat López-Fraguas, E., Sánchez-Pena, J.M., Vergaz, R.: A low-cost led-based solar simulator. IEEE Trans. Instrum. Meas. 68(12), 4913–4923 (2019)ADSCrossRef López-Fraguas, E., Sánchez-Pena, J.M., Vergaz, R.: A low-cost led-based solar simulator. IEEE Trans. Instrum. Meas. 68(12), 4913–4923 (2019)ADSCrossRef
Zurück zum Zitat Najafabadi, H.A., Ozalp, N.: Aperture size adjustment using model based adaptive control strategy to regulate temperature in a solar receiver. Solar Energy 159, 20–36 (2018)ADSCrossRef Najafabadi, H.A., Ozalp, N.: Aperture size adjustment using model based adaptive control strategy to regulate temperature in a solar receiver. Solar Energy 159, 20–36 (2018)ADSCrossRef
Zurück zum Zitat Petrasch, J., Coray, P., Meier, A., Brack, M., Haeberling, P., Wuillemin, D., Steinfeld, A.: A novel 50kw 11,000 suns high-flux solar simulator based on an array of xenon arc lamps (2007) Petrasch, J., Coray, P., Meier, A., Brack, M., Haeberling, P., Wuillemin, D., Steinfeld, A.: A novel 50kw 11,000 suns high-flux solar simulator based on an array of xenon arc lamps (2007)
Zurück zum Zitat Sarwar, J., Georgakis, G., LaChance, R., Ozalp, N.: Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol. Energy 100, 179–194 (2014)ADSCrossRef Sarwar, J., Georgakis, G., LaChance, R., Ozalp, N.: Description and characterization of an adjustable flux solar simulator for solar thermal, thermochemical and photovoltaic applications. Sol. Energy 100, 179–194 (2014)ADSCrossRef
Zurück zum Zitat Siddiqui, R., Kumar, R., Jha, G.K., Gowri, G., Morampudi, M., Rajput, P., Lata, S., Agariya, S., Dubey, B., Nanda, G., et al.: Comparison of different technologies for solar pv (photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability. Energy 107, 550–561 (2016)CrossRef Siddiqui, R., Kumar, R., Jha, G.K., Gowri, G., Morampudi, M., Rajput, P., Lata, S., Agariya, S., Dubey, B., Nanda, G., et al.: Comparison of different technologies for solar pv (photovoltaic) outdoor performance using indoor accelerated aging tests for long term reliability. Energy 107, 550–561 (2016)CrossRef
Zurück zum Zitat Sun, G., Zhang, G., Liu, S., Wang, L., Gao, Y., Mei, Y.: Designing an optical system of a high precision solar simulator for meteorological application. J. Opt. Technol. 84(8), 552–556 (2017)CrossRef Sun, G., Zhang, G., Liu, S., Wang, L., Gao, Y., Mei, Y.: Designing an optical system of a high precision solar simulator for meteorological application. J. Opt. Technol. 84(8), 552–556 (2017)CrossRef
Zurück zum Zitat Unvala, B., Maries, A.: Radiant heating using an ellipsoidal reflector. J. Phys. E Sci. Instrum. 7(5), 349 (1974)ADSCrossRef Unvala, B., Maries, A.: Radiant heating using an ellipsoidal reflector. J. Phys. E Sci. Instrum. 7(5), 349 (1974)ADSCrossRef
Zurück zum Zitat Walczak, M., Bychto, L., Kraśniewski, J., Duer, S.: Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels. Metrol. Measur. Syst. 29, 685–700 (2022)CrossRef Walczak, M., Bychto, L., Kraśniewski, J., Duer, S.: Design and evaluation of a low-cost solar simulator and measurement system for low-power photovoltaic panels. Metrol. Measur. Syst. 29, 685–700 (2022)CrossRef
Zurück zum Zitat Wenhua, L., Zeqiang, B., Wei, C., Lixin, S., Yigang, X.: Research on nonlinear error test of solar radiation measuring instrument. In: 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, vol. 1. IEEE, pp. 302–305 (2013) Wenhua, L., Zeqiang, B., Wei, C., Lixin, S., Yigang, X.: Research on nonlinear error test of solar radiation measuring instrument. In: 2013 IEEE 11th International Conference on Electronic Measurement & Instruments, vol. 1. IEEE, pp. 302–305 (2013)
Zurück zum Zitat Xiao, J., Wei, X., Gilaber, R.N., Zhang, Y., Li, Z.: Design and characterization of a high-flux non-coaxial concentrating solar simulator. Appl. Therm. Eng. 145, 201–211 (2018)CrossRef Xiao, J., Wei, X., Gilaber, R.N., Zhang, Y., Li, Z.: Design and characterization of a high-flux non-coaxial concentrating solar simulator. Appl. Therm. Eng. 145, 201–211 (2018)CrossRef
Metadaten
Titel
Continuous irradiance adjustment system design for solar simulators with wide range and high uniformity
verfasst von
Yu Wang
Shi Su
FanLin Meng
YiYu Zhang
YongZhu Chen
DongLai Wang
ShiRui Ge
Publikationsdatum
01.05.2024
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 5/2024
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-06195-5

Weitere Artikel der Ausgabe 5/2024

Optical and Quantum Electronics 5/2024 Zur Ausgabe

Neuer Inhalt